Python numpy 模块,fromstring() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.fromstring()

项目:RasterFairy    作者:Quasimondo    | 项目源码 | 文件源码
def __init__(self, image, samplefac=10, colors=256):

        # Check Numpy
        if np is None:
            raise RuntimeError("Need Numpy for the NeuQuant algorithm.")

        # Check image
        if image.size[0] * image.size[1] < NeuQuant.MAXPRIME:
            raise IOError("Image is too small")
        if image.mode != "RGBA":
            raise IOError("Image mode should be RGBA.")

        # Initialize
        self.setconstants(samplefac, colors)
        self.pixels = np.fromstring(image.tostring(), np.uint32)
        self.setUpArrays()

        self.learn()
        self.fix()
        self.inxbuild()
项目:chainer-cyclegan    作者:Aixile    | 项目源码 | 文件源码
def get_example(self, i):
        id = self.all_keys[i]
        img = None
        val = self.db.get(id.encode())

        img = cv2.imdecode(np.fromstring(val, dtype=np.uint8), 1)
        img = self.do_augmentation(img)

        img_color = img
        img_color = self.preprocess_image(img_color)

        img_line = XDoG(img)
        img_line = cv2.cvtColor(img_line, cv2.COLOR_GRAY2RGB)
        #if img_line.ndim == 2:
        #    img_line = img_line[:, :, np.newaxis]
        img_line = self.preprocess_image(img_line)

        return img_line, img_color
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _readData1(self, fd, meta, mmap=False, **kwds):
        ## Read array data from the file descriptor for MetaArray v1 files
        ## read in axis values for any axis that specifies a length
        frameSize = 1
        for ax in meta['info']:
            if 'values_len' in ax:
                ax['values'] = np.fromstring(fd.read(ax['values_len']), dtype=ax['values_type'])
                frameSize *= ax['values_len']
                del ax['values_len']
                del ax['values_type']
        self._info = meta['info']
        if not kwds.get("readAllData", True):
            return
        ## the remaining data is the actual array
        if mmap:
            subarr = np.memmap(fd, dtype=meta['type'], mode='r', shape=meta['shape'])
        else:
            subarr = np.fromstring(fd.read(), dtype=meta['type'])
            subarr.shape = meta['shape']
        self._data = subarr
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _readData1(self, fd, meta, mmap=False, **kwds):
        ## Read array data from the file descriptor for MetaArray v1 files
        ## read in axis values for any axis that specifies a length
        frameSize = 1
        for ax in meta['info']:
            if 'values_len' in ax:
                ax['values'] = np.fromstring(fd.read(ax['values_len']), dtype=ax['values_type'])
                frameSize *= ax['values_len']
                del ax['values_len']
                del ax['values_type']
        self._info = meta['info']
        if not kwds.get("readAllData", True):
            return
        ## the remaining data is the actual array
        if mmap:
            subarr = np.memmap(fd, dtype=meta['type'], mode='r', shape=meta['shape'])
        else:
            subarr = np.fromstring(fd.read(), dtype=meta['type'])
            subarr.shape = meta['shape']
        self._data = subarr
项目:ml-pyxis    作者:vicolab    | 项目源码 | 文件源码
def decode_data(obj):
    """Decode a serialised data object.

    Parameter
    ---------
    obj : Python dictionary
        A dictionary describing a serialised data object.
    """
    try:
        if TYPES['str'] == obj[b'type']:
            return decode_str(obj[b'data'])
        elif TYPES['ndarray'] == obj[b'type']:
            return np.fromstring(obj[b'data'], dtype=np.dtype(
                obj[b'dtype'])).reshape(obj[b'shape'])
        else:
            # Assume the user know what they are doing
            return obj
    except KeyError:
        # Assume the user know what they are doing
        return obj
项目:mx-rfcn    作者:giorking    | 项目源码 | 文件源码
def __init__(self, feat_stride, scales, ratios, is_train=False, output_score=False):
        super(ProposalOperator, self).__init__()
        self._feat_stride = float(feat_stride)
        self._scales = np.fromstring(scales[1:-1], dtype=float, sep=',')
        self._ratios = np.fromstring(ratios[1:-1], dtype=float, sep=',').tolist()
        self._anchors = generate_anchors(base_size=self._feat_stride, scales=self._scales, ratios=self._ratios)
        self._num_anchors = self._anchors.shape[0]
        self._output_score = output_score

        if DEBUG:
            print 'feat_stride: {}'.format(self._feat_stride)
            print 'anchors:'
            print self._anchors

        if is_train:
            self.cfg_key = 'TRAIN'
        else:
            self.cfg_key = 'TEST'
项目:lopocs    作者:Oslandia    | 项目源码 | 文件源码
def read_uncompressed_patch(pcpatch_wkb, schema):
    '''
    Patch binary structure uncompressed:
    byte:         endianness (1 = NDR, 0 = XDR)
    uint32:       pcid (key to POINTCLOUD_SCHEMAS)
    uint32:       0 = no compression
    uint32:       npoints
    pointdata[]:  interpret relative to pcid
    '''
    patchbin = unhexlify(pcpatch_wkb)
    npoints = unpack("I", patchbin[9:13])[0]
    dt = schema_dtype(schema)
    patch = np.fromstring(patchbin[13:], dtype=dt)
    # debug
    # print(patch[:10])
    return patch, npoints
项目:lopocs    作者:Oslandia    | 项目源码 | 文件源码
def decompress(points, schema):
    """
    Decode patch encoded with lazperf.
    'points' is a pcpatch in wkb
    """

    # retrieve number of points in wkb pgpointcloud patch
    npoints = patch_numpoints(points)
    hexbuffer = unhexlify(points[34:])
    hexbuffer += hexa_signed_int32(npoints)

    # uncompress
    s = json.dumps(schema).replace("\\", "")
    dtype = buildNumpyDescription(json.loads(s))
    lazdata = bytes(hexbuffer)

    arr = np.fromstring(lazdata, dtype=np.uint8)
    d = Decompressor(arr, s)
    output = np.zeros(npoints * dtype.itemsize, dtype=np.uint8)
    decompressed = d.decompress(output)

    return decompressed
项目:CycleGAN-Tensorflow-PyTorch-Simple    作者:LynnHo    | 项目源码 | 文件源码
def __init__(self, image, samplefac=10, colors=256):

        # Check Numpy
        if np is None:
            raise RuntimeError("Need Numpy for the NeuQuant algorithm.")

        # Check image
        if image.size[0] * image.size[1] < NeuQuant.MAXPRIME:
            raise IOError("Image is too small")
        if image.mode != "RGBA":
            raise IOError("Image mode should be RGBA.")

        # Initialize
        self.setconstants(samplefac, colors)
        self.pixels = np.fromstring(image.tostring(), np.uint32)
        self.setUpArrays()

        self.learn()
        self.fix()
        self.inxbuild()
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def get_original_image(tfrecords_dir, is_training_data=False):
    record = tf.python_io.tf_record_iterator(tfrecords_dir).next()
    example = tf.train.Example()
    example.ParseFromString(record)

    shape = np.fromstring(example.features.feature['shape'].bytes_list.value[0], dtype=np.int32)
    image = np.fromstring(example.features.feature['img_raw'].bytes_list.value[0], dtype=np.float32)
    image = image.reshape(shape)

    if is_training_data:
        ground_truth = np.fromstring(example.features.feature['gt_raw'].bytes_list.value[0], dtype=np.uint8)
        ground_truth = ground_truth.reshape(shape[:-1])
    else:
        ground_truth = None

    return image, ground_truth
项目:answer-triggering    作者:jiez-osu    | 项目源码 | 文件源码
def load_bin_vec(self, fname, vocab):
        """
        Loads 300x1 word vecs from Google (Mikolov) word2vec
        """
        word_vecs = {}
        with open(fname, "rb") as f:
            header = f.readline()
            vocab_size, layer1_size = map(int, header.split())
            binary_len = np.dtype('float32').itemsize * layer1_size
            for line in xrange(vocab_size):
                word = []
                while True:
                    ch = f.read(1)
                    if ch == ' ':
                        word = ''.join(word)
                        break
                    if ch != '\n':
                        word.append(ch)
                if word in vocab:
                   word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
                else:
                    f.read(binary_len)
        logger.info("num words already in word2vec: " + str(len(word_vecs)))
        return word_vecs
项目:hadan-gcloud    作者:youkpan    | 项目源码 | 文件源码
def vec2bin(input_path, output_path):
    input_fd  = open(input_path, "rb")
    output_fd = open(output_path, "wb")

    header = input_fd.readline()
    output_fd.write(header)

    vocab_size, vector_size = map(int, header.split())

    for line in tqdm(range(vocab_size)):
        word = []
        while True:
            ch = input_fd.read(1)
            output_fd.write(ch)
            if ch == b' ':
                word = b''.join(word).decode('utf-8')
                break
            if ch != b'\n':
                word.append(ch)
        vector = np.fromstring(input_fd.readline(), sep=' ', dtype='float32')
        output_fd.write(vector.tostring())

    input_fd.close()
    output_fd.close()
项目:SentEval    作者:facebookresearch    | 项目源码 | 文件源码
def get_glove_k(self, K):
        assert hasattr(self, 'glove_path'), 'warning : \
            you need to set_glove_path(glove_path)'
        # create word_vec with k first glove vectors
        k = 0
        word_vec = {}
        with io.open(self.glove_path) as f:
            for line in f:
                word, vec = line.split(' ', 1)
                if k <= K:
                    word_vec[word] = np.fromstring(vec, sep=' ')
                    k += 1
                if k > K:
                    if word in ['<s>', '</s>']:
                        word_vec[word] = np.fromstring(vec, sep=' ')

                if k>K and all([w in word_vec for w in ['<s>', '</s>']]):
                    break
        return word_vec
项目:main_loop_tf    作者:fvisin    | 项目源码 | 文件源码
def fig2array(fig):
    """Convert a Matplotlib figure to a 4D numpy array

    Params
    ------
    fig:
        A matplotlib figure

    Return
    ------
        A numpy 3D array of RGBA values

    Modified version of: http://www.icare.univ-lille1.fr/node/1141
    """
    # draw the renderer
    fig.canvas.draw()

    # Get the RGBA buffer from the figure
    w, h = fig.canvas.get_width_height()
    buf = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8)
    buf.shape = (h, w, 3)

    return buf
项目:mss_pytorch    作者:Js-Mim    | 项目源码 | 文件源码
def _wav2array(nchannels, sampwidth, data):
        """data must be the string containing the bytes from the wav file."""
        num_samples, remainder = divmod(len(data), sampwidth * nchannels)
        if remainder > 0:
            raise ValueError('The length of data is not a multiple of '
                             'sampwidth * num_channels.')
        if sampwidth > 4:
            raise ValueError("sampwidth must not be greater than 4.")

        if sampwidth == 3:
            a = np.empty((num_samples, nchannels, 4), dtype = np.uint8)
            raw_bytes = np.fromstring(data, dtype = np.uint8)
            a[:, :, :sampwidth] = raw_bytes.reshape(-1, nchannels, sampwidth)
            a[:, :, sampwidth:] = (a[:, :, sampwidth - 1:sampwidth] >> 7) * 255
            result = a.view('<i4').reshape(a.shape[:-1])
        else:
            # 8 bit samples are stored as unsigned ints; others as signed ints.
            dt_char = 'u' if sampwidth == 1 else 'i'
            a = np.fromstring(data, dtype='<%s%d' % (dt_char, sampwidth))
            result = a.reshape(-1, nchannels)
        return result
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def read_array(self, dtype, count=-1, sep=""):
        """Return numpy array from file.

        Work around numpy issue #2230, "numpy.fromfile does not accept
        StringIO object" https://github.com/numpy/numpy/issues/2230.

        """
        try:
            return numpy.fromfile(self._fh, dtype, count, sep)
        except IOError:
            if count < 0:
                size = self._size
            else:
                size = count * numpy.dtype(dtype).itemsize
            data = self._fh.read(size)
            return numpy.fromstring(data, dtype, count, sep)
项目:crnn    作者:ultimate010    | 项目源码 | 文件源码
def load_bin_vec(fname, vocab):
    """
    Loads 300x1 word vecs from Google (Mikolov) word2vec
    """
    word_vecs = {}
    with open(fname, "rb") as f:
        header = f.readline()
        vocab_size, layer1_size = map(int, header.split())
        binary_len = np.dtype('float32').itemsize * layer1_size
        for line in xrange(vocab_size):
            word = []
            while True:
                ch = f.read(1)
                if ch == ' ':
                    word = ''.join(word)
                    break
                if ch != '\n':
                    word.append(ch)
            if word in vocab:
               word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
            else:
                f.read(binary_len)
    return word_vecs
项目:crnn    作者:ultimate010    | 项目源码 | 文件源码
def load_bin_vec(fname, vocab):
    """
    Loads 300x1 word vecs from Google (Mikolov) word2vec
    """
    word_vecs = {}
    with open(fname, "rb") as f:
        header = f.readline()
        vocab_size, layer1_size = map(int, header.split())
        binary_len = np.dtype('float32').itemsize * layer1_size
        for line in xrange(vocab_size):
            word = []
            while True:
                ch = f.read(1)
                if ch == ' ':
                    word = ''.join(word)
                    break
                if ch != '\n':
                    word.append(ch)
            if word in vocab:
               word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
            else:
                f.read(binary_len)
    return word_vecs
项目:crnn    作者:ultimate010    | 项目源码 | 文件源码
def load_bin_vec(fname, vocab):
    """
    Loads 300x1 word vecs from Google (Mikolov) word2vec
    """
    word_vecs = {}
    with open(fname, "rb") as f:
        header = f.readline()
        vocab_size, layer1_size = map(int, header.split())
        binary_len = np.dtype('float32').itemsize * layer1_size
        for line in xrange(vocab_size):
            word = []
            while True:
                ch = f.read(1)
                if ch == ' ':
                    word = ''.join(word)
                    break
                if ch != '\n':
                    word.append(ch)
            if word in vocab:
               word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
            else:
                f.read(binary_len)
    return word_vecs
项目:skill-voice-recognition    作者:TREE-Edu    | 项目源码 | 文件源码
def load_wav_file(name):
    f = wave.open(name, "rb")
    # print("loading %s"%name)
    chunk = []
    data0 = f.readframes(CHUNK)
    while data0:  # f.getnframes()
        # data=numpy.fromstring(data0, dtype='float32')
        # data = numpy.fromstring(data0, dtype='uint16')
        data = numpy.fromstring(data0, dtype='uint8')
        data = (data + 128) / 255.  # 0-1 for Better convergence
        # chunks.append(data)
        chunk.extend(data)
        data0 = f.readframes(CHUNK)
    # finally trim:
    chunk = chunk[0:CHUNK * 2]  # should be enough for now -> cut
    chunk.extend(numpy.zeros(CHUNK * 2 - len(chunk)))  # fill with padding 0's
    # print("%s loaded"%name)
    return chunk
项目:self-augmented-net    作者:msraig    | 项目源码 | 文件源码
def pfmFromBuffer(buffer, reverse = 1):
    sStream = cStringIO.StringIO(buffer)

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = sStream.readline().rstrip()
    color = (header == 'PF')

    width, height = map(int, sStream.readline().strip().split(' '))
    scale = float(sStream.readline().rstrip())
    endian = '<' if(scale < 0) else '>'
    scale = abs(scale)


    rawdata = np.fromstring(sStream.read(), endian + 'f')
    shape = (height, width, 3) if color else (height, width)
    sStream.close()
    if(len(shape) == 3):
        return rawdata.reshape(shape).astype(np.float32)[:,:,::-1]
    else:
        return rawdata.reshape(shape).astype(np.float32)
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def sample(self, filename, save_samples):
        gan = self.gan
        generator = gan.generator.sample

        sess = gan.session
        config = gan.config
        x_v, z_v = sess.run([gan.inputs.x, gan.encoder.z])

        sample = sess.run(generator, {gan.inputs.x: x_v, gan.encoder.z: z_v})

        plt.clf()
        fig = plt.figure(figsize=(3,3))
        plt.scatter(*zip(*x_v), c='b')
        plt.scatter(*zip(*sample), c='r')
        plt.xlim([-2, 2])
        plt.ylim([-2, 2])
        plt.ylabel("z")
        fig.canvas.draw()
        data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
        data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
        #plt.savefig(filename)
        self.plot(data, filename, save_samples)
        return [{'image': filename, 'label': '2d'}]
项目:aes_wimp    作者:Js-Mim    | 项目源码 | 文件源码
def _wav2array(nchannels, sampwidth, data):
        """data must be the string containing the bytes from the wav file."""
        num_samples, remainder = divmod(len(data), sampwidth * nchannels)
        if remainder > 0:
            raise ValueError('The length of data is not a multiple of '
                             'sampwidth * num_channels.')
        if sampwidth > 4:
            raise ValueError("sampwidth must not be greater than 4.")

        if sampwidth == 3:
            a = np.empty((num_samples, nchannels, 4), dtype = np.uint8)
            raw_bytes = np.fromstring(data, dtype = np.uint8)
            a[:, :, :sampwidth] = raw_bytes.reshape(-1, nchannels, sampwidth)
            a[:, :, sampwidth:] = (a[:, :, sampwidth - 1:sampwidth] >> 7) * 255
            result = a.view('<i4').reshape(a.shape[:-1])
        else:
            # 8 bit samples are stored as unsigned ints; others as signed ints.
            dt_char = 'u' if sampwidth == 1 else 'i'
            a = np.fromstring(data, dtype='<%s%d' % (dt_char, sampwidth))
            result = a.reshape(-1, nchannels)
        return result
项目:canshi    作者:hungsing92    | 项目源码 | 文件源码
def load_poses(self):
        """Load ground truth poses from file."""
        print('Loading poses for sequence ' + self.sequence + '...')

        pose_file = os.path.join(self.pose_path, self.sequence + '.txt')

        # Read and parse the poses
        try:
            self.T_w_cam0 = []
            with open(pose_file, 'r') as f:
                for line in f.readlines():
                    T = np.fromstring(line, dtype=float, sep=' ')
                    T = T.reshape(3, 4)
                    T = np.vstack((T, [0, 0, 0, 1]))
                    self.T_w_cam0.append(T)
            print('done.')

        except FileNotFoundError:
            print('Ground truth poses are not avaialble for sequence ' +
                  self.sequence + '.')
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def loadData(src, cimg):
    gzfname, h = urlretrieve(src, './delete.me')
    try:
        with gzip.open(gzfname) as gz:
            n = struct.unpack('I', gz.read(4))
            if n[0] != 0x3080000:
                raise Exception('Invalid file: unexpected magic number.')
            n = struct.unpack('>I', gz.read(4))[0]
            if n != cimg:
                raise Exception('Invalid file: expected {0} entries.'.format(cimg))
            crow = struct.unpack('>I', gz.read(4))[0]
            ccol = struct.unpack('>I', gz.read(4))[0]
            if crow != 28 or ccol != 28:
                raise Exception('Invalid file: expected 28 rows/cols per image.')
            res = np.fromstring(gz.read(cimg * crow * ccol), dtype=np.uint8)
    finally:
        os.remove(gzfname)
    return res.reshape((cimg, crow * ccol))
项目:ai-gym    作者:tuzzer    | 项目源码 | 文件源码
def get_mnist_data(filename, num_samples, local_data_dir):

    gzfname = load_or_download_mnist_files(filename, num_samples, local_data_dir)

    with gzip.open(gzfname) as gz:
        n = struct.unpack('I', gz.read(4))
        # Read magic number.
        if n[0] != 0x3080000:
            raise Exception('Invalid file: unexpected magic number.')
        # Read number of entries.
        n = struct.unpack('>I', gz.read(4))[0]
        if n != num_samples:
            raise Exception('Invalid file: expected {0} entries.'.format(num_samples))
        crow = struct.unpack('>I', gz.read(4))[0]
        ccol = struct.unpack('>I', gz.read(4))[0]
        if crow != 28 or ccol != 28:
            raise Exception('Invalid file: expected 28 rows/cols per image.')
        # Read data.
        res = np.fromstring(gz.read(num_samples * crow * ccol), dtype = np.uint8)

        return res.reshape((num_samples, crow * ccol))
项目:ai-gym    作者:tuzzer    | 项目源码 | 文件源码
def get_mnist_labels(filename, num_samples, local_data_dir):

    gzfname = load_or_download_mnist_files(filename, num_samples, local_data_dir)

    with gzip.open(gzfname) as gz:
        n = struct.unpack('I', gz.read(4))
        # Read magic number.
        if n[0] != 0x1080000:
            raise Exception('Invalid file: unexpected magic number.')
        # Read number of entries.
        n = struct.unpack('>I', gz.read(4))
        if n[0] != num_samples:
            raise Exception('Invalid file: expected {0} rows.'.format(num_samples))
        # Read labels.
        res = np.fromstring(gz.read(num_samples), dtype = np.uint8)

        return res.reshape((num_samples, 1))
项目:PySyft    作者:OpenMined    | 项目源码 | 文件源码
def shape(self, as_list=True):
        """
        Returns the size of the self tensor as a FloatTensor (or as List).
        Note:
            The returned value currently is a FloatTensor because it leverages
            the messaging mechanism with Unity.
        Parameters
        ----------
        as_list : bool
            Value retruned as list if true; else as tensor
        Returns
        -------
        FloatTensor
            Output tensor
        (or)
        Iterable
            Output list
        """
        if (as_list):
            return list(np.fromstring(self.get("shape")[:-1], sep=",").astype('int'))
        else:
            shape_tensor = self.no_params_func("shape", return_response=True)
            return shape_tensor
项目:PySyft    作者:OpenMined    | 项目源码 | 文件源码
def stride(self, dim=-1):
        """
        Returns the stride of tensor.
        Parameters
        ----------
        dim : int
            dimension of expected return

        Returns
        -------
        FloatTensor
            Output tensor.
        (or)
        numpy.ndarray
            NumPy Array as Long
        """
        if dim == -1:
            return self.no_params_func("stride", return_response=True, return_type=None)
        else:
            strides = self.params_func("stride", [dim], return_response=True, return_type=None)
            return np.fromstring(strides, sep=' ').astype('long')
项目:focal-loss    作者:unsky    | 项目源码 | 文件源码
def __init__(self, feat_stride, scales, ratios, output_score,
                 rpn_pre_nms_top_n, rpn_post_nms_top_n, threshold, rpn_min_size):
        super(ProposalOperator, self).__init__()
        self._feat_stride = feat_stride
        self._scales = np.fromstring(scales[1:-1], dtype=float, sep=',')
        self._ratios = np.fromstring(ratios[1:-1], dtype=float, sep=',')
        self._anchors = generate_anchors(base_size=self._feat_stride, scales=self._scales, ratios=self._ratios)
        self._num_anchors = self._anchors.shape[0]
        self._output_score = output_score
        self._rpn_pre_nms_top_n = rpn_pre_nms_top_n
        self._rpn_post_nms_top_n = rpn_post_nms_top_n
        self._threshold = threshold
        self._rpn_min_size = rpn_min_size

        if DEBUG:
            print 'feat_stride: {}'.format(self._feat_stride)
            print 'anchors:'
            print self._anchors
项目:odnl    作者:lilhope    | 项目源码 | 文件源码
def __init__(self, feat_stride, scales, ratios, output_score,
                 rpn_pre_nms_top_n, rpn_post_nms_top_n, threshold, rpn_min_size):
        super(ProposalOperator, self).__init__()
        self._feat_stride = feat_stride
        self._scales = np.fromstring(scales[1:-1], dtype=float, sep=',')
        self._ratios = np.fromstring(ratios[1:-1], dtype=float, sep=',')
        self._anchors = generate_anchors(base_size=self._feat_stride, scales=self._scales, ratios=self._ratios)
        self._num_anchors = self._anchors.shape[0]
        self._output_score = output_score
        self._rpn_pre_nms_top_n = rpn_pre_nms_top_n
        self._rpn_post_nms_top_n = rpn_post_nms_top_n
        self._threshold = threshold
        self._rpn_min_size = rpn_min_size

        if DEBUG:
            print('feat_stride: {}'.format(self._feat_stride))
            print('anchors:')
            print(self._anchors)
项目:DeepQA    作者:Conchylicultor    | 项目源码 | 文件源码
def vec2bin(input_path, output_path):
    input_fd  = open(input_path, "rb")
    output_fd = open(output_path, "wb")

    header = input_fd.readline()
    output_fd.write(header)

    vocab_size, vector_size = map(int, header.split())

    for line in tqdm(range(vocab_size)):
        word = []
        while True:
            ch = input_fd.read(1)
            output_fd.write(ch)
            if ch == b' ':
                word = b''.join(word).decode('utf-8')
                break
            if ch != b'\n':
                word.append(ch)
        vector = np.fromstring(input_fd.readline(), sep=' ', dtype='float32')
        output_fd.write(vector.tostring())

    input_fd.close()
    output_fd.close()
项目:Deep-Learning-with-Theano    作者:PacktPublishing    | 项目源码 | 文件源码
def enwik8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw Hutter prize data is at:
  http://mattmahoney.net/dc/enwik8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to hutter_iterator.
  """

  data_path = os.path.join(data_path, "enwik8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
项目:Deep-Learning-with-Theano    作者:PacktPublishing    | 项目源码 | 文件源码
def text8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw text8 data is at:
  http://mattmahoney.net/dc/text8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to text8_iterator.
  """

  data_path = os.path.join(data_path, "text8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
项目:NCRF-AE    作者:cosmozhang    | 项目源码 | 文件源码
def load_bin_vec(fname, vocab):
    """
    Loads word vecs from word2vec bin file
    """
    word_vecs = OrderedDict()
    with open(fname, "rb") as f:
        header = f.readline()
        vocab_size, layer1_size = map(int, header.split())
        binary_len = np.dtype('float32').itemsize * layer1_size
        for line in xrange(vocab_size):
            word = []
            while True:
                ch = f.read(1)
                if ch == ' ':
                    word = ''.join(word)
                    break
                if ch != '\n':
                    word.append(ch)
            if word in vocab:
                idx = vocab[word]
                word_vecs[idx] = np.fromstring(f.read(binary_len), dtype='float32')
            else:
                f.read(binary_len)
    return word_vecs
项目:myreco    作者:dutradda    | 项目源码 | 文件源码
def test_if_items_patch_updates_stock_filter(self, init_db, headers, redis, session, client, api):
        body = [{
            'name': 'test',
            'stores': [{'id': 1}],
            'schema': {'properties': {'id': {'type': 'string'}}, 'type': 'object', 'id_names': ['id']}
        }]
        client = await client
        await client.post('/item_types/', headers=headers, data=ujson.dumps(body))

        body = [{'id': 'test'}]
        resp = await client.post('/item_types/1/items?store_id=1', headers=headers, data=ujson.dumps(body))
        assert resp.status == 201


        test_model = _all_models['store_items_test_1']
        await ItemsIndicesMap(test_model).update(session)

        body = [{'id': 'test', '_operation': 'delete'}]
        resp = await client.patch('/item_types/1/items?store_id=1', headers=headers, data=ujson.dumps(body))
        stock_filter = np.fromstring(await redis.get('store_items_test_1_stock_filter'), dtype=np.bool).tolist()
        assert stock_filter == [False]
项目:pycolor_detection    作者:parth1993    | 项目源码 | 文件源码
def predict(self, input_file):

        # img = base64.b64decode(input_base64)
        # img_array = np.fromstring(img, np.uint8)
        # input_file = cv2.imdecode(img_array, 1)

        # ip_converted = preprocessing.resizing(input_base64)
        segmented_image = preprocessing.image_segmentation(
                preprocessing.resizing(input_file)
            )
        # processed_image = preprocessing.removebg(segmented_image)
        detect = pycolor.detect_color(
                segmented_image,
                self._mapping_file
            )
        return (detect)
项目:MV3D-Pytorch    作者:dongwoohhh    | 项目源码 | 文件源码
def load_poses(self):
        """Load ground truth poses from file."""
        print('Loading poses for sequence ' + self.sequence + '...')

        pose_file = os.path.join(self.pose_path, self.sequence + '.txt')

        # Read and parse the poses
        try:
            self.T_w_cam0 = []
            with open(pose_file, 'r') as f:
                for line in f.readlines():
                    T = np.fromstring(line, dtype=float, sep=' ')
                    T = T.reshape(3, 4)
                    T = np.vstack((T, [0, 0, 0, 1]))
                    self.T_w_cam0.append(T)
            print('done.')

        except FileNotFoundError:
            print('Ground truth poses are not avaialble for sequence ' +
                  self.sequence + '.')
项目:RecurrentHighwayNetworks    作者:julian121266    | 项目源码 | 文件源码
def enwik8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw Hutter prize data is at:
  http://mattmahoney.net/dc/enwik8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to hutter_iterator.
  """

  data_path = os.path.join(data_path, "enwik8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
项目:RecurrentHighwayNetworks    作者:julian121266    | 项目源码 | 文件源码
def text8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw text8 data is at:
  http://mattmahoney.net/dc/text8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to text8_iterator.
  """

  data_path = os.path.join(data_path, "text8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
项目:attract-repel    作者:nmrksic    | 项目源码 | 文件源码
def load_word_vectors(file_destination):
    """
    This method loads the word vectors from the supplied file destination. 
    It loads the dictionary of word vectors and prints its size and the vector dimensionality. 
    """
    print "Loading pretrained word vectors from", file_destination
    word_dictionary = {}

    try:

        f = codecs.open(file_destination, 'r', 'utf-8') 

        for line in f:

            line = line.split(" ", 1)   
            key = unicode(line[0].lower())
            word_dictionary[key] = numpy.fromstring(line[1], dtype="float32", sep=" ")

    except:

        print "Word vectors could not be loaded from:", file_destination
        return {}

    print len(word_dictionary), "vectors loaded from", file_destination     

    return word_dictionary
项目:crnn    作者:wulivicte    | 项目源码 | 文件源码
def checkImageIsValid(imageBin):
    if imageBin is None:
        return False
    try:
        imageBuf = np.fromstring(imageBin, dtype=np.uint8)
        img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
        imgH, imgW = img.shape[0], img.shape[1]
    except:
        return False
    else:
        if imgH * imgW == 0:
            return False        
    return True
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def _unpack_data_block(f, blocksize, packing):
    """
    Private method to read a block from a file into a NumPy array.
    """
    return numpy.fromstring(f.read(blocksize), packing)
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def get_full_alignment_base_quality_scores(read):
    """
    Returns base quality scores for the full read alignment, inserting zeroes for deletions and removing
    inserted and soft-clipped bases. Therefore, only returns quality for truly aligned sequenced bases.

    Args:
        read (pysam.AlignedSegment): read to get quality scores for

    Returns:
        np.array: numpy array of quality scores

    """

    quality_scores = np.fromstring(read.qual, dtype=np.byte) - tk_constants.ILLUMINA_QUAL_OFFSET

    start_pos = 0

    for operation,length in read.cigar:
        operation = cr_constants.cigar_numeric_to_category_map[operation]

        if operation == 'D':
            quality_scores = np.insert(quality_scores, start_pos, [0] * length)
        elif operation == 'I' or operation == 'S':
            quality_scores = np.delete(quality_scores, np.s_[start_pos:start_pos + length])

        if not operation == 'I' and not operation == 'S':
            start_pos += length

    return start_pos, quality_scores
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def get_qvs(qual):
    if qual is None:
        return None

    return numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def get_bases_qual(qual, cutoff):
    if qual is None:
        return None

    qvs = numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET
    return numpy.count_nonzero(qvs[qvs > cutoff])
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def get_min_qual(qual):
    if qual is None or len(qual) == 0:
        return None

    return (numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET).min()