Python numpy 模块,set_printoptions() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.set_printoptions()

项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def print_resul(sol):
#==============================================================================
    # Impression des résultats
    pm, model, filename = sol.pm, sol.model, sol.filename
    print('\n\nInversion success!')
    print('Name of file:', filename)
    print('Model used:', model)
    try:
        pm.pop("cond_std")
        pm.pop("tau_i_std")
        pm.pop("m_i_std")
    except:
        pass
    e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])

    v_keys = [e.replace("_std", "") for e in e_keys]
    labels = ["{:<8}".format(x+":") for x in v_keys]
    np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
    for l, v, e in zip(labels, v_keys, e_keys):
        if "noise" not in l:
            print(l, np.atleast_1d(pm[v]), '+/-', np.atleast_1d(pm[e]), np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
        else:
            print(l, np.atleast_1d(pm[v]), '+/-', np.atleast_1d(pm[e]))
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def print_resul(sol):
#==============================================================================
    # Impression des résultats
    pm, model, filename = sol.pm, sol.model, sol.filename
    print('\n\nInversion success!')
    print('Name of file:', filename)
    print('Model used:', model)
    try:
        pm.pop("cond_std")
        pm.pop("tau_i_std")
        pm.pop("m_i_std")
    except:
        pass
    e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])

    v_keys = [e.replace("_std", "") for e in e_keys]
    labels = ["{:<8}".format(x+":") for x in v_keys]
    np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
    for l, v, e in zip(labels, v_keys, e_keys):
        if "noise" not in l:
            print(l, np.atleast_1d(pm[v]), '+/-', np.atleast_1d(pm[e]), np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
        else:
            print(l, np.atleast_1d(pm[v]), '+/-', np.atleast_1d(pm[e]))
项目:PyBASC    作者:AkiNikolaidis    | 项目源码 | 文件源码
def test_timeseries_bootstrap():
    """
    Tests the timeseries_bootstrap method of BASC workflow
    """
    np.random.seed(27)
    #np.set_printoptions(threshold=np.nan)

    # Create a 10x5 matrix which counts up by column-wise
    x = np.arange(50).reshape((5,10)).T
    actual= timeseries_bootstrap(x,3)
    desired = np.array([[ 4, 14, 24, 34, 44],
                       [ 5, 15, 25, 35, 45],
                       [ 6, 16, 26, 36, 46],
                       [ 8, 18, 28, 38, 48],
                       [ 9, 19, 29, 39, 49],
                       [ 0, 10, 20, 30, 40],
                       [ 7, 17, 27, 37, 47],
                       [ 8, 18, 28, 38, 48],
                       [ 9, 19, 29, 39, 49],
                       [ 8, 18, 28, 38, 48]])
    np.testing.assert_equal(actual, desired)
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def to_tfrecord(data, file_dir):
    for key, values in data.iteritems():
        writer = tf.python_io.TFRecordWriter(os.path.join(file_dir, key + '.tfrecord'))
        image = values['image']
        ground_truth = values['ground_truth']

        shape = np.array(image.shape).astype(np.int32)

        # set precision of string printing to be float32
        np.set_printoptions(precision=32)

        example = tf.train.Example(features=tf.train.Features(feature={
            'example_name': _bytes_feature(key),
            'shape': _bytes_feature(shape.tostring()),
            'img_raw': _bytes_feature(image.tostring()),
            'gt_raw': _bytes_feature(ground_truth.tostring())}))

        writer.write(example.SerializeToString())
        writer.close()
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:evolvingcopter    作者:antocuni    | 项目源码 | 文件源码
def main():
    # don't use scientific notation when printing
    numpy.set_printoptions(suppress=True)

    filename = sys.argv[1]
    with open(filename) as f:
        c = pickle.load(f)
    c.reset()

    print 'Matrix'
    print c.matrix
    print
    print 'Constant'
    print c.constant

    #env = Environment(show=True, z1=5, z2=3)
    #env = Environment(show=True, z1=5, z2=8)
    env = Environment(z0=100+3, z1=100+10, total_t=4, show=True)

    fitness = env.run(c)
    print 'fitness:', fitness
项目:johnson-county-ddj-public    作者:dssg    | 项目源码 | 文件源码
def plot_normalized_confusion_matrix_at_depth(self):
        """ Returns a normalized confusion matrix.

        :returns: normalized confusion matrix
        :rtype: matplotlib figure
        """
        cm = metrics.confusion_matrix(self.predictions['label'], self.y_pred)
        np.set_printoptions(precision = 2)
        fig = plt.figure()
        cm_normalized = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]

        plt.imshow(cm_normalized, interpolation = 'nearest',
                   cmap = plt.cm.Blues)
        plt.title("Normalized Confusion Matrix")
        plt.colorbar()
        tick_marks = np.arange(len(self.labels))
        plt.xticks(tick_marks, self.labels, rotation = 45)
        plt.yticks(tick_marks, self.labels)
        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        return(fig)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def execute_calculation(operands, first_operand, const_executor):
    iterations = len(operands) != 1
    for i in operands:
        _operands, expected_result, description = unpack_list(*i)
        if description:
            print("Description: ", description)
        print("Operands: ", _operands)
        print("Expected result: ", expected_result)
        flex_result = const_executor(*_operands)
        try:
            print("flex_result: {0:.30}".format(float(flex_result)))
        except TypeError:
            # exception for arrays
            np.set_printoptions(precision=30)
            print("flex_result: {}".format(flex_result))
        print("difference: ", flex_result - expected_result)
        if iterations:
            assert_allclose(flex_result, expected_result)
        elif not isinstance(first_operand, np.ndarray):
            assert flex_result == expected_result
        else:
            assert np.array_equal(flex_result, expected_result)
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def compute_mean(self, file_list):

        logger = logging.getLogger("acoustic_norm")

        mean_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size // self.feature_dimension
            mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:KaFKA    作者:jgomezdans    | 项目源码 | 文件源码
def test_propagate_information_filter():
    np.set_printoptions(precision=2, linewidth=132)

    M_matrix = np.eye(7)
    sigma = np.array([0.12, 0.7, 0.0959, 0.15, 1.5, 0.2, 0.5])
    x_analysis = np.array([0.17, 1.0, 0.1, 0.7, 2.0, 0.18, np.exp(-0.5*1.5)])
    Pd = np.diag(sigma**2).astype(np.float32)
    Pd[5, 2] = 0.8862*0.0959*0.2
    Pd[2, 5] = 0.8862*0.0959*0.2
    Pi = np.linalg.inv(Pd)
    Q_matrix = np.eye(7)*0.1

    x_forecast, P_forecast, P_forecast_inverse = propagate_information_filter(
        x_analysis, None, Pi, M_matrix, Q_matrix)
    assert np.allclose(
        np.array(P_forecast_inverse.todense()).squeeze().diagonal(),
        np.array([8.74, 1.69, 9.81, 8.16, 0.43, 9.21, 2.86]), atol=0.01)
    # In reality, the matrix ought to be
    # [[ 8.74  0.    0.    0.    0.    0.    0.  ]
    # [ 0.    1.69  0.    0.    0.    0.    0.  ]
    # [ 0.    0.    9.33  0.    0.   -1.13  0.  ]
    # [ 0.    0.    0.    8.16  0.    0.    0.  ]
    # [ 0.    0.    0.    0.    0.43  0.    0.  ]
    # [ 0.    0.   -1.13  0.    0.    7.28  0.  ]
    # [ 0.    0.    0.    0.    0.    0.    2.86]]
项目:Msc_Multi_label_ZeroShot    作者:thomasSve    | 项目源码 | 文件源码
def main():

    args = parse_args()

    print('Called with args:')
    print(args)
    lang_db = get_language_model(args.lang_name)
    imdb = get_imdb(args.imdb_name)

    # Get words in space
    vocabulary = imdb.get_labels(args.space)

    # Get features for words
    wv = [lang_db.word_vector(w) for w in vocabulary]
    from sklearn.metrics.pairwise import cosine_similarity
    from scipy import spatial
    #spatial.distance.cosine(dataSetI, dataSetII)
    tsne = TSNE(n_components=2, random_state=0)
    np.set_printoptions(suppress=True)
    Y = tsne.fit_transform(wv)

    plt.scatter(Y[:, 0], Y[:, 1])
    for label, x, y in zip(vocabulary, Y[:, 0], Y[:, 1]):
        plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
    plt.show()
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def detect_nan(i, node, fn):
    '''
    x = theano.tensor.dscalar('x')
    f = theano.function([x], [theano.tensor.log(x) * x],
                        mode=theano.compile.MonitorMode(post_func=detect_nan))
    '''
    nan_detected = False
    for output in fn.outputs:
        if np.isnan(output[0]).any():
            nan_detected = True
            np.set_printoptions(threshold=np.nan)  # Print the whole arrays
            print '*** NaN detected ***'
            print '--------------------------NODE DESCRIPTION:'
            theano.printing.debugprint(node)
            print '--------------------------Variables:'
            print 'Inputs : %s' % [input[0] for input in fn.inputs]
            print 'Outputs: %s' % [output[0] for output in fn.outputs]
            break
    if nan_detected:
        exit()
项目:mgail    作者:itaicaspi    | 项目源码 | 文件源码
def __init__(self, environment):

        self.env = environment
        self.algorithm = MGAIL(environment=self.env)
        self.init_graph = tf.global_variables_initializer()
        self.saver = tf.train.Saver()
        self.sess = tf.Session()
        if self.env.trained_model:
            self.saver.restore(self.sess, self.env.trained_model)
        else:
            self.sess.run(self.init_graph)
        self.run_dir = self.env.run_dir
        self.loss = 999. * np.ones(3)
        self.reward_mean = 0
        self.reward_std = 0
        self.run_avg = 0.001
        self.discriminator_policy_switch = 0
        self.policy_loop_time = 0
        self.disc_acc = 0
        self.er_count = 0
        self.itr = 0
        self.best_reward = 0
        self.mode = 'Prep'
        np.set_printoptions(precision=2)
        np.set_printoptions(linewidth=220)
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def update_target_text(self):
        np.set_printoptions(precision=3, suppress=True)
        text = (
            'target number = %s\n' % str(self._target_number) +
            'actuator name = %s\n' % str(self._actuator_name) +
            '\ninitial position\n%s' % self.position_to_str(self._initial_position) +
            '\ntarget position\n%s' % self.position_to_str(self._target_position) +
            '\ninitial image (left) =\n%s\n' % str(self._initial_image) +
            '\ntarget image (right) =\n%s\n' % str(self._target_image)
        )
        self._target_output.set_text(text)

        if config['image_on']:
            self._initial_image_visualizer.update(self._initial_image)
            self._target_image_visualizer.update(self._target_image)
            self._image_visualizer.set_initial_image(self._initial_image, alpha=0.3)
            self._image_visualizer.set_target_image(self._target_image, alpha=0.3)
项目:SynThai    作者:KenjiroAI    | 项目源码 | 文件源码
def encode(content, word_delimiter="|", tag_delimiter="/", num_step=60):
    # Create corpus instance
    corpus = Corpus(word_delimiter=word_delimiter, tag_delimiter=tag_delimiter)

    # Add text to corpus
    corpus.add_text(content)

    # Create index for character and tag
    char_index = index_builder(constant.CHARACTER_LIST,
                               constant.CHAR_START_INDEX)
    tag_index = index_builder(constant.TAG_LIST, constant.TAG_START_INDEX)

    # Generate input
    inb = InputBuilder(corpus, char_index, tag_index, num_step, y_one_hot=False)

    # Display encoded content
    np.set_printoptions(threshold=np.inf)
    print("[Input]")
    print(inb.x)
    print("[Label]")
    print(inb.y)
项目:TICC    作者:davidhallac    | 项目源码 | 文件源码
def PrintSolution(self, Filename=None):
        numpy.set_printoptions(linewidth=numpy.inf)
        out = sys.stdout if (Filename == None) else open(Filename, 'w+')

        out.write('Status: %s\n' % self.status)
        out.write('Total Objective: %f\n' % self.value)
        for ni in self.Nodes():
            nid = ni.GetId()
            s = 'Node %d:\n' % nid
            out.write(s)
            for (varID, varName, var, offset) in self.node_variables[nid]:
                val = numpy.transpose(self.GetNodeValue(nid, varName))
                s = '  %s %s\n' % (varName, str(val))
                out.write(s)

    # Helper method to verify existence of an NId.
项目:world_merlin    作者:pbaljeka    | 项目源码 | 文件源码
def compute_mean(self, file_list):

        logger = logging.getLogger("acoustic_norm")

        mean_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size / self.feature_dimension
            mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:world_merlin    作者:pbaljeka    | 项目源码 | 文件源码
def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:mlens    作者:flennerhag    | 项目源码 | 文件源码
def pformat(obj, indent=0, depth=3):
    if 'numpy' in sys.modules:
        import numpy as np
        print_options = np.get_printoptions()
        np.set_printoptions(precision=6, threshold=64, edgeitems=1)
    else:
        print_options = None
    out = pprint.pformat(obj, depth=depth, indent=indent)
    if print_options:
        np.set_printoptions(**print_options)
    return out


###############################################################################
# class `Logger`
###############################################################################
项目:mimicry.ai    作者:fizerkhan    | 项目源码 | 文件源码
def compute_mean(self, file_list):

        logger = logging.getLogger("acoustic_norm")

        mean_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size / self.feature_dimension
            mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:mimicry.ai    作者:fizerkhan    | 项目源码 | 文件源码
def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector
项目:upho    作者:yuzie007    | 项目源码 | 文件源码
def test_fcc_conv(self):
        # np.set_printoptions(threshold=2304, linewidth=145)  # 48 * 48
        filename = "../poscars/POSCAR_fcc"

        atoms = read_vasp(filename)
        symmetry = UnfolderSymmetry(atoms)

        rotations = symmetry.get_pointgroup_operations()
        check_irreps(rotations)

        rotations = symmetry.get_group_of_wave_vector([0.00, 0.25, 0.25])[0]
        check_irreps(rotations)

        rotations = symmetry.get_group_of_wave_vector([0.25, 0.00, 0.25])[0]
        check_irreps(rotations)

        rotations = symmetry.get_group_of_wave_vector([0.25, 0.25, 0.00])[0]
        check_irreps(rotations)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def update_target_text(self):
        np.set_printoptions(precision=3, suppress=True)
        text = (
            'target number = %s\n' % str(self._target_number) +
            'actuator name = %s\n' % str(self._actuator_name) +
            '\ninitial position\n%s' % self.position_to_str(self._initial_position) +
            '\ntarget position\n%s' % self.position_to_str(self._target_position) +
            '\ninitial image (left) =\n%s\n' % str(self._initial_image) +
            '\ntarget image (right) =\n%s\n' % str(self._target_image)
        )
        self._target_output.set_text(text)

        if config['image_on']:
            self._initial_image_visualizer.update(self._initial_image)
            self._target_image_visualizer.update(self._target_image)
            self._image_visualizer.set_initial_image(self._initial_image, alpha=0.3)
            self._image_visualizer.set_target_image(self._target_image, alpha=0.3)
项目:anirban-imitation    作者:Santara    | 项目源码 | 文件源码
def main():
    np.set_printoptions(suppress=True, precision=5, linewidth=1000)

    phases = {
        '0_sampletrajs': phase0_sampletrajs,
        '1_train': phase1_train,
        '2_eval': phase2_eval,
    }

    parser = argparse.ArgumentParser()
    parser.add_argument('spec', type=str)
    parser.add_argument('phase', choices=sorted(phases.keys()))
    args = parser.parse_args()

    with open(args.spec, 'r') as f:
        spec = yaml.load(f)

    phases[args.phase](spec, args.spec)
项目:pyhiro    作者:wanweiwei07    | 项目源码 | 文件源码
def export_collada(mesh):
    '''
    Export a mesh as a COLLADA file.
    '''
    from ..templates import get_template
    from string import Template

    template_string = get_template('collada.dae.template')
    template = Template(template_string)

    # we bother setting this because np.array2string uses these printoptions 
    np.set_printoptions(threshold=np.inf, precision=5, linewidth=np.inf)
    replacement = dict()
    replacement['VERTEX']   = np.array2string(mesh.vertices.reshape(-1))[1:-1]
    replacement['FACES']    = np.array2string(mesh.faces.reshape(-1))[1:-1]
    replacement['NORMALS']  = np.array2string(mesh.vertex_normals.reshape(-1))[1:-1]
    replacement['VCOUNT']   = str(len(mesh.vertices))
    replacement['VCOUNTX3'] = str(len(mesh.vertices) * 3)
    replacement['FCOUNT']   = str(len(mesh.faces))

    export = template.substitute(replacement)
    return export
项目:AutoTrading    作者:curme    | 项目源码 | 文件源码
def ACO(self, df):
        """
        Helper indicator
        :param df:
        :return:
        """
        df_mid_points = (df['High'] + df['Low']) / 2
        mid_points = Data.toFloatArray(df_mid_points)
        longav = tl.SMA(np.array(mid_points), timeperiod=40)
        shortav = tl.SMA(np.array(mid_points), timeperiod=15)
        A0 = longav - shortav
        Mavg = tl.SMA(A0, timeperiod=15)
        AcResult = tl.SMA(Mavg - A0, timeperiod=15)
        signals = np.diff(AcResult)
        return signals

        # if __name__ == "__main__":
        #     np.set_printoptions(threshold=np.nan)
        #     pd.set_option("display.max_rows", 280)
        #     dt = Data()
        #     df = dt.getCSVData()
        #     #ACOscillator(df)
        #     ACOscillator(df)
项目:DLDisambiguation    作者:Labyrinth108    | 项目源码 | 文件源码
def main():
    # model_file = "../data/word2vec/character.model"
    model_file = "../data/word2vec_new/word.model"
    checkSimilarity(model_file, "?")

    # character_wv_file = '../data/word2vec/character_model.txt'
    # word_wv_file = '../data/word2vec/word_model.txt'
    #
    # embeddings_file = word_wv_file
    # wv, vocabulary = load_embeddings(embeddings_file)
    #
    # tsne = TSNE(n_components=2, random_state=0)
    # np.set_printoptions(suppress=True)
    # Y = tsne.fit_transform(wv[:1000, :])
    #
    # plt.scatter(Y[:, 0], Y[:, 1])
    # for label, x, y in zip(vocabulary, Y[:, 0], Y[:, 1]):
    #     plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
    # plt.show()
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:hLSTMat    作者:zhaoluffy    | 项目源码 | 文件源码
def grad_nan_report(grads, tparams):
    numpy.set_printoptions(precision=3)
    D = OrderedDict()
    i = 0
    NaN_keys = []
    magnitude = []
    assert len(grads) == len(tparams)
    for k, v in tparams.iteritems():
        grad = grads[i]
        magnitude.append(numpy.abs(grad).mean())
        if numpy.isnan(grad.sum()):
            NaN_keys.append(k)
        #assert v.get_value().shape == grad.shape
        D[k] = grad
        i += 1
    #norm = [numpy.sqrt(numpy.sum(grad**2)) for grad in grads]
    #print '\tgrad mean(abs(x))', numpy.array(magnitude)
    return D, NaN_keys
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
项目:rankpy    作者:dmitru    | 项目源码 | 文件源码
def pformat(obj, indent=0, depth=3):
    if 'numpy' in sys.modules:
        import numpy as np
        print_options = np.get_printoptions()
        np.set_printoptions(precision=6, threshold=64, edgeitems=1)
    else:
        print_options = None
    out = pprint.pformat(obj, depth=depth, indent=indent)
    if print_options:
        np.set_printoptions(**print_options)
    return out


###############################################################################
# class `Logger`
###############################################################################
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def plot_swap_subject_cm(swappy,title,name):

    from sklearn.metrics import confusion_matrix
    import numpy as np


    subs = swappy.exportSubjectData()
    labs = getLabelReal(subs)

    # Compute confusion matrix
    cnf_matrix = confusion_matrix(labs['actual'], labs['predicted'])
    np.set_printoptions(precision=2)
    plt.figure()
    plot_confusion_matrix(cnf_matrix, classes=['Bogus','Real'],
                          normalize=False,
                          title=title)

    plt.savefig(name)
    plt.show()


    #import pandas as pd
    #ps = pd.Series([(labs['actual'][x],labs['predicted'][x]) for x in range(0, len(labs['actual']))])
    #counts = ps.value_counts()
    #counts
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def np_printoptions(**kwargs):
    """Context manager to temporarily set numpy print options."""
    old = np.get_printoptions()
    np.set_printoptions(**kwargs)
    yield
    np.set_printoptions(**old)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def _nn_pose_fill(valid): 
        """
        Looks up closest True for each False and returns
        indices for fill-in-lookup
        In: [True, False, True, ... , False, True]
        Out: [0, 0, 2, ..., 212, 212]
        """

        valid_inds,  = np.where(valid)
        invalid_inds,  = np.where(~valid)

        all_inds = np.arange(len(valid))
        all_inds[invalid_inds] = -1

        for j in range(10): 
            fwd_inds = valid_inds + j
            bwd_inds = valid_inds - j

            # Forward fill
            invalid_inds, = np.where(all_inds < 0)
            fwd_fill_inds = np.intersect1d(fwd_inds, invalid_inds)
            all_inds[fwd_fill_inds] = all_inds[fwd_fill_inds-j]

            # Backward fill
            invalid_inds, = np.where(all_inds < 0)
            if not len(invalid_inds): break
            bwd_fill_inds = np.intersect1d(bwd_inds, invalid_inds)
            all_inds[bwd_fill_inds] = all_inds[bwd_fill_inds+j]

            # Check if any missing 
            invalid_inds, = np.where(all_inds < 0)
            if not len(invalid_inds): break

        # np.set_printoptions(threshold=np.nan)

        # print valid.astype(np.int)
        # print np.array_str(all_inds)
        # print np.where(all_inds < 0)

        return all_inds
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def save_results(save_dict=None, **kwargs):
    np.set_printoptions(precision=2,threshold=np.nan)
    if save_dict==None:
        save_dict=kwargs
    for key in save_dict.keys():
        save_dict[key] = str(save_dict[key])
    np.set_printoptions(precision=2,threshold=1000)
    append_json('experiments.json', save_dict)
    jsondict2csv('experiments.json', 'experiments.csv')
项目:DeepTFAS-in-D.mel    作者:mu102449    | 项目源码 | 文件源码
def run_model(model):
    '''Train model'''
    # Call global variables
    x_train, x_test, y_train, y_test = X_TRAIN, X_TEST, Y_TRAIN, Y_TEST

    model.fit(x_train, y_train)
    # make predictions for test data
    y_pred = model.predict(x_test)

    # Accuracy
    acc = metrics.accuracy_score(y_test, y_pred)
    print('Accuracy: %.2f%%' % (acc * 100.0))

    # F1_score
    # f1_score = metrics.f1_score(y_test, y_pred)
    # print("F1_score: %.2f%%" % (f1_score * 100.0))

    # AUC of ROC
    fpr, tpr, _ = metrics.roc_curve(y_test, y_pred)
    auc = metrics.auc(fpr, tpr)
    print('AUC: %.3f' % (auc))

    # Logs for each fold
    crossvalidation_acc.append(acc)
    crossvalidation_auc.append(auc)

    if ARGS.m:
        cnf_matrix = confusion_matrix(y_test, y_pred)
        print(cnf_matrix)
        np.set_printoptions(precision=2)
        if ARGS.t == '2':
            classes = np.asarray(['Spiced', 'Non-spliced'])
            plot_confusion_matrix(cnf_matrix, classes=classes, normalize=True)
        elif ARGS.t == '3':
            classes = np.asarray(['Low', 'Medium', 'High'])
            plot_confusion_matrix(cnf_matrix, classes=classes, normalize=True)
        plt.show()
    if ARGS.f:
        feature_selection(imp=IMP, model=model)

    print()
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def __init__(self, model, filename, mcmc=default_mcmc, headers=1,
                   ph_units="mrad", cc_modes=2, decomp_poly=4, c_exp=1.0, 
                   log_min_tau=-3, guess_noise=False, keep_traces=False, 
                   ccdt_priors='auto', ccdt_cfg=None):

        self.model = model
        self.filename = filename 
        self.mcmc = mcmc
        self.headers = headers
        self.ph_units = ph_units
        self.cc_modes = cc_modes
        self.decomp_poly = decomp_poly
        self.c_exp = c_exp
        self.log_min_tau = log_min_tau
        self.guess_noise = guess_noise
        self.keep_traces = keep_traces
        self.ccd_priors = ccdt_priors
        self.ccdtools_config = ccdt_cfg
        if model == "CCD":
            if self.ccd_priors == 'auto':
                self.ccd_priors = self.get_ccd_priors(config=self.ccdtools_config)
                print("\nUpdated CCD priors with new data")
        self.start()



#    def print_resul(self):
#    #==============================================================================
#        # Impression des résultats
#        pm, model, filename = self.pm, self.model, self.filename
#        print('\n\nInversion success!')
#        print('Name of file:', filename)
#        print('Model used:', model)
#        e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])
#        v_keys = [e.replace("_std", "") for e in e_keys]
#        labels = ["{:<8}".format(x+":") for x in v_keys]
#        np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
#        for l, v, e in zip(labels, v_keys, e_keys):
#            print(l, pm[v], '+/-', pm[e], np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def __init__(self, model, filename, mcmc=default_mcmc, headers=1,
                   ph_units="mrad", cc_modes=2, decomp_poly=4, c_exp=1.0, 
                   log_min_tau=-3, guess_noise=False, keep_traces=False, 
                   ccdt_priors='auto', ccdt_cfg=None):

        self.model = model
        self.filename = filename 
        self.mcmc = mcmc
        self.headers = headers
        self.ph_units = ph_units
        self.cc_modes = cc_modes
        self.decomp_poly = decomp_poly
        self.c_exp = c_exp
        self.log_min_tau = log_min_tau
        self.guess_noise = guess_noise
        self.keep_traces = keep_traces
        self.ccd_priors = ccdt_priors
        self.ccdtools_config = ccdt_cfg
        if model == "CCD":
            if self.ccd_priors == 'auto':
                self.ccd_priors = self.get_ccd_priors(config=self.ccdtools_config)
                print("\nUpdated CCD priors with new data")
        self.start()



#    def print_resul(self):
#    #==============================================================================
#        # Impression des résultats
#        pm, model, filename = self.pm, self.model, self.filename
#        print('\n\nInversion success!')
#        print('Name of file:', filename)
#        print('Model used:', model)
#        e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])
#        v_keys = [e.replace("_std", "") for e in e_keys]
#        labels = ["{:<8}".format(x+":") for x in v_keys]
#        np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
#        for l, v, e in zip(labels, v_keys, e_keys):
#            print(l, pm[v], '+/-', pm[e], np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    # markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]
    plt.rc('legend',**{'fontsize':30})
    classes_to_visual = list(set(classes_to_visual))
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual:
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=1, marker=markers[class_ids[c]],
                        markersize=10, label=c)
    legend = plt.legend(loc='upper right', shadow=True)
    # plt.title("tsne")
    # plt.savefig(save_file)
    plt.savefig(save_file, format='eps', dpi=2000)
    plt.show()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def plot_tsne_3d(doc_codes, doc_labels, classes_to_visual, save_file, maker_size=None, opaque=None):
    markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    plt.rc('legend',**{'fontsize':20})
    colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers
    while True:
        if C <= len(colors):
            break
        colors += colors

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=3, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    fig = plt.figure(figsize=(10, 10), facecolor='white')
    ax = fig.add_subplot(111, projection='3d')

    # The problem is that the legend function don't support the type returned by a 3D scatter.
    # So you have to create a "dummy plot" with the same characteristics and put those in the legend.
    scatter_proxy = []
    for i in range(C):
        cls = classes_to_visual[i]
        idx = np.array(labels) == cls
        ax.scatter(X[idx, 0], X[idx, 1], X[idx, 2], c=colors[i], alpha=opaque[i] if opaque else 1, s=maker_size[i] if maker_size else 20, marker=markers[i], label=cls)
        scatter_proxy.append(mpl.lines.Line2D([0],[0], linestyle="none", c=colors[i], marker=markers[i], label=cls))
    ax.legend(scatter_proxy, classes_to_visual, numpoints=1)
    plt.savefig(save_file)
    plt.show()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def DBN_plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual.keys(), range(C)))

    codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def reuters_visualize_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_names = classes_to_visual.keys()
    class_ids = dict(zip(class_names, range(C)))
    class_names = set(class_names)
    codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if class_names.intersection(set(doc_labels[doc]))])

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show()
项目:ModelZoo    作者:NervanaSystems    | 项目源码 | 文件源码
def main():
    # Collect the user arguments and hyper parameters
    args, hyper_params = get_args_and_hyperparameters()

    np.set_printoptions( precision=8, suppress=True, edgeitems=6, threshold=2048)

    # setup the CPU or GPU backend
    be = gen_backend(**extract_valid_args(args, gen_backend))

    # load the training dataset. This will download the dataset from the web and cache it
    # locally for subsequent use.
    train_set = MultiscaleSampler('trainval', '2007', samples_per_img=hyper_params.samples_per_img, 
                                 sample_height=224, path=args.data_dir, 
                                 samples_per_batch=hyper_params.samples_per_batch,
                                 max_imgs = hyper_params.max_train_imgs,
                                 shuffle = hyper_params.shuffle)

    # create the model by replacing the classification layer of AlexNet with 
    # new adaptation layers
    model, opt = create_model( args, hyper_params)

    # Seed the Alexnet conv layers with pre-trained weights
    if args.model_file is None and hyper_params.use_pre_trained_weights:
        load_imagenet_weights(model, args.data_dir)

    train( args, hyper_params, model, opt, train_set)

    # Load the test dataset. This will download the dataset from the web and cache it
    # locally for subsequent use.
    test_set = MultiscaleSampler('test', '2007', samples_per_img=hyper_params.samples_per_img, 
                                 sample_height=224, path=args.data_dir, 
                                 samples_per_batch=hyper_params.samples_per_batch,
                                 max_imgs = hyper_params.max_test_imgs,
                                 shuffle = hyper_params.shuffle)
    test( args, hyper_params, model, test_set)

    return

# parse the command line arguments
项目:sketch_rnn_classification    作者:payalbajaj    | 项目源码 | 文件源码
def trainer(model_params):
  """Train a sketch-rnn model."""
  np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)

  tf.logging.info('sketch-rnn')
  tf.logging.info('Hyperparams:')
  for key, val in model_params.values().iteritems():
    tf.logging.info('%s = %s', key, str(val))
  tf.logging.info('Loading data files.')
  datasets = load_dataset(FLAGS.data_dir, model_params)

  train_set = datasets[0]
  valid_set = datasets[1]
  test_set = datasets[2]
  model_params = datasets[3]
  eval_model_params = datasets[4]

  reset_graph()
  model = sketch_rnn_model.Model(model_params)
  eval_model = sketch_rnn_model.Model(eval_model_params, reuse=True)

  sess = tf.InteractiveSession()
  sess.run(tf.global_variables_initializer())

  if FLAGS.resume_training:
    load_checkpoint(sess, FLAGS.log_root)

  # Write config file to json file.
  tf.gfile.MakeDirs(FLAGS.log_root)
  with tf.gfile.Open(
      os.path.join(FLAGS.log_root, 'model_config.json'), 'w') as f:
    json.dump(model_params.values(), f, indent=True)

  train(sess, model, eval_model, train_set, valid_set, test_set)
项目:geocoder-ie    作者:devgateway    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """

    np.set_printoptions(precision=2)
    plt.figure()
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        logger.info("Normalized confusion matrix")
    else:
        logger.info('Confusion matrix, without normalization')

    logger.info(cm)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def __init__(self, n_hidden=10, max_iter=10000, tol=1e-5, anneal=True, missing_values=None,
                 discourage_overlap=True, gaussianize='standard', gpu=False,
                 verbose=False, seed=None):
        self.m = n_hidden  # Number of latent factors to learn
        self.max_iter = max_iter  # Number of iterations to try
        self.tol = tol  # Threshold for convergence
        self.anneal = anneal
        self.eps = 0  # If anneal is True, it's adjusted during optimization to avoid local minima
        self.missing_values = missing_values

        self.discourage_overlap = discourage_overlap  # Whether or not to discourage overlapping latent factors
        self.gaussianize = gaussianize  # Preprocess data: 'standard' scales to zero mean and unit variance
        self.gpu = gpu  # Enable GPU support for some large matrix multiplications.
        if self.gpu:
            cm.cublas_init()

        self.yscale = 1.  # Can be arbitrary, but sets the scale of Y
        np.random.seed(seed)  # Set seed for deterministic results
        self.verbose = verbose
        if verbose:
            np.set_printoptions(precision=3, suppress=True, linewidth=160)
            print(('Linear CorEx with {:d} latent factors'.format(n_hidden)))

        # Initialize these when we fit on data
        self.n_samples, self.nv = 0, 0  # Number of samples/variables in input data
        self.ws = np.zeros((0, 0))  # m by nv array of weights
        self.moments = {}  # Dictionary of moments
        self.theta = None  # Parameters for preprocessing each variable
        self.history = {}  # Keep track of values for each iteration
        self.last_update = 0  # Used for momentum methods