Python numpy 模块,int16() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.int16()

项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_binary_i_16(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteBinaryI16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int16, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_i_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def jit_remove_edge(grid, e2k, neighbors, components, e):
    """Remove an edge from a spanning tree."""
    k = e2k[e]
    v1, v2 = grid[1:3, k]
    jit_set_remove(neighbors[v1], v2)
    jit_set_remove(neighbors[v2], v1)
    stack = np.zeros(neighbors.shape[0], np.int16)
    jit_set_add(stack, v1)
    while stack[0]:
        v1 = jit_set_pop(stack)
        components[v1] = True
        for i in range(neighbors[v1, 0]):
            v2 = neighbors[v1, i + 1]
            if not components[v2]:
                jit_set_add(stack, v2)
    return k
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_3d_data_slices(slices):  # get data in Hunsfield Units
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 9

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_pixels_hu(slices):
    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    image[image == -2000] = 0

    # Convert to Hounsfield units (HU)
    ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96)
    ### Changes/correction - 31.01.2017
    for slice_number in range(len(slices)):

        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)    

    return np.array(image, dtype=np.int16)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_3d_data_hu(path):  # get data in Hunsfield Units
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key=lambda x: int(x.InstanceNumber))  # was x.InstanceNumber
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v8 - BUGGY 
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from 22.02

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
项目:pyelastix    作者:almarklein    | 项目源码 | 文件源码
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
项目:sea-lion-counter    作者:rdinse    | 项目源码 | 文件源码
def generateCountMaps(self, coords):
    '''Generates a count map for the provided list of coordinates.
    '''

    s = self.config['projective_field_size']
    unpadded_size = self.config['output_size']
    target_size = 3 + unpadded_size + 2 * s 
    countMaps = np.zeros((self.config['cls_nb'], target_size, target_size), dtype=np.int16)

    for coord in coords:
      y = coord[1] - self.config['contextual_pad']
      x = coord[2] - self.config['contextual_pad']
      if y >= 0 and y < self.config['tile_size'] and \
         x >= 0 and x < self.config['tile_size']:

        self.inc_region(countMaps[coord[0]], *self.target_sizes[y, x])

    return np.moveaxis(countMaps, 0, -1).astype(np.float32)
项目:sea-lion-counter    作者:rdinse    | 项目源码 | 文件源码
def inc_region(self, dst, y, x, h, w):
    '''Incremets dst in the specified region. Runs fastest on np.int8, but not much slower on
    np.int16.'''

    dh, dw = dst.shape
    h2 = h // 2
    w2 = w // 2
    py = y - h2 
    px = x - w2 
    y_min = max(0, py)
    y_max = min(dh, y + h2)
    x_min = max(0, px)
    x_max = min(dw, x + w2)
    if y_max - y_min <= 0 or x_max - x_min <= 0:
      return

    dst[y_min:y_max, x_min:x_max] += 1
项目:sea-lion-counter    作者:rdinse    | 项目源码 | 文件源码
def generateCountMaps(self, coords):
    '''Generates a count map for the provided list of coordinates.  It can
    count at most 256 object within the receptive field.  Beyond that it
    overflows.
    '''

    s = self.config['receptive_field_size']
    pad = s // 2
    unpadded_size = self.config['tile_size']
    target_size = 1 + unpadded_size + 2 * pad
    countMaps = np.zeros((self.config['cls_nb'], target_size, target_size), dtype=np.int16)

    y_min = 0
    y_max = unpadded_size
    x_min = 0
    x_max = unpadded_size
    for coord in coords:
      if coord[1] >= y_min and coord[1] < y_max and coord[2] >= x_min and coord[2] < x_max:
        self.inc_region(countMaps[coord[0]], coord[1] + pad, coord[2] + pad, s, s)

    return np.moveaxis(countMaps, 0, -1).astype(np.float32)
项目:sea-lion-counter    作者:rdinse    | 项目源码 | 文件源码
def generateCountMaps(self, coords):
    '''Generates a count map for the provided list of coordinates.
    '''
    s = self.config['projective_field_size']
    target_size = 3 + self.config['output_size'] + 2 * s 
    count_maps = np.zeros((self.config['cls_nb'], target_size, target_size), dtype=np.int16)

    shift = - self.config['contextual_pad']
    size = self.config['tile_size']
    for coord in coords:
      y = coord[1] + shift
      x = coord[2] + shift
      if y >= 0 and y < size and \
         x >= 0 and x < size:

        self.inc_region(count_maps[coord[0]], *self.target_sizes[y, x])

    return np.moveaxis(count_maps, 0, -1).astype(np.float32)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_annotations_old(self):
        """
        Read the stimulus grid properties.

        Returns a dictionary containing the parameter names as keys and the
        parameter values as values.

        ------------------------------------------------
        The returned objects must be added to the Block.

        This reads an old version of the format that does not store paramater
        names, so placeholder names are created instead.

        ID: 29099
        """

        # int16 * 14 -- an array of parameter values
        values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

        # create dummy names and combine them with the values in a dict
        # the dict will be added to the annotations
        params = ['param%s' % i for i in range(len(values))]
        annotations = dict(zip(params, values))

        return annotations
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_annotations_old(self):
        """
        Read the stimulus grid properties.

        Returns a dictionary containing the parameter names as keys and the
        parameter values as values.

        ------------------------------------------------
        The returned objects must be added to the Block.

        This reads an old version of the format that does not store paramater
        names, so placeholder names are created instead.

        ID: 29099
        """

        # int16 * 14 -- an array of parameter values
        values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

        # create dummy names and combine them with the values in a dict
        # the dict will be added to the annotations
        params = ['param%s' % i for i in range(len(values))]
        annotations = dict(zip(params, values))

        return annotations
项目:generalscnn    作者:zxqfl    | 项目源码 | 文件源码
def read_input_features(l, inp=sys.stdin):
    if isinstance(inp, str):
        with open(inp, 'r') as f:
            return read_input_features(f)

    print("%d samples" % l, file=sys.stderr)
    xs = np.zeros((l, flen), np.int16)
    ys = np.zeros((l, n*n*classes), np.int16)

    i = 0
    for line in inp:
        xs[i, :], ys[i, :] = parse_csv_row_xy(line)
        i += 1
        if i % 10000 == 0:
            print("%d read from disk" % i, file=sys.stderr)
    return xs, ys
项目:Projects    作者:it2school    | 项目源码 | 文件源码
def slow_down_sound(sound, rate):
    """  returns a sound which is a slowed down version of the original.
           rate - at which the sound should be slowed down.  eg. 0.5 would be half speed.
    """

    raise NotImplementedError()
    grow_rate = 1 / rate

    # make it 1/rate times longer.

    a1 = sndarray.array(sound)

    surf = pygame.surfarray.make_surface(a1)
    print (a1.shape[0] * grow_rate)
    scaled_surf = pygame.transform.scale(surf, (int(a1.shape[0] * grow_rate), a1.shape[1]))
    print (scaled_surf)
    print (surf)

    a2 = a1 * rate
    print (a1.shape)
    print (a2.shape)
    print (a2)
    sound2 = sndarray.make_sound(a2.astype(int16))
    return sound2
项目:autolab_core    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def _check_valid_data(self, data):
        """Checks that the incoming data is a 2 x #elements ndarray of ints.

        Parameters
        ----------
        data : :obj:`numpy.ndarray`
            The data to verify.

        Raises
        ------
        ValueError
            If the data is not of the correct shape or type.
        """
        if data.dtype.type != np.int8 and data.dtype.type != np.int16 \
                and data.dtype.type != np.int32 and data.dtype.type != np.int64 \
                and data.dtype.type != np.uint8 and data.dtype.type != np.uint16 \
                and data.dtype.type != np.uint32 and data.dtype.type != np.uint64:
            raise ValueError('Must initialize image coords with a numpy int ndarray')
        if data.shape[0] != 2:
            raise ValueError('Illegal data array passed to image coords. Must have 2 coordinates')
        if len(data.shape) > 2:
            raise ValueError('Illegal data array passed to point cloud. Must have 1 or 2 dimensions')
项目:Interactivity    作者:treeoftenere    | 项目源码 | 文件源码
def update(self, x):
        """Update the buffer.

        Args:
            x (numpy.ndarray): array of shape
                (n_new_samples, n_channels(, n_points))
        """
        if x.ndim != self.buffer.ndim:
            raise ValueError('x has not the same number of dimensions as '
                             'the buffer.')
        nw = x.shape[0]

        # Determine index at which new values should be put into array
        ind = np.arange(self.ind, self.ind + nw, dtype=np.int16) % self.n
        self.buffer[ind, :] = x

        # Set self.ind = to the index at which new locations were put.
        # Separately defined here to allow new data to be an array rather
        # than just one row
        self.ind = (ind[-1] + 1) % self.n
        self.pts += nw
项目:Interactivity    作者:treeoftenere    | 项目源码 | 文件源码
def mark_noise(self, noise, nw=None):
        """Mark noisy samples in the buffer.

        Mark the last `nw` samples in the buffer as noisy (noisy -> True;
        clean -> False).

        Args:
            noise (bool): if True, mark the last nw samples as noise

        Keyword Args:
            nw (int): number of samples to mark as noise. If None, use n
                points.
        """
        if not nw:
            nw = self.n

        ind = np.arange(self.ind - nw, self.ind, dtype=np.int16) % self.n
        self.noise[ind, :] = noise
项目:geopyspark    作者:locationtech-labs    | 项目源码 | 文件源码
def test_no_data_deserialization(self):
        arr = np.int16([[[-32768, -32768, -32768, -32768],
                         [-32768, -32768, -32768, -32768],
                         [-32768, -32768, -32768, -32768],
                         [-32768, -32768, -32768, -32768]]])

        epsg_code = 3857
        extent = Extent(0.0, 0.0, 10.0, 10.0)
        projected_extent = ProjectedExtent(extent, epsg_code)

        tile = Tile(arr, 'SHORT', -32768)
        rdd = BaseTestClass.pysc.parallelize([(projected_extent, tile)])
        raster_layer = RasterLayer.from_numpy_rdd(LayerType.SPATIAL, rdd)

        actual_tile = raster_layer.to_numpy_rdd().first()[1]

        self.assertEqual(actual_tile.cell_type, tile.cell_type)
        self.assertEqual(actual_tile.no_data_value, tile.no_data_value)
        self.assertTrue((actual_tile.cells == tile.cells).all())
项目:mss_pytorch    作者:Js-Mim    | 项目源码 | 文件源码
def wavWrite(y, fs, nbits, audioFile):
        """ Write samples to WAV file
        Args:
            samples: (ndarray / 2D ndarray) (floating point) sample vector
                        mono: DIM: nSamples
                        stereo: DIM: nSamples x nChannels

            fs:     (int) Sample rate in Hz
            nBits:  (int) Number of bits
            fnWAV:  (string) WAV file name to write
        """
        if nbits == 8:
            intsamples = (y+1.0) * AudioIO.normFact['int' + str(nbits)]
            fX = np.int8(intsamples)
        elif nbits == 16:
            intsamples = y * AudioIO.normFact['int' + str(nbits)]
            fX = np.int16(intsamples)
        elif nbits > 16:
            fX = y

        write(audioFile, fs, fX)
项目:brats17    作者:xf4j    | 项目源码 | 文件源码
def batch_works(k):
    if k == n_processes - 1:
        paths = all_paths[k * int(len(all_paths) / n_processes) : ]
    else:
        paths = all_paths[k * int(len(all_paths) / n_processes) : (k + 1) * int(len(all_paths) / n_processes)]

    for path in paths:
        probs = np.load(os.path.join(input_path, path))
        pred = np.argmax(probs, axis=3)
        fg_prob = 1 - probs[..., 0]
        pred = clean_contour(fg_prob, pred)
        seg = np.zeros(pred.shape, dtype=np.int16)
        seg[pred == 1] = 1
        seg[pred == 2] = 2
        seg[pred == 3] = 4
        img = nib.Nifti1Image(seg, np.eye(4))
        nib.save(img, os.path.join(output_path, path.replace('_probs.npy', '.nii.gz')))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_prod(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]

        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, a.prod)
                self.assertRaises(ArithmeticError, a2.prod, axis=1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
                      np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)

            tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
            assert_array_equal(np.cumsum(a, axis=0), tgt)

            tgt = np.array(
                [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
            assert_array_equal(np.cumsum(a2, axis=0), tgt)

            tgt = np.array(
                [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
            assert_array_equal(np.cumsum(a2, axis=1), tgt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.prod, a)
                self.assertRaises(ArithmeticError, np.prod, a2, 1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.cumprod, a)
                self.assertRaises(ArithmeticError, np.cumprod, a2, 1)
                self.assertRaises(ArithmeticError, np.cumprod, a)
            else:
                assert_array_equal(np.cumprod(a, axis=-1),
                                   np.array([1, 2, 20, 220,
                                             1320, 6600, 26400], ctype))
                assert_array_equal(np.cumprod(a2, axis=0),
                                   np.array([[1, 2, 3, 4],
                                             [5, 12, 21, 36],
                                             [50, 36, 84, 180]], ctype))
                assert_array_equal(np.cumprod(a2, axis=-1),
                                   np.array([[1, 2, 6, 24],
                                             [5, 30, 210, 1890],
                                             [10, 30, 120, 600]], ctype))
项目:Video-Classification-Action-Recognition    作者:qijiezhao    | 项目源码 | 文件源码
def get_crop_ix(self,training_size):
        rescale_sizes=self.rescale_size
        crop_inds=[]
        for size_pair in rescale_sizes:
            mother_w,mother_h=size_pair
            crop_ix=np.zeros([5,4],dtype=np.int16)
            w_indices=(0,mother_w-training_size)
            h_indices=(0,mother_h-training_size)
            w_center=(mother_w-training_size)/2
            h_center=(mother_h-training_size)/2
            crop_ix[4,:]=[w_center,h_center,training_size+w_center,training_size+h_center]
            cnt=0
            for i in w_indices:
                for j in h_indices:
                    crop_ix[cnt,:]=[i,j,i+training_size,j+training_size]
                    cnt+=1
            crop_inds.append(crop_ix)
        return crop_inds
项目:Master-Thesis    作者:AntoinePassemiers    | 项目源码 | 文件源码
def __init__(self, data, comments = list()):
        """
        Data structure for storing a sequence of amino acids. 
        The latter is represented by a contiguous array of integers.
        The mapping between the amino acids and their numeric value
        is done by using the ascii table.

        Attributes
        ----------
        comments [list] : list of informations about the sequence parsed from the FASTA file
                          The list is constructed by splitting the comments using the ' ' delimiter
        N [int] : length of the sequence
        data [np.ndarray] : contiguous array containing the ascii values of the amino acids
        """
        self.comments = comments
        self.N = len(data)
        if isinstance(data, np.ndarray):
            self.data = data
        else:
            # If a string is passed, the latter is converted to a numpy array
            self.data = np.empty(self.N, dtype = np.int16)
            for i in range(self.N):
                self.data[i] = Sequence.charToInt(data[i])
项目:pymapd    作者:mapd    | 项目源码 | 文件源码
def test_load_table_columnar_arrow_all(self, con, all_types_table):
        pa = pytest.importorskip("pyarrow")
        skip_if_no_arrow_loader(con)

        names = ['boolean_', 'smallint_', 'int_', 'bigint_',
                 'float_', 'double_', 'varchar_', 'text_',
                 'time_', 'timestamp_', 'date_']

        columns = [pa.array([True, False, None], type=pa.bool_()),
                   pa.array([1, 0, None]).cast(pa.int16()),
                   pa.array([1, 0, None]).cast(pa.int32()),
                   pa.array([1, 0, None]),
                   pa.array([1.0, 1.1, None]).cast(pa.float32()),
                   pa.array([1.0, 1.1, None]),
                   # no fixed-width string
                   pa.array(['a', 'b', None]),
                   pa.array(['a', 'b', None]),
                   (pa.array([1, 2, None]).cast(pa.int32())
                    .cast(pa.time32('s'))),
                   pa.array([datetime.datetime(2016, 1, 1, 12, 12, 12),
                             datetime.datetime(2017, 1, 1), None]),
                   pa.array([datetime.date(2016, 1, 1),
                             datetime.date(2017, 1, 1), None])]
        table = pa.Table.from_arrays(columns, names=names)
        con.load_table_arrow(all_types_table, table)
项目:pymapd    作者:mapd    | 项目源码 | 文件源码
def test_load_table_creates(self, con, not_a_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_cast": np.array([0, 1], dtype=np.int8),
            "smallint_": np.array([0, 1], dtype=np.int16),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table(not_a_table, data, create=True)
项目:aes_wimp    作者:Js-Mim    | 项目源码 | 文件源码
def wavWrite(y, fs, nbits, audioFile):
        """ Write samples to WAV file
        Args:
            samples: (ndarray / 2D ndarray) (floating point) sample vector
                        mono: DIM: nSamples
                        stereo: DIM: nSamples x nChannels

            fs:     (int) Sample rate in Hz
            nBits:  (int) Number of bits
            fnWAV:  (string) WAV file name to write
        """
        if nbits == 8:
            intsamples = (y+1.0) * AudioIO.normFact['int' + str(nbits)]
            fX = np.int8(intsamples)
        elif nbits == 16:
            intsamples = y * AudioIO.normFact['int' + str(nbits)]
            fX = np.int16(intsamples)
        elif nbits > 16:
            fX = y

        write(audioFile, fs, fX)
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def interpret_header(self):
        """redefine variables from header dictionary"""
        self.nifs = self.header['nifs']
        self.nchans = self.header['nchans']
        self.nbits = self.header['nbits']
        signed = 'signed' in self.header and self.header['signed'] is True
        if self.nbits >= 8:
            if signed:
                self.dtype = {8: np.int8,
                              16: np.int16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
            else:
                self.dtype = {8: np.uint8,
                              16: np.uint16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
        else:
            self.dtype = np.int8 if signed else np.uint8
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
项目:Global_GPP_VPM_NCEP_C3C4    作者:zhangyaonju    | 项目源码 | 文件源码
def smooth(tile):
    #first use this function to get mean and save it in an array
    temp = import_all_year_data(tile)
    ####after get the mean value for all doy, I will run a bise gapfill first
    print temp.size
    ##when using the single processing
    #inputVI = pd.DataFrame(temp)
    #VIsmoothed = inputVI.apply(VIsmooth, axis=0)
    #VIsmoothed = VIsmoothed.as_matrix()
    #VIsmoothed = parallelize_dataframe(temp)
    ##when using the multiprocessing
    VIsmoothed = dataframeapply(temp)
    VIsmoothed = VIsmoothed.reshape(VIsmoothed.size/2400/2400, 2400, 2400)
    TILEdir = os.path.join(dirref, tile)
    if not os.path.exists(TILEdir):
        os.makedirs(TILEdir)
    export_array (Rasters=np.int16(VIsmoothed), directory=TILEdir, \
        prod='EVI.BISE.SG', tile=tile, index=range(1, 369, 8))
    temp = None
    inputVI = None
    VIsmoothed = None
项目:QGL    作者:BBN-Q    | 项目源码 | 文件源码
def update_wf_library(filename, pulses, offsets):
    """
    Update a H5 waveform library in place give an iterable of (pulseName, pulse)
    tuples and offsets into the waveform library.
    """
    assert USE_PHASE_OFFSET_INSTRUCTION == False
    #load the h5 file
    with h5py.File(filename) as FID:
        for label, pulse in pulses.items():
            #create a new waveform
            if pulse.isTimeAmp:
                shape = np.repeat(pulse.amp * np.exp(1j * pulse.phase), 4)
            else:
                shape = pulse.amp * np.exp(1j * pulse.phase) * pulse.shape
            try:
                length = offsets[label][1]
            except KeyError:
                print("\t{} not found in offsets so skipping".format(pulse))
                continue
            for offset in offsets[label][0]:
                print("\tUpdating {} at offset {}".format(pulse, offset))
                FID['/chan_1/waveforms'][offset:offset + length] = np.int16(
                    MAX_WAVEFORM_VALUE * shape.real)
                FID['/chan_2/waveforms'][offset:offset + length] = np.int16(
                    MAX_WAVEFORM_VALUE * shape.imag)
项目:QGL    作者:BBN-Q    | 项目源码 | 文件源码
def write_field(FID, fieldName, data, dataType):
    typeSizes = {'int16': 2, 'int32': 4, 'double': 8, 'uint128': 16}
    formatChars = {'int16': '<h', 'int32': '<i', 'double': '<d'}

    if dataType == 'char':
        dataSize = len(data) + 1
        data = data + chr(0)
    else:
        dataSize = typeSizes[dataType]

    FID.write(struct.pack('<II', len(fieldName) + 1, dataSize))
    FID.write(fieldName + chr(0))
    if dataType == 'char':
        FID.write(data)
    elif dataType == 'uint128':
        #struct doesn't support uint128 so write two 64bits
        #there are smarter ways but we really only need this for the fake timestamp
        FID.write(struct.pack('<QQ', 0, data))
    else:
        FID.write(struct.pack(formatChars[dataType], data))
项目:QGL    作者:BBN-Q    | 项目源码 | 文件源码
def write_waveform(FID, WFname, WFnumber, data):
    '''
    Helper function to write a waveform
    '''
    numString = str(WFnumber)

    write_field(FID, 'WAVEFORM_NAME_' + numString, WFname, 'char')

    #Set integer format
    write_field(FID, 'WAVEFORM_TYPE_' + numString, 1, 'int16')

    write_field(FID, 'WAVEFORM_LENGTH_' + numString, data.size, 'int32')

    write_field(FID, 'WAVEFORM_TIMESTAMP_' + numString, 0, 'uint128')
    tmpString = 'WAVEFORM_DATA_' + numString + chr(0)
    dataSize = 2 * data.size
    FID.write(struct.pack('<II', len(tmpString), dataSize))
    FID.write(tmpString)
    FID.write(data.tostring())
项目:pytrip    作者:pytrip    | 项目源码 | 文件源码
def read_dicom(self, dcm):
        """ Imports CT-images from Dicom object.

        :param Dicom dcm: a Dicom object
        """
        if "images" not in dcm:
            raise InputError("Data doesn't contain ct data")
        if not self.header_set:
            self._set_header_from_dicom(dcm)

        self.cube = np.zeros((self.dimz, self.dimy, self.dimx), dtype=np.int16)
        intersect = float(dcm["images"][0].RescaleIntercept)
        slope = float(dcm["images"][0].RescaleSlope)

        for i in range(len(dcm["images"])):
            data = np.array(dcm["images"][i].pixel_array) * slope + intersect
            self.cube[i][:][:] = data
        if self.slice_pos[1] < self.slice_pos[0]:
            self.slice_pos.reverse()
            self.zoffset = self.slice_pos[0]
            self.cube = self.cube[::-1]
项目:pytrip    作者:pytrip    | 项目源码 | 文件源码
def set_data_type(self, type):
        """ Sets the data type for the TRiP98 header files.

        :param numpy.type type: numpy type, e.g. np.uint16
        """
        if type is np.int8 or type is np.uint8:
            self.data_type = "integer"
            self.num_bytes = 1
        elif type is np.int16 or type is np.uint16:
            self.data_type = "integer"
            self.num_bytes = 2
        elif type is np.int32 or type is np.uint32:
            self.data_type = "integer"
            self.num_bytes = 4
        elif type is np.float:
            self.data_type = "float"
            self.num_bytes = 4
        elif type is np.double:
            self.data_type = "double"
            self.num_bytes = 8

    # ######################  WRITING DICOM FILES #######################################
项目:piecewisecrf    作者:Vaan5    | 项目源码 | 文件源码
def load_data(predictions_file, labels_file):
    '''

    Loads prediction and label data into numpy arrays

    Parameters
    ----------
    predictions_file: str
        Path to the prediction file

    labels_file: str
        Path to the label file

    Returns
    -------
    ret_val: tuple
        labels array, predictions array


    '''
    labels = io.load_nparray_from_bin_file(labels_file, np.uint8)
    predictions = io.load_nparray_from_bin_file(predictions_file, np.int16)

    return labels, predictions
项目:gan_practice    作者:handspeaker    | 项目源码 | 文件源码
def render_fonts_image(x, path, img_per_row, unit_scale=True):
    if unit_scale:
        # scale 0-1 matrix back to gray scale bitmaps
        bitmaps = (x * 255.).astype(dtype=np.int16) % 256
    else:
        bitmaps = x
    num_imgs, h, w = x.shape
    width = img_per_row * w
    height = int(np.ceil(float(num_imgs) / img_per_row)) * h
    canvas = np.zeros(shape=(height, width), dtype=np.int16)
    # make the canvas all white
    canvas.fill(0)
    for idx, bm in enumerate(bitmaps):
        x = h * int(idx / img_per_row)
        y = w * int(idx % img_per_row)
        canvas[x: x + h, y: y + w] = bm
    scipy.misc.toimage(canvas).save(path)
    return path
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _typename(t):
    if t == np.float16:
        return 'float16'
    elif t == np.float32:
        return 'float32'
    elif t == np.float64:
        return 'float64'
    elif t == np.uint8:
        return 'uint8'
    elif t == np.uint16:
        return 'uint16'
    elif t == np.int16:
        return 'int16'
    elif t == np.int32:
        return 'int32'
    elif t == np.int64:
        return 'int64'
    else:
        raise TypeError('unknown type')
项目:incubator-airflow-old    作者:apache    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:tensorboard-chainer    作者:neka-nat    | 项目源码 | 文件源码
def convert_dtype(dtype):
    if dtype == np.float32:
        return dt.DT_FLOAT
    elif dtype == np.float64:
        return dt.DT_DOUBLE
    elif dtype == np.int32:
        return dt.DT_INT32
    elif dtype == np.uint8:
        return dt.DT_UINT8
    elif dtype == np.int16:
        return dt.DT_INT16
    elif dtype == np.int8:
        return dt.DT_INT8
    elif dtype == np.dtype('S1'):
        return dt.DT_STRING
    else:
        raise ValueError('Unsupported type.')
项目:keras-wavenet    作者:usernaamee    | 项目源码 | 文件源码
def get_audio_from_model(model, sr, duration, seed_audio):
    print 'Generating audio...'
    new_audio = np.zeros((sr * duration))
    curr_sample_idx = 0
    while curr_sample_idx < new_audio.shape[0]:
        distribution = np.array(model.predict(seed_audio.reshape(1,
                                                                 frame_size, 1)
                                             ), dtype=float).reshape(256)
        distribution /= distribution.sum().astype(float)
        predicted_val = np.random.choice(range(256), p=distribution)
        ampl_val_8 = ((((predicted_val) / 255.0) - 0.5) * 2.0)
        ampl_val_16 = (np.sign(ampl_val_8) * (1/256.0) * ((1 + 256.0)**abs(
            ampl_val_8) - 1)) * 2**15
        new_audio[curr_sample_idx] = ampl_val_16
        seed_audio[-1] = ampl_val_16
        seed_audio[:-1] = seed_audio[1:]
        pc_str = str(round(100*curr_sample_idx/float(new_audio.shape[0]), 2))
        sys.stdout.write('Percent complete: ' + pc_str + '\r')
        sys.stdout.flush()
        curr_sample_idx += 1
    print 'Audio generated.'
    return new_audio.astype(np.int16)
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def to_volume(slices):
    """Creates ndarray volume in Hounsfield units (HU) from array of pydicom slices.
    """
    volume = np.stack([s.pixel_array for s in slices])
    volume = volume.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    volume[volume == -2000] = 0

    # Convert to Hounsfield units (HU)
    for n in range(len(slices)):
        intercept = slices[n].RescaleIntercept
        slope = slices[n].RescaleSlope
        if slope != 1:
            volume[n] = slope * volume[n].astype(np.float64)
            volume[n] = volume[n].astype(np.int16)
        volume[n] += np.int16(intercept)

    volume = np.array(volume, dtype=np.int16)
    spacing = tuple(map(float, ([slices[0].SliceThickness] + slices[0].PixelSpacing)))
    return volume, spacing
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def to_volume(slices):
    """Creates ndarray volume in Hounsfield units (HU) from array of pydicom slices.
    """
    volume = np.stack([s.pixel_array for s in slices])
    volume = volume.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    volume[volume == -2000] = 0

    # Convert to Hounsfield units (HU)
    for n in range(len(slices)):
        intercept = slices[n].RescaleIntercept
        slope = slices[n].RescaleSlope
        if slope != 1:
            volume[n] = slope * volume[n].astype(np.float64)
            volume[n] = volume[n].astype(np.int16)
        volume[n] += np.int16(intercept)

    volume = np.array(volume, dtype=np.int16)
    spacing = tuple(map(float, ([slices[0].SliceThickness] + slices[0].PixelSpacing)))
    return volume, spacing
项目:rastercube    作者:terrai    | 项目源码 | 文件源码
def test_cell_indices_in_tile(self):
        """
        Test get_cell_indices_in_tile by filling an int array for a tile,
        using the indices returned by cell_indices_in_tile for each cell
        in the tile. The array should be fully filled with 1 at the end
        """
        h, v = (20, 11)
        grid = MODISGrid()
        tile_data = np.zeros(
            (MODISGrid.MODIS_tile_height, MODISGrid.MODIS_tile_width),
            dtype=np.int16)
        cells = grid.get_cells_for_tile(h, v)
        for cell in cells:
            i_range, j_range = grid.get_cell_indices_in_tile(cell, h, v)
            tile_data[i_range[0]:i_range[1], j_range[0]:j_range[1]] += 1
        # If tile_data contains some zeros, this means the tile is not
        # fully covered by the cells. If it contains values > 1, this means
        # than more than one cell covers a given tile pixel
        assert_array_equal(tile_data, np.ones_like(tile_data))