Python numpy 模块,var() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.var()

项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def alpha(self):
        # Cronbach Alpha
        alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent)

        for i in range(self.lenlatent):
            block = self.data_[self.Variables['measurement']
                               [self.Variables['latent'] == self.latent[i]]]
            p = len(block.columns)

            if(p != 1):
                p_ = len(block)
                correction = np.sqrt((p_ - 1) / p_)
                soma = np.var(np.sum(block, axis=1))
                cor_ = pd.DataFrame.corr(block)

                denominador = soma * correction**2
                numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_)))

                alpha_ = (numerador / denominador) * (p / (p - 1))
                alpha[self.latent[i]] = alpha_
            else:
                alpha[self.latent[i]] = 1

        return alpha.T
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def __call__(self, *inputvals):
        assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs)
        nondata_vals = inputvals[0:len(self.nondata_inputs)]
        data_vals = inputvals[len(self.nondata_inputs):]
        feed_dict = dict(zip(self.nondata_inputs, nondata_vals))
        n = data_vals[0].shape[0]
        for v in data_vals[1:]:
            assert v.shape[0] == n
        for i_start in range(0, n, self.batch_size):
            slice_vals = [v[i_start:min(i_start+self.batch_size, n)] for v in data_vals]
            for (var,val) in zip(self.data_inputs, slice_vals):
                feed_dict[var]=val
            results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict)
            if i_start==0:
                sum_results = results
            else:
                for i in range(len(results)):
                    sum_results[i] = sum_results[i] + results[i]
        for i in range(len(results)):
            sum_results[i] = sum_results[i] / n
        return sum_results

# ================================================================
# Modules
# ================================================================
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def effective_sample_size(x, mu, var, logger):
    """
    Calculate the effective sample size of sequence generated by MCMC.
    :param x:
    :param mu: mean of the variable
    :param var: variance of the variable
    :param logger: logg
    :return: effective sample size of the sequence
    Make sure that `mu` and `var` are correct!
    """
    # batch size, time, dimension
    b, t, d = x.shape
    ess_ = np.ones([d])
    for s in range(1, t):
        p = auto_correlation_time(x, s, mu, var)
        if np.sum(p > 0.05) == 0:
            break
        else:
            for j in range(0, d):
                if p[j] > 0.05:
                    ess_[j] += 2.0 * p[j] * (1.0 - float(s) / t)

    logger.info('ESS: max [%f] min [%f] / [%d]' % (t / np.min(ess_), t / np.max(ess_), t))
    return t / ess_
项目:ladder    作者:abhiskk    | 项目源码 | 文件源码
def bn_hat_z_layers(self, hat_z_layers, z_pre_layers):
        # TODO: Calculate batchnorm using GPU Tensors.
        assert len(hat_z_layers) == len(z_pre_layers)
        hat_z_layers_normalized = []
        for i, (hat_z, z_pre) in enumerate(zip(hat_z_layers, z_pre_layers)):
            if self.use_cuda:
                ones = Variable(torch.ones(z_pre.size()[0], 1).cuda())
            else:
                ones = Variable(torch.ones(z_pre.size()[0], 1))
            mean = torch.mean(z_pre, 0)
            noise_var = np.random.normal(loc=0.0, scale=1 - 1e-10, size=z_pre.size())
            if self.use_cuda:
                var = np.var(z_pre.data.cpu().numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            else:
                var = np.var(z_pre.data.numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            var = Variable(torch.FloatTensor(var))
            if self.use_cuda:
                hat_z = hat_z.cpu()
                ones = ones.cpu()
                mean = mean.cpu()
            hat_z_normalized = torch.div(hat_z - ones.mm(mean), ones.mm(torch.sqrt(var + 1e-10)))
            if self.use_cuda:
                hat_z_normalized = hat_z_normalized.cuda()
            hat_z_layers_normalized.append(hat_z_normalized)
        return hat_z_layers_normalized
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
项目:baselines    作者:openai    | 项目源码 | 文件源码
def update(self, x):
        batch_mean = np.mean(x, axis=0)
        batch_var = np.var(x, axis=0)
        batch_count = x.shape[0]

        delta = batch_mean - self.mean
        tot_count = self.count + batch_count

        new_mean = self.mean + delta * batch_count / tot_count        
        m_a = self.var * (self.count)
        m_b = batch_var * (batch_count)
        M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
        new_var = M2 / (self.count + batch_count)

        new_count = batch_count + self.count

        self.mean = new_mean
        self.var = new_var
        self.count = new_count
项目:baselines    作者:openai    | 项目源码 | 文件源码
def test_runningmeanstd():
    for (x1, x2, x3) in [
        (np.random.randn(3), np.random.randn(4), np.random.randn(5)),
        (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),
        ]:

        rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:])

        x = np.concatenate([x1, x2, x3], axis=0)
        ms1 = [x.mean(axis=0), x.var(axis=0)]
        rms.update(x1)
        rms.update(x2)
        rms.update(x3)
        ms2 = [rms.mean, rms.var]

        assert np.allclose(ms1, ms2)
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def autocorrelate(signal, lag=1):
  """Gives the correlation coefficient for the signal's correlation with itself.

  Args:
    signal: The signal on which to compute the autocorrelation. Can be a list.
    lag: The offset at which to correlate the signal with itself. E.g. if lag
      is 1, will compute the correlation between the signal and itself 1 beat
      later.
  Returns:
    Correlation coefficient.
  """
  n = len(signal)
  x = np.asarray(signal) - np.mean(signal)
  c0 = np.var(signal)

  return (x[lag:] * x[:n - lag]).sum() / float(n) / c0
项目:zhusuan    作者:thu-ml    | 项目源码 | 文件源码
def effective_sample_size_1d(samples):
    """
    Compute the effective sample size of a chain of scalar samples.

    :param samples: A 1-D numpy array. The chain of samples.
    :return: A float. The effective sample size.
    """
    n = samples.shape[0]
    mu_hat = np.mean(samples)
    var = np.var(samples) * n / (n - 1)
    var_plus = var * (n - 1) / n

    def auto_covariance(lag):
        return np.mean((samples[:n - lag] - mu_hat) * (samples[lag:] - mu_hat))

    sum_rho = 0
    for t in range(0, n):
        rho = 1 - (var - auto_covariance(t)) / var_plus
        if rho < 0:
            break
        sum_rho += rho

    ess = n / (1 + 2 * sum_rho)
    return ess
项目:uncover-ml    作者:GeoscienceAustralia    | 项目源码 | 文件源码
def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1.,
                 regulariser=1., ard=True, maxiter=3000, batch_size=10,
                 alpha=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8,
                 random_state=None, nstarts=500):

        super().__init__(likelihood=Gaussian(Parameter(var, Positive())),
                         basis=None,
                         maxiter=maxiter,
                         batch_size=batch_size,
                         updater=Adam(alpha, beta1, beta2, epsilon),
                         random_state=random_state,
                         nstarts=nstarts
                         )
        self._store_params(kernel, regulariser, nbases, lenscale, ard)


# Bespoke regressor for basin-depth problems
项目:uncover-ml    作者:GeoscienceAustralia    | 项目源码 | 文件源码
def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1.,
                 falloff=1., regulariser=1., ard=True,
                 indicator_field='censored', maxiter=3000,
                 batch_size=10, alpha=0.01, beta1=0.9,
                 beta2=0.99, epsilon=1e-8, random_state=None):

        lhood = Switching(lenscale=falloff,
                          var_init=Parameter(var, Positive()))

        super().__init__(likelihood=lhood,
                         basis=None,
                         maxiter=maxiter,
                         batch_size=batch_size,
                         updater=Adam(alpha, beta1, beta2, epsilon),
                         random_state=random_state
                         )

        self.indicator_field = indicator_field
        self._store_params(kernel, regulariser, nbases, lenscale, ard)
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def test_final_variance_runs(self):
        exp             = VarianceExperiment()
        printer_final   = Print(name="Final")
        avgr            = Averager('repeats', name="TestAverager")
        var_buff        = DataBuffer(name='Variance Buffer')
        mean_buff       = DataBuffer(name='Mean Buffer')

        edges = [(exp.chan1,           avgr.sink),
                 (avgr.final_variance, printer_final.sink),
                 (avgr.final_variance, var_buff.sink),
                 (avgr.final_average,  mean_buff.sink)]

        exp.set_graph(edges)
        exp.run_sweeps()

        var_data  = var_buff.get_data()['Variance'].reshape(var_buff.descriptor.data_dims())
        mean_data = mean_buff.get_data()['chan1'].reshape(mean_buff.descriptor.data_dims())
        orig_data = exp.vals.reshape(exp.chan1.descriptor.data_dims())

        self.assertTrue(np.abs(np.sum(mean_data - np.mean(orig_data, axis=0))) <= 1e-3)
        self.assertTrue(np.abs(np.sum(var_data - np.var(orig_data, axis=0, ddof=1))) <= 1e-3)
项目:aueb.twitter.sentiment    作者:nlpaueb    | 项目源码 | 文件源码
def regularize(features):

    #regularize per column
    for i in range(0,len(features[0])):
    try:
            #take evary column
            feat=features[:,i]

            #mean and variance of every column  
            mean=np.mean(feat)
            var=np.var(feat)

            if(var!=0):
                features[:,i]=(features[:,i]-mean)/float(3*var)
            else :
                features[:,i]=0
    except:
        pass

    features[features>1]=1
    features[features<-1]=-1

    return features

#reguralize features to [-1,1] horizontally, yi=yi/norm(yi,2)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_variance_wgrad(input_tensor):
    inputs = input_tensor
    targets = ng.placeholder(inputs.axes)

    inp_stat = ng.variance(inputs, reduction_axes=inputs.axes.batch_axes())
    err = ng.sum(inp_stat - targets, out_axes=())
    d_inputs = ng.deriv(err, inputs)
    with executor([err, d_inputs], inputs, targets) as comp_func:

        input_value = rng.uniform(-0.1, 0.1, inputs.axes)
        target_value = rng.uniform(-0.1, 0.1, targets.axes)
        ng_f_res, ng_b_res = comp_func(input_value, target_value)

        np_f_res = np.sum(np.var(input_value, axis=1, keepdims=True) - target_value)

        ng.testing.assert_allclose(np_f_res, ng_f_res, atol=1e-4, rtol=1e-4)

        np_b_res = 2 * (input_value - np.mean(input_value, axis=1, keepdims=True))

        ng.testing.assert_allclose(np_b_res, ng_b_res, atol=1e-4, rtol=1e-4)
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def calculateParamGV(feat_file_list, feat_dim=32):
    data = numpy.empty((1, feat_dim))
    for file_index in range(len(feat_file_list)):
        file_name   = feat_file_list[file_index]
        (junk, ext) = feat_file_list[file_index].split('.')

        features    = readBottleneckFeatures(file_name, feat_dim)

        if ext == 'lf0': #remove unvoiced values
            features = features[numpy.where(features != -1.*(10**(10)))[0]]
            features = numpy.exp(features) #convert to linear scale

        if file_index==0:
            data=features
        else:
            data=numpy.concatenate((data,features),0)

    gv = numpy.var(data, 0)
    return gv
项目:hipsternet    作者:wiseodd    | 项目源码 | 文件源码
def bn_forward(X, gamma, beta, cache, momentum=.9, train=True):
    running_mean, running_var = cache

    if train:
        mu = np.mean(X, axis=0)
        var = np.var(X, axis=0)

        X_norm = (X - mu) / np.sqrt(var + c.eps)
        out = gamma * X_norm + beta

        cache = (X, X_norm, mu, var, gamma, beta)

        running_mean = util.exp_running_avg(running_mean, mu, momentum)
        running_var = util.exp_running_avg(running_var, var, momentum)
    else:
        X_norm = (X - running_mean) / np.sqrt(running_var + c.eps)
        out = gamma * X_norm + beta
        cache = None

    return out, cache, running_mean, running_var
项目:hipsternet    作者:wiseodd    | 项目源码 | 文件源码
def bn_backward(dout, cache):
    X, X_norm, mu, var, gamma, beta = cache

    N, D = X.shape

    X_mu = X - mu
    std_inv = 1. / np.sqrt(var + c.eps)

    dX_norm = dout * gamma
    dvar = np.sum(dX_norm * X_mu, axis=0) * -.5 * std_inv**3
    dmu = np.sum(dX_norm * -std_inv, axis=0) + dvar * np.mean(-2. * X_mu, axis=0)

    dX = (dX_norm * std_inv) + (dvar * 2 * X_mu / N) + (dmu / N)
    dgamma = np.sum(dout * X_norm, axis=0)
    dbeta = np.sum(dout, axis=0)

    return dX, dgamma, dbeta
项目:pyflux    作者:RJT1990    | 项目源码 | 文件源码
def cv_gradient(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        """
        gradient = np.zeros(np.sum(self.approx_param_no))
        z_t = z.T      
        log_q = self.normal_log_q(z.T)
        log_p = self.log_p(z.T)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*(log_p-log_q)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))           

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1)
项目:pyflux    作者:RJT1990    | 项目源码 | 文件源码
def cv_gradient_initial(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        """
        gradient = np.zeros(np.sum(self.approx_param_no))
        z_t = z.T      
        log_q = self.normal_log_q_initial(z.T)
        log_p = self.log_p(z.T)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*(log_p-log_q)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1)
项目:pyflux    作者:RJT1990    | 项目源码 | 文件源码
def cv_gradient(self, z):
        """
        The control variate augmented Monte Carlo gradient estimate
        RAO-BLACKWELLIZED!
        """        
        z_t = np.transpose(z)
        log_q = self.normal_log_q(z_t)
        log_p = self.log_p(z_t)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))      

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1)
项目:pyflux    作者:RJT1990    | 项目源码 | 文件源码
def cv_gradient_initial(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        RAO-BLACKWELLIZED!
        """        
        z_t = np.transpose(z)
        log_q = self.normal_log_q_initial(z_t)
        log_p = self.log_p(z_t)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1)
项目:CSB    作者:csb-toolbox    | 项目源码 | 文件源码
def testRandom(self):

        ig = InverseGaussian(1., 1.)
        samples = ig.random(1000000)
        mu = numpy.mean(samples)
        var = numpy.var(samples)

        self.assertAlmostEqual(ig.mu, mu, delta=1e-1)
        self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=1e-1)

        ig = InverseGaussian(3., 6.)

        samples = ig.random(1000000)
        mu = numpy.mean(samples)
        var = numpy.var(samples)

        self.assertAlmostEqual(ig.mu, mu, delta=1e-1)
        self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=5e-1)
项目:CSB    作者:csb-toolbox    | 项目源码 | 文件源码
def testRandom(self):

        from scipy.special import kv
        from numpy import sqrt

        a = 2.
        b = 1.
        p = 1
        gig = GeneralizedInverseGaussian(a, b, p)
        samples = gig.random(10000)

        mu_analytical = sqrt(b) * kv(p + 1, sqrt(a * b)) / (sqrt(a) * kv(p, sqrt(a * b)))

        var_analytical = b * kv(p + 2, sqrt(a * b)) / a / kv(p, sqrt(a * b)) - mu_analytical ** 2

        mu = numpy.mean(samples)
        var = numpy.var(samples)

        self.assertAlmostEqual(mu_analytical, mu, delta=1e-1)
        self.assertAlmostEqual(var_analytical, var, delta=1e-1)
项目:tbp-next-basket    作者:GiulioRossetti    | 项目源码 | 文件源码
def calculate_aggregate(values):
    agg_measures = {
        'avg': np.mean(values),
        'std': np.std(values),
        'var': np.var(values),
        'med': np.median(values),
        '10p': np.percentile(values, 10),
        '25p': np.percentile(values, 25),
        '50p': np.percentile(values, 50),
        '75p': np.percentile(values, 75),
        '90p': np.percentile(values, 90),
        'iqr': np.percentile(values, 75) - np.percentile(values, 25),
        'iqm': interquartile_range_mean(values),
        'mad': mean_absolute_deviation(values),
        'cov': 1.0 * np.mean(values) / np.std(values),
        'gin': gini_coefficient(values),
        'skw': stats.skew(values),
        'kur': stats.kurtosis(values),
        'sum': np.sum(values)
    }

    return agg_measures
项目:bolero    作者:rock-learning    | 项目源码 | 文件源码
def test_sample_contexts_from_distribution():
    env = Catapult(segments=[(0, 0), (20, 0)], context_interval=(0, 20),
                   context_distribution=uniform(5, 10), random_state=0)
    env.init()

    contexts = np.empty(1000)
    for i in range(contexts.shape[0]):
        context = env.request_context(None)
        contexts[i] = context[0]

    norm_dist = uniform(0.25, 0.5)
    assert_true(np.all(0.25 <= contexts))
    assert_true(np.all(contexts <= 0.75))
    mean, var = norm_dist.stats("mv")
    assert_almost_equal(np.mean(contexts), mean, places=1)
    assert_almost_equal(np.var(contexts), var, places=1)
项目:SecuML    作者:ANSSI-FR    | 项目源码 | 文件源码
def displayDataset(self, dataset):
        eps = 0.00001
        linewidth = dataset.linewidth
        if np.var(dataset.values) < eps:
            linewidth += 2
            mean = np.mean(dataset.values)
            x = np.arange(0, 1, 0.1)
            x = np.sort(np.append(x, [mean, mean-eps, mean+eps]))
            density = [1 if v == mean else 0 for v in x]
        else:
            self.kde.fit(np.asarray([[x] for x in dataset.values]))
            ## Computes the x axis
            x_max = np.amax(dataset.values)
            x_min = np.amin(dataset.values)
            delta = x_max - x_min
            density_delta = 1.1 * delta
            x = np.arange(x_min, x_max, density_delta / self.num_points)
            x_density = [[y] for y in x]
            ## kde.score_samples returns the 'log' of the density
            log_density = self.kde.score_samples(x_density).tolist()
            density = map(math.exp, log_density)
        self.ax.plot(x, density, label = dataset.label, color = dataset.color,
                linewidth = linewidth, linestyle = dataset.linestyle)
项目:sporco    作者:bwohlberg    | 项目源码 | 文件源码
def snr(vref, vcmp):
    """
    Compute Signal to Noise Ratio (SNR) of two images.

    Parameters
    ----------
    vref : array_like
      Reference image
    vcmp : array_like
      Comparison image

    Returns
    -------
    x : float
      SNR of `vcmp` with respect to `vref`
    """

    dv = np.var(vref)
    with np.errstate(divide='ignore'):
        rt = dv/mse(vref, vcmp)
    return 10.0*np.log10(rt)
项目:sporco    作者:bwohlberg    | 项目源码 | 文件源码
def bsnr(vblr, vnsy):
    """
    Compute Blurred Signal to Noise Ratio (BSNR) for a blurred and noisy
    image.

    Parameters
    ----------
    vblr : array_like
      Blurred noise free image
    vnsy : array_like
      Blurred image with additive noise

    Returns
    -------
    x : float
      BSNR of `vnsy` with respect to `vblr` and `vdeg`
    """

    blrvar = np.var(vblr)
    nsevar = np.var(vnsy - vblr)
    with np.errstate(divide='ignore'):
        rt = blrvar/nsevar
    return 10.0*np.log10(rt)
项目:ML-From-Scratch    作者:eriklindernoren    | 项目源码 | 文件源码
def forward_pass(self, X, training=True):

        # Initialize running mean and variance if first run
        if self.running_mean is None:
            self.running_mean = np.mean(X, axis=0)
            self.running_var = np.var(X, axis=0)

        if training:
            mean = np.mean(X, axis=0)
            var = np.var(X, axis=0)
            self.X_centered = X - mean
            self.stddev_inv = 1 / np.sqrt(var + self.eps)
            self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mean
            self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
        else:
            mean = self.running_mean
            var = self.running_var

        X_norm = (X - mean) / np.sqrt(var + self.eps)
        output = self.gamma * X_norm + self.beta

        return output
项目:PyDREAM    作者:LoLab-VU    | 项目源码 | 文件源码
def Gelman_Rubin(sampled_parameters):
    nsamples = len(sampled_parameters[0])
    nchains = len(sampled_parameters)
    nburnin = nsamples//2

    chain_var = [np.var(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)]

    W = np.mean(chain_var, axis=0)

    chain_means = [np.mean(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)]

    B = np.var(chain_means, axis=0)

    var_est = (W*(1-(1./nsamples))) + B

    Rhat = np.sqrt(np.divide(var_est, W))

    return Rhat
项目:meterstick    作者:google    | 项目源码 | 文件源码
def testRelativeToJackknife(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
项目:meterstick    作者:google    | 项目源码 | 文件源码
def testRelativeToJackknifeIncludeBaseline(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0, include_base=True)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0, 1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[0.0, 0.0],
                  [9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
项目:meterstick    作者:google    | 项目源码 | 文件源码
def testRelativeToJackknifeSingleComparisonBaselineFirst(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
项目:meterstick    作者:google    | 项目源码 | 文件源码
def testRelativeToJackknifeSingleComparisonBaselineSecond(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 1)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0], name="Y")
    correct = pd.DataFrame(
        np.array([[-9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
项目:meterstick    作者:google    | 项目源码 | 文件源码
def testRelativeToSplitJackknife(self):
    data = pd.DataFrame(
        {"X": [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8],
         "Y": [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3],
         "Z": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Z", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).split_by("Y").relative_to(
        comparison).with_standard_errors(se_method).calculate(metric).run()

    rowindex = pd.MultiIndex(
        levels=[[1, 2, 3], [1]],
        labels=[[0, 1, 2], [0, 0, 0]],
        names=["Y", "Z"])
    correct = pd.DataFrame(
        np.array([[-3.0, np.sqrt(5 * np.var([0, -1, -2, -3, -4, -5]))],
                  [-3.0, np.sqrt(5 * np.var([3, 2, 1, -8, -7, -6]))],
                  [-3.0, np.sqrt(5 * np.var([6, 5, 4, -11, -10, -9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def mainHmmGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationHmmGeneralize(isTrain)

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms))
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def mainUniformGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationUniformGeneralize(isTrain)
    print clf.X_general.shape

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms))
项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def vif(self):
        vif = []
        totalmanifests = range(len(self.data_.columns))
        for i in range(len(totalmanifests)):
            independent = [x for j, x in enumerate(totalmanifests) if j != i]
            coef, resid = np.linalg.lstsq(
                self.data_.ix[:, independent], self.data_.ix[:, i])[:2]

            r2 = 1 - resid / \
                (self.data_.ix[:, i].size * self.data_.ix[:, i].var())

            vif.append(1 / (1 - r2))

        vif = pd.DataFrame(vif, index=self.manifests)
        return vif
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def explained_variance_1d(ypred,y):
    """
    Var[ypred - y] / var[y]. 
    https://www.quora.com/What-is-the-meaning-proportion-of-variance-explained-in-linear-regression
    """
    assert y.ndim == 1 and ypred.ndim == 1    
    vary = np.var(y)
    return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def gauss_prob(mu, logstd, x):
    std = tf.exp(logstd)
    var = tf.square(std)
    gp = tf.exp(-(x - mu)/(2*var)) / ((2*np.pi)**.5 * std)
    return  tf.reduce_prod(gp, [1])
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def gauss_log_prob(mu, logstd, x):
    var = tf.exp(2*logstd)
    gp = -tf.square(x - mu)/(2*var) - .5*tf.log(tf.constant(2*np.pi)) - logstd
    return  tf.reduce_sum(gp, [1])
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def var(x, axis=None, keepdims=False):
    meanx = mean(x, axis=axis, keepdims=keepdims)
    return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims)
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def std(x, axis=None, keepdims=False):
    return tf.sqrt(var(x, axis=axis, keepdims=keepdims))
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def minimize_and_clip(optimizer, objective, var_list, clip_val=10):
    """Minimized `objective` using `optimizer` w.r.t. variables in
    `var_list` while ensure the norm of the gradients for each
    variable is clipped to `clip_val`
    """
    gradients = optimizer.compute_gradients(objective, var_list=var_list)
    for i, (grad, var) in enumerate(gradients):
        if grad is not None:
            gradients[i] = (tf.clip_by_norm(grad, clip_val), var)
    return optimizer.apply_gradients(gradients)
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_output_shape(self):
        """ Test that the axis parameter is handled correctly """
        stream = [np.random.random((16, 7, 3)) for _ in range(5)]
        stack = np.stack(stream, axis = -1)

        for axis in (0, 1, 2, None):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.var(stack, axis = axis)
                from_ivar = last(ivar(stream, axis = axis))
                self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                self.assertTrue(np.allclose(from_ivar, from_numpy))
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_ddof(self):
        """ Test that the ddof parameter is equivalent to numpy's """
        stream = [np.random.random((16, 7, 3)) for _ in range(10)]
        stack = np.stack(stream, axis = -1)

        with catch_warnings():
            simplefilter('ignore')
            for axis in (0, 1, 2, None):
                for ddof in range(4):
                    with self.subTest('axis = {}, ddof = {}'.format(axis, ddof)):
                        from_numpy = np.var(stack, axis = axis, ddof = ddof)
                        from_ivar = last(ivar(stream, axis = axis, ddof = ddof))
                        self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                        self.assertTrue(np.allclose(from_ivar, from_numpy))
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def summarize_bootstrapped_top_n(top_n_boot):
    top_n_bcs_mean = np.mean(top_n_boot)
    top_n_bcs_sd = np.std(top_n_boot)
    top_n_bcs_var = np.var(top_n_boot)
    result = {}
    result['filtered_bcs_var'] = top_n_bcs_var
    result['filtered_bcs_cv'] = tk_stats.robust_divide(top_n_bcs_sd, top_n_bcs_mean)
    result['filtered_bcs_lb'] = round(scipy.stats.norm.ppf(0.025, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs_ub'] = round(scipy.stats.norm.ppf(0.975, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs'] = round(top_n_bcs_mean)
    return result
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def auto_correlation_time(x, s, mu, var):
    b, t, d = x.shape
    act_ = np.zeros([d])
    for i in range(0, b):
        y = x[i] - mu
        p, n = y[:-s], y[s:]
        act_ += np.mean(p * n, axis=0) / var
    act_ = act_ / b
    return act_
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def gelman_rubin_diagnostic(x, logger, mu=None):
    m, n = x.shape[0], x.shape[1]
    theta = np.mean(x, axis=1)
    sigma = np.var(x, axis=1)
    # theta_m = np.mean(theta, axis=0)
    theta_m = mu if mu else np.mean(theta, axis=0)
    b = float(n) / float(m-1) * np.sum((theta - theta_m) ** 2)
    w = 1. / float(m) * np.sum(sigma, axis=0)
    v = float(n-1) / float(n) * w + float(m+1) / float(m * n) * b
    r_hat = np.sqrt(v / w)
    logger.info('R: max [%f] min [%f]' % (np.max(r_hat), np.min(r_hat)))
    return r_hat