我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.outer()。
def treegauss_remove_row( data_row, tree_grid, latent_row, vert_ss, edge_ss, feat_ss, ): # Update sufficient statistics. for v in range(latent_row.shape[0]): z = latent_row[v, :] vert_ss[v, :, :] -= np.outer(z, z) for e in range(tree_grid.shape[1]): z1 = latent_row[tree_grid[1, e], :] z2 = latent_row[tree_grid[2, e], :] edge_ss[e, :, :] -= np.outer(z1, z2) for v, x in enumerate(data_row): if np.isnan(x): continue z = latent_row[v, :] feat_ss[v] -= 1 feat_ss[v, 1] -= x feat_ss[v, 2:] -= x * z # TODO Use central covariance.
def getTrainTestKernel(self, params, Xtest): self.checkParams(params) ell = np.exp(params[0]) p = np.exp(params[1]) Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1]) d2 = sq_dist(self.X_scaled.T/ell, Xtest_scaled.T/ell) #precompute squared distances #compute dp dp = np.zeros(d2.shape) for d in xrange(self.X_scaled.shape[1]): dp += (np.outer(self.X_scaled[:,d], np.ones((1, Xtest_scaled.shape[0]))) - np.outer(np.ones((self.X_scaled.shape[0], 1)), Xtest_scaled[:,d])) dp /= p K = np.exp(-d2 / 2.0) return np.cos(2*np.pi*dp)*K
def reflection_matrix(point, normal): """Return matrix to mirror at plane defined by point and normal vector. >>> v0 = numpy.random.random(4) - 0.5 >>> v0[3] = 1. >>> v1 = numpy.random.random(3) - 0.5 >>> R = reflection_matrix(v0, v1) >>> numpy.allclose(2, numpy.trace(R)) True >>> numpy.allclose(v0, numpy.dot(R, v0)) True >>> v2 = v0.copy() >>> v2[:3] += v1 >>> v3 = v0.copy() >>> v2[:3] -= v1 >>> numpy.allclose(v2, numpy.dot(R, v3)) True """ normal = unit_vector(normal[:3]) M = numpy.identity(4) M[:3, :3] -= 2.0 * numpy.outer(normal, normal) M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal return M
def unscentedTransform(X, Wm, Wc, f): Y = None Ymean = None fdim = None N = np.shape(X)[1] for j in range(0,N): fImage = f(X[:,j]) if Y is None: fdim = np.size(fImage) Y = np.zeros((fdim, np.shape(X)[1])) Ymean = np.zeros(fdim) Y[:,j] = fImage Ymean += Wm[j] * Y[:,j] Ycov = np.zeros((fdim, fdim)) for j in range(0, N): meanAdjustedYj = Y[:,j] - Ymean Ycov += np.outer(Wc[j] * meanAdjustedYj, meanAdjustedYj) return Y, Ymean, Ycov
def reflection_matrix(point, normal): """Return matrix to mirror at plane defined by point and normal vector. >>> v0 = numpy.random.random(4) - 0.5 >>> v0[3] = 1.0 >>> v1 = numpy.random.random(3) - 0.5 >>> R = reflection_matrix(v0, v1) >>> numpy.allclose(2., numpy.trace(R)) True >>> numpy.allclose(v0, numpy.dot(R, v0)) True >>> v2 = v0.copy() >>> v2[:3] += v1 >>> v3 = v0.copy() >>> v2[:3] -= v1 >>> numpy.allclose(v2, numpy.dot(R, v3)) True """ normal = unit_vector(normal[:3]) M = numpy.identity(4) M[:3, :3] -= 2.0 * numpy.outer(normal, normal) M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal return M
def estimate_params(self, ess): """ Estimate Nomal param, given expecteed sufficient stats """ n = len(ess) mu = np.asarray([0,0]) for (m, c) in ess: mu = mu + m mu = mu * 1.0 / n C = np.asarray([[0,0],[0,0]]) for (m, c) in ess: C = C + c C = C * 1.0 / n C = C - np.outer(mu, mu) if not self.full_cov: C = reduce_cov(C) return (mu, C)
def compute_pvalues_for_processes(self,U_matrix,chane_prob, num_bootstrapped_stats=100): N = U_matrix.shape[0] bootsraped_stats = np.zeros(num_bootstrapped_stats) # orsetinW = simulate(N,num_bootstrapped_stats,corr) for proc in range(num_bootstrapped_stats): # W = np.sign(orsetinW[:,proc]) W = simulatepm(N,chane_prob) WW = np.outer(W, W) st = np.mean(U_matrix * WW) bootsraped_stats[proc] = N * st stat = N*np.mean(U_matrix) return float(np.sum(bootsraped_stats > stat)) / num_bootstrapped_stats
def genSphCoords(): """ Generates cartesian (x,y,z) and spherical (theta, phi) coordinates of a sphere Returns ------- coords : named tuple holds cartesian (x,y,z) and spherical (theta, phi) coordinates """ coords = namedtuple('coords', ['x', 'y', 'z', 'az', 'el']) az = _np.linspace(0, 2 * _np.pi, 360) el = _np.linspace(0, _np.pi, 181) coords.x = _np.outer(_np.cos(az), _np.sin(el)) coords.y = _np.outer(_np.sin(az), _np.sin(el)) coords.z = _np.outer(_np.ones(360), _np.cos(el)) coords.el, coords.az = _np.meshgrid(_np.linspace(0, _np.pi, 181), _np.linspace(0, 2 * _np.pi, 360)) return coords
def _eig_local_op_mps(lv, ltens, rv): """Local operator contribution from an MPS""" # MPS 1 / ltens: Interpreted as |psiXpsi| part of the operator # MPS 2: The current eigvectector candidate op = lv.T # op axes: 0 mps2 bond, 1: mps1 bond s = op.shape op = op.reshape((s[0], 1, s[1])) # op axes: 0 mps2 bond, 1: physical legs, 2: mps1 bond for lt in ltens: # op axes: 0: mps2 bond, 1: physical legs, 2: mps1 bond op = np.tensordot(op, lt.conj(), axes=(2, 0)) # op axes: 0: mps2 bond, 1, 2: physical legs, 3: mps1 bond s = op.shape op = op.reshape((s[0], -1, s[3])) # op axes: 0: mps2 bond, 1: physical legs, 2: mps1 bond op = np.tensordot(op, rv, axes=(2, 0)) # op axes: 0: mps2 bond, 1: physical legs, 2: mps2 bond op = np.outer(op.conj(), op) # op axes: # 0: (0a: left cc mps2 bond, 0b: physical row leg, 0c: right cc mps2 bond), # 1: (1a: left mps2 bond, 1b: physical column leg, 1c: right mps2 bond) return op
def test_mps_to_mpo(nr_sites, local_dim, rank, rgen): mps = factory.random_mps(nr_sites, local_dim, rank, randstate=rgen) # Instead of calling the two functions, we call mps_to_mpo(), # which does exactly that: # mps_as_puri = mp.mps_as_local_purification_mps(mps) # mpo = mp.pmps_to_mpo(mps_as_puri) mpo = mm.mps_to_mpo(mps) # This is also a test of mp.mps_as_local_purification_mps() in the # following sense: Local purifications are representations of # mixed states. Therefore, compare mps and mps_as_puri by # converting them to mixed states. state = mps.to_array() state = np.outer(state, state.conj()) state.shape = (local_dim,) * (2 * nr_sites) state2 = mpo.to_array_global() assert_array_almost_equal(state, state2)
def vol(self): """Construct cell volumes of the 3D model as 1d array.""" if getattr(self, '_vol', None) is None: vh = self.h # Compute cell volumes if self.dim == 1: self._vol = utils.mkvc(vh[0]) elif self.dim == 2: # Cell sizes in each direction self._vol = utils.mkvc(np.outer(vh[0], vh[1])) elif self.dim == 3: # Cell sizes in each direction self._vol = utils.mkvc( np.outer(utils.mkvc(np.outer(vh[0], vh[1])), vh[2]) ) return self._vol
def test_minimummaximum_func(self): a = np.ones((2, 2)) aminimum = minimum(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum(a, a)) aminimum = minimum.outer(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum.outer(a, a)) amaximum = maximum(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum(a, a)) amaximum = maximum.outer(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum.outer(a, a))
def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3)
def test_testTakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))) assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))) assert_(eq(np.inner(filled(x, 0), filled(y, 0)), inner(x, y))) assert_(eq(np.outer(filled(x, 0), filled(y, 0)), outer(x, y))) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3)
def test_4(self): """ Test of take, transpose, inner, outer products. """ x = self.arange(24) y = np.arange(24) x[5:6] = self.masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1))) assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1)) assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)), self.inner(x, y)) assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)), self.outer(x, y)) y = self.array(['abc', 1, 'def', 2, 3], object) y[2] = self.masked t = self.take(y, [0, 3, 4]) assert t[0] == 'abc' assert t[1] == 2 assert t[2] == 3
def outer(self, a, b): """ Return the function applied to the outer product of a and b. """ (da, db) = (getdata(a), getdata(b)) d = self.f.outer(da, db) ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = umath.logical_or.outer(ma, mb) if (not m.ndim) and m: return masked if m is not nomask: np.copyto(d, da, where=m) if not d.shape: return d masked_d = d.view(get_masked_subclass(a, b)) masked_d._mask = m return masked_d
def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (ns,ns) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.exp(np.divide(tmpsum, ppt))
def __init__(self, n): self.degree = 2*n - 2 a, A = numpy.polynomial.legendre.leggauss(n) w = numpy.outer((1 + a) * A, A) x = numpy.outer(1-a, numpy.ones(n)) / 2 y = numpy.outer(1+a, 1-a) / 4 self.weights = w.reshape(-1) / 4 self.points = numpy.stack([x.reshape(-1), y.reshape(-1)]).T self.bary = numpy.array([ self.points[:, 0], self.points[:, 1], 1 - numpy.sum(self.points, axis=1) ]).T return
def rotation_matrix(u, theta): '''Return matrix that implements the rotation around the vector :math:`u` by the angle :math:`\\theta`, cf. https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle. :param u: rotation vector :param theta: rotation angle ''' # Cross-product matrix. cpm = numpy.array([[0.0, -u[2], u[1]], [u[2], 0.0, -u[0]], [-u[1], u[0], 0.0]]) c = numpy.cos(theta) s = numpy.sin(theta) R = numpy.eye(3) * c \ + s * cpm \ + (1.0 - c) * numpy.outer(u, u) return R
def test_basic(self): vecs = [[1, 2, 3], [2], np.array([1, 2, 3]).reshape(1, -1), np.array([1, 2, 3]).reshape(-1, 1)] num_ones_list = [4, 1] for vec in vecs: for num_ones in num_ones_list: A = OnesOuterVec(num_ones=num_ones, vec=vec) M = np.outer([1]*num_ones, vec) V, v1, v2, U, u1, u2 = get_tst_mats(M.shape) assert_allclose(A.dot(V), M.dot(V)) assert_allclose(A.dot(v1), M.dot(v1)) assert_allclose(A.dot(v2), M.dot(v2)) assert_allclose(A.T.dot(U), M.T.dot(U)) assert_allclose(A.T.dot(u1), M.T.dot(u1)) assert_allclose(A.T.dot(u2), M.T.dot(u2))
def test_basic(self): shapes = [(50, 20), (1, 20), (50, 1)] # sparse for shape in shapes: mats = self.get_Xs(shape) m = mats[0].mean(axis=0).A1 ones = np.ones(shape[0]) M = mats[0].toarray() - np.outer(ones, m) for X in mats: A = col_mean_centered(X) V, v1, v2, U, u1, u2 = get_tst_mats(M.shape) assert_almost_equal(A.dot(V), M.dot(V)) assert_almost_equal(A.dot(v1), M.dot(v1)) assert_almost_equal(A.dot(v2), M.dot(v2)) assert_almost_equal(A.T.dot(U), M.T.dot(U)) assert_almost_equal(A.T.dot(u1), M.T.dot(u1)) assert_almost_equal(A.T.dot(u2), M.T.dot(u2))
def rotation_matrix(axis, angle): """ Calculate a three dimensional rotation matrix for a rotation around the given angle and axis. @type axis: (3,) numpy array @param angle: angle in radians @type angle: float @rtype: (3,3) numpy.array """ axis = numpy.asfarray(axis) / norm(axis) assert axis.shape == (3,) c = math.cos(angle) s = math.sin(angle) r = (1.0 - c) * numpy.outer(axis, axis) r.flat[[0,4,8]] += c r.flat[[5,6,1]] += s * axis r.flat[[7,2,3]] -= s * axis return r
def gower_matrix(X): """ Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338 @param X: ensemble coordinates @type X: (m,n,k) numpy.array @return: symmetric dissimilarity matrix @rtype: (n,n) numpy.array """ X = numpy.asarray(X) B = sum(numpy.dot(x, x.T) for x in X) / float(len(X)) b = B.mean(1) bb = b.mean() return (B - numpy.add.outer(b, b)) + bb
def nextfastpower(n): """Return the next integral power of small factors greater than the given number. Specifically, return m such that m >= n m == 2**x * 3**y * 5**z where x, y, and z are integers. This is useful for ensuring fast FFT sizes. From https://gist.github.com/bhawkins/4479607 (Brian Hawkins) """ if n < 7: return max (n, 1) # x, y, and z are all bounded from above by the formula of nextpower. # Compute all possible combinations for powers of 3 and 5. # (Not too many for reasonable FFT sizes.) def power_series (x, base): nmax = ceil (log (x) / log (base)) return np.logspace (0.0, nmax, num=nmax+1, base=base) n35 = np.outer (power_series (n, 3.0), power_series (n, 5.0)) n35 = n35[n35<=n] # Lump the powers of 3 and 5 together and solve for the powers of 2. n2 = nextpower (n / n35) return int (min (n2 * n35))
def ests_ll_quad(self, params): """ Calculate the loglikelihood given model parameters `params`. This method uses Gaussian quadrature, and thus returns an *approximate* integral. """ mu0, gamma0, err0 = np.split(params, 3) x = np.tile(self.z, (self.cfg.QCOUNT, 1, 1)) # (QCOUNTXnhospXnmeas) loc = mu0 + np.outer(QC1, gamma0) loc = np.tile(loc, (self.n, 1, 1)) loc = np.transpose(loc, (1, 0, 2)) scale = np.tile(err0, (self.cfg.QCOUNT, self.n, 1)) zs = lpdf_3d(x=x, loc=loc, scale=scale) w2 = np.tile(self.w, (self.cfg.QCOUNT, 1, 1)) wted = np.nansum(w2 * zs, axis=2).T # (nhosp X QCOUNT) qh = np.tile(QC1, (self.n, 1)) # (nhosp X QCOUNT) combined = wted + norm.logpdf(qh) # (nhosp X QCOUNT) return logsumexp(np.nan_to_num(combined), b=QC2, axis=1) # (nhosp)
def forward_prop_random_thru_post_mm(self, model, mx, vx, mu, Su): Kuu_noiseless = compute_kernel( 2 * model.ls, 2 * model.sf, model.zu, model.zu) Kuu = Kuu_noiseless + np.diag(jitter * np.ones((self.M, ))) # TODO: remove inv Kuuinv = np.linalg.inv(Kuu) A = np.dot(Kuuinv, mu) Smm = Su + np.outer(mu, mu) B_sto = np.dot(Kuuinv, np.dot(Smm, Kuuinv)) - Kuuinv psi0 = np.exp(2.0 * model.sf) psi1, psi2 = compute_psi_weave( 2 * model.ls, 2 * model.sf, mx, vx, model.zu) mout = np.einsum('nm,md->nd', psi1, A) Bpsi2 = np.einsum('ab,nab->n', B_sto, psi2)[:, np.newaxis] vout = psi0 + Bpsi2 - mout**2 return mout, vout
def score(self, y): groups = numpy.unique(y) a = len(groups) Ntx = len(y) self.a_ = a self.Ntx_ = Ntx self._SST = (self.pairs_**2).sum() / (2 * Ntx) pattern = numpy.zeros((Ntx, Ntx)) for g in groups: pattern += numpy.outer(y == g, y == g) / \ (numpy.float(numpy.sum(y == g))) self._SSW = ((self.pairs_**2) * (pattern)).sum() / 2 self._SSA = self._SST - self._SSW self._F = (self._SSA / (a - 1)) / (self._SSW / (Ntx - a)) return self._F #######################################################################
def outer(v1, v2=None): """ Construct the outer product of two vectors. The second vector argument is optional, if absent the projector of the first vector will be returned. Args: v1 (ndarray): the first vector. v2 (ndarray): the (optional) second vector. Returns: The matrix |v1><v2|. """ if v2 is None: u = np.array(v1).conj() else: u = np.array(v2).conj() return np.outer(v1, u) ############################################################### # Measures. ###############################################################
def concurrence(state): """Calculate the concurrence. Args: state (np.array): a quantum state Returns: concurrence. """ rho = np.array(state) if rho.ndim == 1: rho = outer(state) if len(state) != 4: raise Exception("Concurence is not defined for more than two qubits") YY = np.fliplr(np.diag([-1, 1, 1, -1])) A = rho.dot(YY).dot(rho.conj()).dot(YY) w = la.eigh(A, eigvals_only=True) w = np.sqrt(np.maximum(w, 0)) return max(0.0, w[-1]-np.sum(w[0:-1])) ############################################################### # Other. ###############################################################
def _get_Smatrices(self, X, y): Sb = np.zeros((X.shape[1], X.shape[1])) S = np.inner(X.T, X.T) N = len(X) mu = np.mean(X, axis=0) classLabels = np.unique(y) for label in classLabels: classIdx = np.argwhere(y == label).T[0] Nl = len(classIdx) xL = X[classIdx] muL = np.mean(xL, axis=0) muLbar = muL - mu Sb = Sb + Nl * np.outer(muLbar, muLbar) Sbar = S - N * np.outer(mu, mu) Sw = Sbar - Sb self.mean_ = mu return (Sw, Sb)
def FOBI(X): """Fourth Order Blind Identification technique is used. The function returns the unmixing matrix. X is assumed to be centered and whitened. The paper by J. Cardaso is in itself the best resource out there for it. SOURCE SEPARATION USING HIGHER ORDER MOMENTS - Jean-Francois Cardoso""" rows = X.shape[0] n = X.shape[1] # Initializing the weighted covariance matrix which will hold the fourth order information weightedCovMatrix = np.zeros([rows, rows]) # Approximating the expectation by diving with the number of data points for signal in X.T: norm = np.linalg.norm(signal) weightedCovMatrix += norm*norm*np.outer(signal, signal) weightedCovMatrix /= n # Doing the eigen value decomposition eigValue, eigVector = np.linalg.eigh(weightedCovMatrix) # print eigVector return eigVector
def ksvd(Y, D, X, n_cycles=1, verbose=True): n_atoms = D.shape[1] n_features, n_samples = Y.shape unused_atoms = [] R = Y - fast_dot(D, X) for c in range(n_cycles): for k in range(n_atoms): if verbose: sys.stdout.write("\r" + "k-svd..." + ":%3.2f%%" % ((k / float(n_atoms)) * 100)) sys.stdout.flush() # find all the datapoints that use the kth atom omega_k = X[k, :] != 0 if not np.any(omega_k): unused_atoms.append(k) continue # the residual due to all the other atoms but k Rk = R[:, omega_k] + np.outer(D[:, k], X[k, omega_k]) U, S, V = randomized_svd(Rk, n_components=1, n_iter=10, flip_sign=False) D[:, k] = U[:, 0] X[k, omega_k] = V[0, :] * S[0] # update the residual R[:, omega_k] = Rk - np.outer(D[:, k], X[k, omega_k]) print "" return D, X, unused_atoms
def direct_ionization_rate(self): """ Calculate direct ionization rate in cm3/s Needs an equation reference or explanation """ xgl, wgl = np.polynomial.laguerre.laggauss(12) kBT = const.k_B.cgs*self.temperature energy = np.outer(xgl, kBT)*kBT.unit + self.ip cross_section = self.direct_ionization_cross_section(energy) if cross_section is None: return None term1 = np.sqrt(8./np.pi/const.m_e.cgs)*np.sqrt(kBT)*np.exp(-self.ip/kBT) term2 = ((wgl*xgl)[:,np.newaxis]*cross_section).sum(axis=0) term3 = (wgl[:,np.newaxis]*cross_section).sum(axis=0)*self.ip/kBT return term1*(term2 + term3)
def treegauss_add_row( data_row, tree_grid, program, latent_row, vert_ss, edge_ss, feat_ss, ): # Sample latent state using dynamic programming. TODO('https://github.com/posterior/treecat/issues/26') # Update sufficient statistics. for v in range(latent_row.shape[0]): z = latent_row[v, :] vert_ss[v, :, :] += np.outer(z, z) for e in range(tree_grid.shape[1]): z1 = latent_row[tree_grid[1, e], :] z2 = latent_row[tree_grid[2, e], :] edge_ss[e, :, :] += np.outer(z1, z2) for v, x in enumerate(data_row): if np.isnan(x): continue z = latent_row[v, :] feat_ss[v] += 1 feat_ss[v, 1] += x feat_ss[v, 2:] += x * z # TODO Use central covariance.
def __init__(self, X): Kernel.__init__(self) self.X_scaled = X/np.sqrt(X.shape[1]) if (X.shape[1] >= X.shape[0] or True): self.K_sq = sq_dist(self.X_scaled.T) else: self.K_sq = None #compute dp self.dp = np.zeros((X.shape[0], X.shape[0])) for d in xrange(self.X_scaled.shape[1]): self.dp += (np.outer(self.X_scaled[:,d], np.ones((1, self.X_scaled.shape[0]))) - np.outer(np.ones((self.X_scaled.shape[0], 1)), self.X_scaled[:,d]))
def deriveKernel(self, params, i): self.checkParamsI(params, i) #find the relevant W numSNPs = self.X_scaled.shape[1] unitNum = i / numSNPs weightNum = i % numSNPs nnX_unitNum = self.applyNN(self.X_scaled, params, unitNum) / float(self.numUnits) w_deriv_relu = self.X_scaled[:, weightNum].copy() w_deriv_relu[nnX_unitNum <= 0] = 0 K_deriv1 = np.outer(nnX_unitNum, w_deriv_relu) K_deriv = K_deriv1 + K_deriv1.T return K_deriv
def getTrainKernel(self, params): self.checkParams(params) if (self.sameParams(params)): return self.cache['getTrainKernel'] ell2 = np.exp(2*params[0]) sqrt_ell2PSx = np.sqrt(ell2+self.sx) K = self.S / np.outer(sqrt_ell2PSx, sqrt_ell2PSx) self.cache['K'] = K K_arcsin = np.arcsin(K) self.cache['getTrainKernel'] = K_arcsin self.saveParams(params) return K_arcsin
def scale_matrix(factor, origin=None, direction=None): """Return matrix to scale by factor around origin in direction. Use factor -1 for point symmetry. >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0 >>> v[3] = 1.0 >>> S = scale_matrix(-1.234) >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) True >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S = scale_matrix(factor, origin) >>> S = scale_matrix(factor, origin, direct) """ if direction is None: # uniform scaling M = numpy.array(((factor, 0.0, 0.0, 0.0), (0.0, factor, 0.0, 0.0), (0.0, 0.0, factor, 0.0), (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64) if origin is not None: M[:3, 3] = origin[:3] M[:3, 3] *= 1.0 - factor else: # nonuniform scaling direction = unit_vector(direction[:3]) factor = 1.0 - factor M = numpy.identity(4) M[:3, :3] -= factor * numpy.outer(direction, direction) if origin is not None: M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction return M
def shear_matrix(angle, direction, point, normal): """Return matrix to shear by angle along direction vector on shear plane. The shear plane is defined by a point and normal vector. The direction vector must be orthogonal to the plane's normal vector. A point P is transformed by the shear matrix into P" such that the vector P-P" is parallel to the direction vector and its extent is given by the angle of P-P'-P", where P' is the orthogonal projection of P onto the shear plane. >>> angle = (random.random() - 0.5) * 4*math.pi >>> direct = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> normal = numpy.cross(direct, numpy.random.random(3)) >>> S = shear_matrix(angle, direct, point, normal) >>> numpy.allclose(1.0, numpy.linalg.det(S)) True """ normal = unit_vector(normal[:3]) direction = unit_vector(direction[:3]) if abs(numpy.dot(normal, direction)) > 1e-6: raise ValueError("direction and normal vectors are not orthogonal") angle = math.tan(angle) M = numpy.identity(4) M[:3, :3] += angle * numpy.outer(direction, normal) M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction return M
def multiply_C(self, factor): """multiply ``self.C`` with ``factor`` updating internal states. ``factor`` can be a scalar, a vector or a matrix. The vector is used as outer product and multiplied element-wise, i.e., ``multiply_C(diag(C)**-0.5)`` generates a correlation matrix. Details: """ self._updateC() if np.isscalar(factor): self.C *= factor self.D *= factor**0.5 try: self.inverse_root_C /= factor**0.5 except AttributeError: pass elif len(np.asarray(factor).shape) == 1: self.C *= np.outer(factor, factor) self._decompose_C() elif len(factor.shape) == 2: self.C *= factor self._decompose_C() else: raise ValueError(str(factor)) # raise NotImplementedError('never tested')