Python numpy 模块,uint16() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.uint16()

项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_digital_u_16(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteDigitalU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_binary_u_16(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteBinaryU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_digital_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:pyelastix    作者:almarklein    | 项目源码 | 文件源码
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
项目:j3dview    作者:blank63    | 项目源码 | 文件源码
def unpack_packet(stream,vertex_type,size):
    # The entire packet is read into memory at once for speed
    packet = stream.read(size)
    primitives = []
    i = 0

    while i < size:
        opcode = packet[i]
        if opcode == 0x00:
            i += 1
            continue
        primitive_type = gx.PrimitiveType(opcode)
        vertex_count = uint16.unpack_from(packet,i + 1)
        vertices = numpy.frombuffer(packet,vertex_type,vertex_count,i + 3)
        primitives.append(Primitive(primitive_type,vertices))
        i += 3 + vertex_count*vertex_type.itemsize

    return primitives
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def iteritems(self, every_k_frames=1): 
            for rgb_im, depth_im, mask_im, loc in \
                izip(self.rgb.iteritems(every_k_frames=every_k_frames), 
                     self.depth.iteritems(every_k_frames=every_k_frames), 
                     self.mask.iteritems(every_k_frames=every_k_frames), 
                     self.locations[::every_k_frames]): 

                rgb = np.zeros(shape=UWRGBDObjectDataset.default_rgb_shape, dtype=np.uint8)
                depth = np.zeros(shape=UWRGBDObjectDataset.default_depth_shape, dtype=np.uint16)
                mask = np.zeros(shape=UWRGBDObjectDataset.default_depth_shape, dtype=np.uint8)

                rgb[loc[1]:loc[1]+rgb_im.shape[0], loc[0]:loc[0]+rgb_im.shape[1]] = rgb_im
                depth[loc[1]:loc[1]+depth_im.shape[0], loc[0]:loc[0]+depth_im.shape[1]] = depth_im
                mask[loc[1]:loc[1]+mask_im.shape[0], loc[0]:loc[0]+mask_im.shape[1]] = mask_im

                # Only a single bbox per image
                yield AttrDict(img=rgb, depth=depth, mask=mask, 
                               bbox=[AttrDict(
                                   coords=np.float32([loc[0], loc[1], 
                                                      loc[0]+mask_im.shape[1], 
                                                      loc[1]+mask_im.shape[0]]), 
                                   target=self.target, 
                                   category=UWRGBDDataset.get_category_name(self.target), 
                                   instance=self.instance)])
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
项目:Projects    作者:it2school    | 项目源码 | 文件源码
def __init__(self, *args, **kwds):
        import numpy

        self.dst_types = [numpy.uint8, numpy.uint16, numpy.uint32]
        try:
            self.dst_types.append(numpy.uint64)
        except AttributeError:
            pass
        pygame.display.init()
        try:
            unittest.TestCase.__init__(self, *args, **kwds)
            self.sources = [self._make_src_surface(8),
                            self._make_src_surface(16),
                            self._make_src_surface(16, srcalpha=True),
                            self._make_src_surface(24),
                            self._make_src_surface(32),
                            self._make_src_surface(32, srcalpha=True)]
        finally:
            pygame.display.quit()
项目:Projects    作者:it2school    | 项目源码 | 文件源码
def array2d(surface):
    """pygame.numpyarray.array2d(Surface): return array

    copy pixels into a 2d array

    Copy the pixels from a Surface into a 2D array. The bit depth of the
    surface will control the size of the integer values, and will work
    for any type of pixel format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    bpp = surface.get_bytesize()
    try:
        dtype = (numpy.uint8, numpy.uint16, numpy.int32, numpy.int32)[bpp - 1]
    except IndexError:
        raise ValueError("unsupported bit depth %i for 2D array" % (bpp * 8,))
    size = surface.get_size()
    array = numpy.empty(size, dtype)
    surface_to_array(array, surface)
    return array
项目:pycoal    作者:capstone-coal    | 项目源码 | 文件源码
def create_empty_copy(self, source_filename, destination_filename):
        """
        Create an empty copy of a COAL classified image with the same size.

        Args:
            source_filename (str):      filename of the source image
            destination_filename (str): filename of the destination image
        """
        logging.info("Creating an empty copy of classified image '%s' with the same size. Saving to '%s'" %(source_filename, destination_filename))
        # open the source image
        source = spectral.open_image(source_filename)

        # create an empty array of the same dimensions
        destination = numpy.zeros(shape=source.shape, dtype=numpy.uint16)

        # save it with source metadata
        spectral.io.envi.save_classification(
            destination_filename,
            destination,
            class_names=['No data','Data'],
            metadata={
                'data ignore value': 0,
                'map info': source.metadata.get('map info')
            })
项目:autolab_core    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def _check_valid_data(self, data):
        """Checks that the incoming data is a 2 x #elements ndarray of ints.

        Parameters
        ----------
        data : :obj:`numpy.ndarray`
            The data to verify.

        Raises
        ------
        ValueError
            If the data is not of the correct shape or type.
        """
        if data.dtype.type != np.int8 and data.dtype.type != np.int16 \
                and data.dtype.type != np.int32 and data.dtype.type != np.int64 \
                and data.dtype.type != np.uint8 and data.dtype.type != np.uint16 \
                and data.dtype.type != np.uint32 and data.dtype.type != np.uint64:
            raise ValueError('Must initialize image coords with a numpy int ndarray')
        if data.shape[0] != 2:
            raise ValueError('Illegal data array passed to image coords. Must have 2 coordinates')
        if len(data.shape) > 2:
            raise ValueError('Illegal data array passed to point cloud. Must have 1 or 2 dimensions')
项目:compresso    作者:VCG    | 项目源码 | 文件源码
def to_best_type(array):
        '''Convert array to lowest possible bitrate.
        '''
        ui8 = np.iinfo(np.uint8)
        ui8 = ui8.max
        ui16 = np.iinfo(np.uint16)
        ui16 = ui16.max
        ui32 = np.iinfo(np.uint32)
        ui32 = ui32.max
        ui64 = np.iinfo(np.uint64)
        ui64 = ui64.max

        if array.max() <= ui64:
            new_type = np.uint64
        if array.max() <= ui32:
            new_type = np.uint32
        if array.max() <= ui16:
            new_type = np.uint16
        if array.max() <= ui8:
            new_type = np.uint8

        return array.astype(new_type)
项目:watermark    作者:lishuaijuly    | 项目源码 | 文件源码
def _gene_embed_space(self,vec):
        shape = vec.shape
        vec = vec.flatten()
        combo_neg_idx = np.array([1 if vec[i]<0  else 0 for i in range(len(vec))])

        vec_pos = np.abs(vec)
        int_part = np.floor(vec_pos)
        frac_part = np.round(vec_pos - int_part,2)

        bi_int_part=[] #?????????????signature???????
        for i in range(len(int_part)):
            bi=list(bin(int(int_part[i]))[2:])
            bie = [0] * (16 - len(bi))
            bie.extend(bi)
            bi_int_part.append(np.array(bie,dtype=np.uint16))
        bi_int_part = np.array(bi_int_part)

        sig = []
        for i in range(len(bi_int_part)):
            sig.append(bi_int_part[i][10])
        sig = np.array(sig).reshape(shape)
        return np.array(bi_int_part),frac_part.reshape(shape),combo_neg_idx.reshape(shape),sig
项目:watermark    作者:lishuaijuly    | 项目源码 | 文件源码
def _gene_embed_space(self,vec):
        shape = vec.shape
        vec = vec.flatten()
        combo_neg_idx = np.array([1 if vec[i]<0  else 0 for i in range(len(vec))])

        vec_pos = np.abs(vec)
        int_part = np.floor(vec_pos)
        frac_part = np.round(vec_pos - int_part,2)

        bi_int_part=[] #?????????????signature???????
        for i in range(len(int_part)):
            bi=list(bin(int(int_part[i]))[2:])
            bie = [0] * (16 - len(bi))
            bie.extend(bi)
            bi_int_part.append(np.array(bie,dtype=np.uint16))
        bi_int_part = np.array(bi_int_part)

        sig = []
        for i in range(len(bi_int_part)):
            sig.append(bi_int_part[i][10])
        sig = np.array(sig).reshape(shape)
        return np.array(bi_int_part),frac_part.reshape(shape),combo_neg_idx.reshape(shape),sig
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1]
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
                      np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)

            tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
            assert_array_equal(np.cumsum(a, axis=0), tgt)

            tgt = np.array(
                [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
            assert_array_equal(np.cumsum(a2, axis=0), tgt)

            tgt = np.array(
                [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
            assert_array_equal(np.cumsum(a2, axis=1), tgt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.prod, a)
                self.assertRaises(ArithmeticError, np.prod, a2, 1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.cumprod, a)
                self.assertRaises(ArithmeticError, np.cumprod, a2, 1)
                self.assertRaises(ArithmeticError, np.cumprod, a)
            else:
                assert_array_equal(np.cumprod(a, axis=-1),
                                   np.array([1, 2, 20, 220,
                                             1320, 6600, 26400], ctype))
                assert_array_equal(np.cumprod(a2, axis=0),
                                   np.array([[1, 2, 3, 4],
                                             [5, 12, 21, 36],
                                             [50, 36, 84, 180]], ctype))
                assert_array_equal(np.cumprod(a2, axis=-1),
                                   np.array([[1, 2, 6, 24],
                                             [5, 30, 210, 1890],
                                             [10, 30, 120, 600]], ctype))
项目:dwt    作者:min2209    | 项目源码 | 文件源码
def watershed_cut(depthImage, ssMask):
    ssMask = ssMask.astype(np.int32)
    resultImage = np.zeros(shape=ssMask.shape, dtype=np.float32)

    for semClass in CLASS_TO_CITYSCAPES.keys():
        csCode = CLASS_TO_CITYSCAPES[semClass]
        ssCode = CLASS_TO_SS[semClass]
        ssMaskClass = (ssMask == ssCode)

        ccImage = (depthImage > THRESHOLD[semClass]) * ssMaskClass
        ccImage = skimage.morphology.remove_small_objects(ccImage, min_size=MIN_SIZE[semClass])
        ccImage = skimage.morphology.remove_small_holes(ccImage)
        ccLabels = skimage.morphology.label(ccImage)

        ccIDs = np.unique(ccLabels)[1:]
        for ccID in ccIDs:
            ccIDMask = (ccLabels == ccID)
            ccIDMask = skimage.morphology.binary_dilation(ccIDMask, SELEM[THRESHOLD[semClass]])
            instanceID = 1000 * csCode + ccID
            resultImage[ccIDMask] = instanceID

    resultImage = resultImage.astype(np.uint16)
    return resultImage
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_process_image(compress, out_dir):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    meta = {
        "DNA": "/User/jcaciedo/LUAD/dna.tiff",
        "ER": "/User/jcaciedo/LUAD/er.tiff",
        "Mito": "/User/jcaciedo/LUAD/mito.tiff"
    }
    compress.stats["illum_correction_function"] = numpy.ones((16,16,3))
    compress.stats["upper_percentiles"] = [255, 255, 255]
    compress.stats["lower_percentiles"] = [0, 0, 0]

    compress.process_image(0, image, meta)

    filenames = glob.glob(os.path.join(out_dir,"*"))
    real_filenames = [os.path.join(out_dir, x) for x in ["dna.png", "er.png", "mito.png"]]
    filenames.sort()

    assert real_filenames == filenames

    for i in range(3):
        data = scipy.misc.imread(filenames[i])
        numpy.testing.assert_array_equal(image[:,:,i], data)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_apply(corrector):
    image = numpy.random.randint(256, size=(24, 24, 3), dtype=numpy.uint16)

    illum_corr_func = numpy.random.rand(24, 24, 3)

    illum_corr_func /= illum_corr_func.min()

    corrector.illum_corr_func = illum_corr_func

    corrected = corrector.apply(image)

    expected = image / illum_corr_func

    assert corrected.shape == (24, 24, 3)

    numpy.testing.assert_array_equal(corrected, expected)
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def interpret_header(self):
        """redefine variables from header dictionary"""
        self.nifs = self.header['nifs']
        self.nchans = self.header['nchans']
        self.nbits = self.header['nbits']
        signed = 'signed' in self.header and self.header['signed'] is True
        if self.nbits >= 8:
            if signed:
                self.dtype = {8: np.int8,
                              16: np.int16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
            else:
                self.dtype = {8: np.uint8,
                              16: np.uint16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
        else:
            self.dtype = np.int8 if signed else np.uint8
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def on_data(self, ispan):
        """Process data from from ispans to ospans and return the number of
        frames to commit for each output (or None to commit complete spans)."""
        data = ispan.data
        print "PgmWriterBlock.on_data()"
        # HACK TESTING
        if data.dtype != np.uint8:
            data = (data - data.min()) / (data.max() - data.min()) * 255
            #data = np.clip(data, 0, 255)
            data = data.astype(np.uint8)
            #data = data.astype(np.uint16)
        if self.outfile is None:
            return

        data.tofile(self.outfile)
        # HACK TESTING only write the first gulp
        self.outfile.close()
        self.outfile = None
项目:faster_rcnn_pytorch    作者:longcw    | 项目源码 | 文件源码
def _load_selective_search_IJCV_roidb(self, gt_roidb):
        IJCV_path = os.path.abspath(os.path.join(self.cache_path, '..',
                                                 'selective_search_IJCV_data',
                                                 'voc_' + self._year))
        assert os.path.exists(IJCV_path), \
               'Selective search IJCV data not found at: {}'.format(IJCV_path)

        top_k = self.config['top_k']
        box_list = []
        for i in xrange(self.num_images):
            filename = os.path.join(IJCV_path, self.image_index[i] + '.mat')
            raw_data = sio.loadmat(filename)
            box_list.append((raw_data['boxes'][:top_k, :]-1).astype(np.uint16))

        return self.create_roidb_from_box_list(box_list, gt_roidb)

    # evaluate detection results
项目:pytoshop    作者:mdboom    | 项目源码 | 文件源码
def test_mixed_depth():
    from pytoshop.user.nested_layers import Group, Image

    img1 = np.empty((100, 80), dtype=np.uint8)
    img2 = np.empty((100, 80), dtype=np.uint16)

    layers = [
        Group(
            layers=[
                Image(channels={0: img1},
                      top=0, left=0, bottom=100, right=80),
                Image(channels=img2,
                      top=15, left=15),
            ])
    ]

    with pytest.raises(ValueError):
        nested_layers.nested_layers_to_psd(
            layers, enums.ColorMode.grayscale)
项目:Yugioh-bot    作者:will7200    | 项目源码 | 文件源码
def read_captured_circles(self):
        img = cv2.cvtColor(self.query, cv2.COLOR_BGR2GRAY)
        img = cv2.medianBlur(img, 7)
        cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 30,
                                   param1=50, param2=30, minRadius=20, maxRadius=50)
        if circles is None:
            return
        circles = np.uint16(np.around(circles))
        for i in circles[0, :]:
            if i[1] < 400:
                continue
            self.circlePoints.append((i[0], i[1]))
        if self._debug:
            self.draw_circles(circles, cimg)
项目:sealionengine    作者:gecrooks    | 项目源码 | 文件源码
def load_train_image(self, train_id, scale=1, border=0, mask=False):
        """Return image as numpy array.

        Args:
            border (int): Add a black border of this width around image
            mask (bool): If true copy masks from corresponding dotted image

        Returns:
            uint8 numpy array
        """
        img = self._load_image('train', train_id, scale, border)
        if mask:
            # The masked areas are not uniformly black, presumable due to
            # jpeg compression artifacts
            MASK_MAX = 40
            dot_img = self.load_dotted_image(train_id, scale, border).astype(np.uint16).sum(axis=-1)
            img = np.copy(img)
            img[dot_img < MASK_MAX] = 0
        return img
项目:pytrip    作者:pytrip    | 项目源码 | 文件源码
def set_data_type(self, type):
        """ Sets the data type for the TRiP98 header files.

        :param numpy.type type: numpy type, e.g. np.uint16
        """
        if type is np.int8 or type is np.uint8:
            self.data_type = "integer"
            self.num_bytes = 1
        elif type is np.int16 or type is np.uint16:
            self.data_type = "integer"
            self.num_bytes = 2
        elif type is np.int32 or type is np.uint32:
            self.data_type = "integer"
            self.num_bytes = 4
        elif type is np.float:
            self.data_type = "float"
            self.num_bytes = 4
        elif type is np.double:
            self.data_type = "double"
            self.num_bytes = 8

    # ######################  WRITING DICOM FILES #######################################
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def _load_selective_search_IJCV_roidb(self, gt_roidb):
        IJCV_path = os.path.abspath(os.path.join(self.cache_path, '..',
                                                 'selective_search_IJCV_data',
                                                 'voc_' + self._year))
        assert os.path.exists(IJCV_path), \
               'Selective search IJCV data not found at: {}'.format(IJCV_path)

        top_k = self.config['top_k']
        box_list = []
        for i in xrange(self.num_images):
            filename = os.path.join(IJCV_path, self.image_index[i] + '.mat')
            raw_data = sio.loadmat(filename)
            box_list.append((raw_data['boxes'][:top_k, :]-1).astype(np.uint16))

        return self.create_roidb_from_box_list(box_list, gt_roidb)

    # evaluate detection results
项目:openag_brain    作者:OpenAgInitiative    | 项目源码 | 文件源码
def read(self):

        readCmd = [0xD2, 0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x48, 0x49, 0x44,
                   0x43, 0x80, 0x02, 0x00, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC,
                   0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC,
                   0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC,
                   0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC]

        readCmd_pack = self.pack_bytes(readCmd)
        # assert len(self.hid.write(self.ep_out_address, readCmd_pack, 100)) == len(readCmd_pack)
        self.hid.write(self.ep_out_address, readCmd_pack, 100)

        data_pack = self.hid.read(self.ep_in_address, self.packet_len, 100)

        np_arr8 = numpy.uint8([data_pack[2], data_pack[3]])

        arr16 = np_arr8.view('uint16')

        mask = arr16[0]

        return mask
项目:rec-attend-public    作者:renmengye    | 项目源码 | 文件源码
def get_separate_labels(label_img):
    # 64-bit encoding
    dtype = label_img.dtype
    if dtype == np.uint8:
        w = 8
    elif dtype == np.uint16:
        w = 16
    else:
        raise Exception('Unknown dtype: "{}"'.format(dtype))
    l64 = label_img.astype('uint64')
    # Single channel mapping
    if len(l64.shape) == 3:
        l64i = ((l64[:, :, 0] << 2 * w) + (l64[:, :, 1] << w) + l64[:, :, 2])
    else:
        l64i = l64
    colors = np.unique(l64i)
    segmentations = []
    colors_all = []
    for c in colors:
        if c != 0:
            segmentation = (l64i == c).astype('uint8')
            segmentations.append(segmentation)
            colors_all.append(c)
    return segmentations, colors_all
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _typename(t):
    if t == np.float16:
        return 'float16'
    elif t == np.float32:
        return 'float32'
    elif t == np.float64:
        return 'float64'
    elif t == np.uint8:
        return 'uint8'
    elif t == np.uint16:
        return 'uint16'
    elif t == np.int16:
        return 'int16'
    elif t == np.int32:
        return 'int32'
    elif t == np.int64:
        return 'int64'
    else:
        raise TypeError('unknown type')
项目:incubator-airflow-old    作者:apache    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:cityscapes-api    作者:renmengye    | 项目源码 | 文件源码
def get_separate_labels(label_img):
  # 64-bit encoding
  dtype = label_img.dtype
  if dtype == np.uint8:
    w = 8
  elif dtype == np.uint16:
    w = 16
  else:
    raise Exception('Unknown dtype: "{}"'.format(dtype))
  l64 = label_img.astype('uint64')
  # Single channel mapping
  if len(l64.shape) == 3:
    l64i = ((l64[:, :, 0] << 2 * w) + (l64[:, :, 1] << w) + l64[:, :, 2])
  else:
    l64i = l64
  colors = np.unique(l64i)
  segmentations = []
  colors_all = []
  for c in colors:
    if c != 0:
      segmentation = (l64i == c).astype('uint8')
      segmentations.append(segmentation)
      colors_all.append(c)
  return segmentations, colors_all
项目:rastercube    作者:terrai    | 项目源码 | 文件源码
def _real_mp_write_frac(frac_id, grid_w, grid_h, frac_ndates):
    # ignore the PEP 3118 buffer warning
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', RuntimeWarning)
        s_ndvi = np.ctypeslib.as_array(_mp_ndvi)
        s_ndvi.shape = (grid_h, grid_w, frac_ndates)
        s_ndvi.dtype = np.int16
        s_qa = np.ctypeslib.as_array(_mp_qa)
        s_qa.shape = (grid_h, grid_w, frac_ndates)
        s_qa.dtype = np.uint16

    frac_num, frac_d = frac_id

    i_range, j_range = modgrid.get_cell_indices_in_tile(
        frac_num, tile_h, tile_v)
    frac_ndvi = s_ndvi[i_range[0]:i_range[1], j_range[0]:j_range[1], :]
    frac_qa = s_qa[i_range[0]:i_range[1], j_range[0]:j_range[1], :]

    ndvi_header.write_frac(frac_id, frac_ndvi)
    qa_header.write_frac(frac_id, frac_qa)
项目:varapp-backend-py    作者:varapp    | 项目源码 | 文件源码
def scan_genotypes(self, genotypes, sub_ids=None, db=None):
        """Pass through all genotypes and return only the indices of those that pass the filter.
        :param genotypes: np.ndarray[uint64, dim=2]
        :rtype: np.ndarray[uint64]"""
        if self.shortcut:
            return np.zeros(0)
        N = len(genotypes)
        if sub_ids is not None:
            variant_ids = sub_ids
        elif self.val == 'x_linked' and db:
            variant_ids = genotypes_service(db).chrX
        else:
            variant_ids = np.asarray(range(1,N+1), dtype=np.uint64)
        active_idx = np.asarray(self.ss.active_idx, dtype=np.uint16)
        conditions = self.conditions_vector
        is_and = self.merge_op == AND
        if len(conditions) == 0:
            passing = variant_ids
        else:
            passing = self.parallel_apply_bitwise(genotypes, variant_ids, conditions, active_idx, is_and)
        return passing
项目:varapp-backend-py    作者:varapp    | 项目源码 | 文件源码
def scan_genotypes_compound(self, genotypes, batches, parallel=True):
        """Scan the *genotypes* array for compounds. Variant ids are treated in batches,
           - one list of variant_ids per gene."""
        if self.shortcut:
            passing, sources, pairs = np.zeros(0), {}, []
        else:
            N = len(genotypes)
            active_idx = np.asarray(self.ss.active_idx, dtype=np.uint16)
            batches = list(batches.items())
            if parallel:
                passing, sources, pairs = self.parallel_batches(genotypes, batches, active_idx, N)
            else:
                passing, sources, pairs = self.process_batches(genotypes, batches, active_idx, N)
            passing = np.array(list(passing), dtype=np.uint64)
            passing.sort()
        return passing, sources, pairs
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_prod(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]

        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, a.prod)
                self.assertRaises(ArithmeticError, a2.prod, axis=1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.prod, a)
                self.assertRaises(ArithmeticError, np.prod, a2, 1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.cumprod, a)
                self.assertRaises(ArithmeticError, np.cumprod, a2, 1)
                self.assertRaises(ArithmeticError, np.cumprod, a)
            else:
                assert_array_equal(np.cumprod(a, axis=-1),
                                   np.array([1, 2, 20, 220,
                                             1320, 6600, 26400], ctype))
                assert_array_equal(np.cumprod(a2, axis=0),
                                   np.array([[1, 2, 3, 4],
                                             [5, 12, 21, 36],
                                             [50, 36, 84, 180]], ctype))
                assert_array_equal(np.cumprod(a2, axis=-1),
                                   np.array([[1, 2, 6, 24],
                                             [5, 30, 210, 1890],
                                             [10, 30, 120, 600]], ctype))