Python numpy 模块,flipud() 实例源码

我们从Python开源项目中,提取了以下47个代码示例,用于说明如何使用numpy.flipud()

项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def plot_spectra(results):
    plt.figure(figsize=(10, 4))
    plt.imshow(
        np.concatenate(
            [np.flipud(results['x'].T),
             np.flipud(results['xh'].T),
             np.flipud(results['x_conv'].T)],
            0),
        aspect='auto',
        cmap='jet',
    )
    plt.colorbar()
    plt.title('Upper: Real input; Mid: Reconstrution; Lower: Conversion to target.')
    plt.savefig(
        os.path.join(
            args.logdir,
            '{}.png'.format(
                os.path.split(str(results['f'], 'utf-8'))[-1]
            )
        )
    )
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type):
    fcoefs, f = make_erb_filters(sr, channel_number, 50)
    fcoefs = np.flipud(fcoefs)
    xf = erb_frilter_bank(xx, fcoefs)

    if win_type == 'hanning':
        window = np.hanning(channel_number)
    elif win_type == 'hamming':
        window = np.hamming(channel_number)
    elif win_type == 'triangle':
        window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1)))
    else:
        window = np.ones(channel_number)
    window = window.reshape((channel_number, 1))

    xe = np.power(xf, 2.0)
    frames = 1 + ((np.size(xe, 1)-win_len) // shift_len)
    cochleagram = np.zeros((channel_number, frames))
    for i in range(frames):
        one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1))
        cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1))

    cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram)
    return cochleagram
项目:dataScryer    作者:Griesbacher    | 项目源码 | 文件源码
def ssh():
    from random import randint, seed
    import pandas as pd
    import matplotlib.pyplot as plt

    seed(1)
    df = pd.DataFrame(pd.read_csv('ssh.csv', sep=';'))[:20000]
    y = df.value.as_matrix()
    y_raw = numpy.flipud(y)
    y = numpy.append(y_raw, y_raw)
    y = numpy.append(y, y_raw)
    for i in range(len(y)):
        y[i] += randint(-10, 10)
    for i in range(46100, 46120):
        y[i] += 100
        y[i] *= 10

    x = [i for i in range(0, len(y) * 2, 2)]
    series = list(zip(x, y))
    result = StddevAnomaly().search_anomaly({}, len(series), series)
    print(result)
    plt.plot(*zip(*series))
    plt.plot(*zip(*result), 'x')
    plt.show()
项目:geoviews    作者:ioam    | 项目源码 | 文件源码
def _process(self, img, key=None):
        if self.p.fast:
            return self._fast_process(img, key)
        proj = self.p.projection
        if proj == img.crs:
            return img
        x0, x1 = img.range(0)
        y0, y1 = img.range(1)
        xn, yn = img.interface.shape(img, gridded=True)[:2]
        px0, py0, px1, py1 = project_extents((x0, y0, x1, y1),
                                             img.crs, proj)
        src_ext, trgt_ext = (x0, x1, y0, y1), (px0, px1, py0, py1)
        arrays = []
        for vd in img.vdims:
            arr = img.dimension_values(vd, flat=False)
            projected, extents = warp_array(arr, proj, img.crs, (xn, yn),
                                            src_ext, trgt_ext)
            arrays.append(projected)
        projected = np.dstack(arrays) if len(arrays) > 1 else arrays[0]
        data = np.flipud(projected)
        bounds = (extents[0], extents[2], extents[1], extents[3])
        return img.clone(data, bounds=bounds, kdims=img.kdims,
                         vdims=img.vdims, crs=proj)
项目:tensorpac    作者:EtienneCmb    | 项目源码 | 文件源码
def n_even_fcn(f, o, w, l):
    """Even case."""
    # Variables :
    k = np.array(range(0, int(l) + 1, 1)) + 0.5
    b = np.zeros(k.shape)

    # # Run Loop :
    for s in range(0, len(f), 2):
        m = (o[s + 1] - o[s]) / (f[s + 1] - f[s])
        b1 = o[s] - m * f[s]
        b = b + (m / (4 * np.pi * np.pi) * (np.cos(2 * np.pi * k * f[
            s + 1]) - np.cos(2 * np.pi * k * f[s])) / (
            k * k)) * abs(np.square(w[round((s + 1) / 2)]))
        b = b + (f[s + 1] * (m * f[s + 1] + b1) * np.sinc(2 * k * f[
            s + 1]) - f[s] * (m * f[s] + b1) * np.sinc(2 * k * f[s])) * abs(
            np.square(w[round((s + 1) / 2)]))

    a = (np.square(w[0])) * 4 * b
    h = 0.5 * np.concatenate((np.flipud(a), a))

    return h
项目:brainpipe    作者:EtienneCmb    | 项目源码 | 文件源码
def NevenFcn(F, M, W, L):  # N is even
    # Variables :
    k = np.array(range(0, int(L) + 1, 1)) + 0.5
    b = np.zeros(k.shape)

    # # Run Loop :
    for s in range(0, len(F), 2):
        m = (M[s + 1] - M[s]) / (F[s + 1] - F[s])
        b1 = M[s] - m * F[s]
        b = b + (m / (4 * np.pi * np.pi) * (np.cos(2 * np.pi * k * F[
            s + 1]) - np.cos(2 * np.pi * k * F[s])) / (
            k * k)) * abs(np.square(W[round((s + 1) / 2)]))
        b = b + (F[s + 1] * (m * F[s + 1] + b1) * np.sinc(2 * k * F[
          s + 1]) - F[s] * (m * F[s] + b1) * np.sinc(2 * k * F[s])) * abs(
            np.square(W[round((s + 1) / 2)]))

    a = (np.square(W[0])) * 4 * b
    h = 0.5 * np.concatenate((np.flipud(a), a))

    return h


####################################################################
# - Filt the signal :
####################################################################
项目:Python-Machine-Learning-Cookbook    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feature_importances(feature_importances, title, feature_names):
    # Normalize the importance values 
    feature_importances = 100.0 * (feature_importances / max(feature_importances))

    # Sort the values and flip them
    index_sorted = np.flipud(np.argsort(feature_importances))

    # Arrange the X ticks
    pos = np.arange(index_sorted.shape[0]) + 0.5

    # Plot the bar graph
    plt.figure()
    plt.bar(pos, feature_importances[index_sorted], align='center')
    plt.xticks(pos, feature_names[index_sorted])
    plt.ylabel('Relative Importance')
    plt.title(title)
    plt.show()
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def generate_plot(self, filename, title='', xlabel='', ylabel=''):

        data_keys = list(self.data.keys())
        key_num = len(data_keys)

        self.plot = plt.figure()
        if key_num == 1:
            splt = self.plot.add_subplot(1, 1, 1)
            im_data = splt.imshow(numpy.flipud(self.data[data_keys[0]][0]), origin='lower')
            splt.set_xlabel(xlabel)
            splt.set_ylabel(ylabel)
            splt.set_title(title)
        else:   ## still plotting multiple image in one figure still has problem. the visualization is not good
            logger.error('no supported yet')

        self.plot.colorbar(im_data)
        self.plot.savefig(filename)  #, bbox_inches='tight'

#class MultipleLinesPlot(PlotWithData):
#    def generate_plot(self, filename, title='', xlabel='', ylabel=''):
项目:inky-phat    作者:pimoroni    | 项目源码 | 文件源码
def update(self):
        self._display_init()

        x1, x2 = self.update_x1, self.update_x2
        y1, y2 = self.update_y1, self.update_y2

        region = self.buffer[y1:y2, x1:x2]

        if self.v_flip:
            region = numpy.fliplr(region)

        if self.h_flip:
            region = numpy.flipud(region)

        buf_red = numpy.packbits(numpy.where(region == RED, 1, 0)).tolist()
        if self.inky_version == 1:
            buf_black = numpy.packbits(numpy.where(region == 0, 0, 1)).tolist()
        else:
            buf_black = numpy.packbits(numpy.where(region == BLACK, 0, 1)).tolist()

        self._display_update(buf_black, buf_red)
        self._display_fini()
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_dZ_contours(x, y, dZ, axes=None, dZ_interval=0.5, verbose=False,
                               fig_kwargs={}):
    r"""For plotting seafloor deformation dZ"""
    import matplotlib.pyplot as plt

    dZ_max = max(dZ.max(), -dZ.min()) + dZ_interval
    clines1 = numpy.arange(dZ_interval, dZ_max, dZ_interval)
    clines = list(-numpy.flipud(clines1)) + list(clines1)

    # Create axes if needed
    if axes is None:
        fig = plt.figure(**fig_kwargs)
        axes = fig.add_subplot(111)

    if len(clines) > 0:
        if verbose:
            print "Plotting contour lines at: ",clines
        axes.contour(x, y, dZ, clines, colors='k')
    else:
        print "No contours to plot"

    return axes
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_dZ_contours(x, y, dZ, axes=None, dZ_interval=0.5, verbose=False,
                               fig_kwargs={}):
    r"""For plotting seafloor deformation dZ"""
    import matplotlib.pyplot as plt

    dZ_max = max(dZ.max(), -dZ.min()) + dZ_interval
    clines1 = numpy.arange(dZ_interval, dZ_max, dZ_interval)
    clines = list(-numpy.flipud(clines1)) + list(clines1)

    # Create axes if needed
    if axes is None:
        fig = plt.figure(**fig_kwargs)
        axes = fig.add_subplot(111)

    if len(clines) > 0:
        if verbose:
            print "Plotting contour lines at: ",clines
        axes.contour(x, y, dZ, clines, colors='k')
    else:
        print "No contours to plot"

    return axes
项目:diluvian    作者:aschampion    | 项目源码 | 文件源码
def from_catmaid_stack(stack_info, tile_source_parameters):
        # See https://catmaid.readthedocs.io/en/stable/tile_sources.html
        format_url = {
            1: '{source_base_url}{{z}}/{{row}}_{{col}}_{{zoom_level}}.{file_extension}',
            4: '{source_base_url}{{z}}/{{zoom_level}}/{{row}}_{{col}}.{file_extension}',
            5: '{source_base_url}{{zoom_level}}/{{z}}/{{row}}/{{col}}.{file_extension}',
            7: '{source_base_url}largeDataTileSource/{tile_width}/{tile_height}/'
               '{{zoom_level}}/{{z}}/{{row}}/{{col}}.{file_extension}',
            9: '{source_base_url}{{z}}/{{row}}_{{col}}_{{zoom_level}}.{file_extension}',
        }[tile_source_parameters['tile_source_type']].format(**tile_source_parameters)
        bounds = np.flipud(np.array(stack_info['bounds'], dtype=np.int64))
        resolution = np.flipud(np.array(stack_info['resolution']))
        tile_width = int(tile_source_parameters['tile_width'])
        tile_height = int(tile_source_parameters['tile_height'])
        return ImageStackVolume(bounds, resolution, tile_width, tile_height, format_url,
                                missing_z=stack_info['broken_slices'])
项目:MDT    作者:cbclab    | 项目源码 | 文件源码
def _apply_transformations(plot_config, data_slice):
    """Rotate, flip and zoom the data slice.

    Depending on the plot configuration, this will apply some transformations to the given data slice.

    Args:
        plot_config (mdt.visualization.maps.base.MapPlotConfig): the plot configuration
        data_slice (ndarray): the 2d slice of data to transform

    Returns:
        ndarray: the transformed 2d slice of data
    """
    if plot_config.rotate:
        data_slice = np.rot90(data_slice, plot_config.rotate // 90)

    if not plot_config.flipud:
        # by default we flipud to correct for matplotlib lower origin. If the user
        # sets flipud, we do not need to to it
        data_slice = np.flipud(data_slice)

    data_slice = plot_config.zoom.apply(data_slice)
    return data_slice
项目:chainladder-python    作者:jbogaardt    | 项目源码 | 文件源码
def __model_form(self, tri_array):
        w = np.nan_to_num(self.weights/tri_array[:,:,:-1]**(2-self.alpha))
        x = np.nan_to_num(tri_array[:,:,:-1]*(tri_array[:,:,1:]*0+1))
        y = np.nan_to_num(tri_array[:,:,1:])
        LDF = np.sum(w*x*y,axis=1)/np.sum(w*x*x,axis=1)
        #Chainladder (alpha=1/delta=1)
        #LDF = np.sum(np.nan_to_num(tri_array[:,:,1:]),axis=1) / np.sum(np.nan_to_num((tri_array[:,:,1:]*0+1)*tri_array[:,:,:-1]),axis=1)
        #print(LDF.shape)
        # assumes no tail
        CDF = np.append(np.cumprod(LDF[:,::-1],axis=1)[:,::-1],np.array([1]*tri_array.shape[0]).reshape(tri_array.shape[0],1),axis=1)    
        latest = np.flip(tri_array,axis=1).diagonal(axis1=1,axis2=2)   
        ults = latest*CDF
        lu = list(ults)
        lc = list(CDF)
        exp_cum_triangle = np.array([np.flipud(lu[num].reshape(tri_array.shape[2],1).dot(1/lc[num].reshape(1,tri_array.shape[2]))) for num in range(tri_array.shape[0])])
        exp_incr_triangle = np.append(exp_cum_triangle[:,:,0,np.newaxis],np.diff(exp_cum_triangle),axis=2)
        return LDF, CDF, ults, exp_incr_triangle
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def ensurebuf(self, invalidate=True):
        if self.dbuf is None:
            if self.dpil is not None:
                self.dbuf = self.dpil.tostring("raw", "RGBX", 0, 1)
            elif self.darr is not None:
                data = self.scaledpixelarray(0,255.999)
                self.dbuf = np.dstack(( np.flipud(np.rollaxis(data,1)).astype(np.uint8),
                                        np.zeros(self.shape[::-1],np.uint8) )).tostring()
            else:
                raise ValueError("No source data for conversion to buffer")
        if invalidate:
            self.dpil = None
            self.darr = None
            self.rangearr = None

    ## This private function ensures that there is a valid numpy array representation, converting from
    #  one of the other representations if necessary, and invalidating the other representations if requested.
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def ensurearr(self, invalidate=True):
        if self.darr is None:
            if self.dpil is not None:
                self.darr = np.fromstring(self.dpil.tostring("raw", "RGB", 0, -1), np.uint8).astype(np.float64)
                self.darr = np.rollaxis(np.reshape(self.darr, (self.shape[1], self.shape[0], 3) ), 1)
            elif self.dbuf is not None:
                self.darr = np.fromstring(self.dbuf, np.uint8).astype(np.float64)
                self.darr = np.delete(np.reshape(self.darr, (self.shape[1], self.shape[0], 4) ), 3, 2)
                self.darr = np.rollaxis(np.flipud(self.darr), 1)
            else:
                raise ValueError("No source data for conversion to array")
            self.rangearr = ( 0, 255.999 )
        if invalidate:
            self.dpil = None
            self.dbuf = None

# -----------------------------------------------------------------

## This private helper function returns a 2-tuple containing the least and most significant 16-bit portion
# of the specified unsigned 32-bit integer value.
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def ensurebuf(self, invalidate=True):
        if self.dbuf is None:
            if self.dpil is not None:
                self.dbuf = self.dpil.tostring("raw", "RGBX", 0, 1)
            elif self.darr is not None:
                data = self.scaledpixelarray(0,255.999)
                self.dbuf = np.dstack(( np.flipud(np.rollaxis(data,1)).astype(np.uint8),
                                        np.zeros(self.shape[::-1],np.uint8) )).tostring()
            else:
                raise ValueError("No source data for conversion to buffer")
        if invalidate:
            self.dpil = None
            self.darr = None
            self.rangearr = None

    ## This private function ensures that there is a valid numpy array representation, converting from
    #  one of the other representations if necessary, and invalidating the other representations if requested.
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def ensurearr(self, invalidate=True):
        if self.darr is None:
            if self.dpil is not None:
                self.darr = np.fromstring(self.dpil.tostring("raw", "RGB", 0, -1), np.uint8).astype(np.float64)
                self.darr = np.rollaxis(np.reshape(self.darr, (self.shape[1], self.shape[0], 3) ), 1)
            elif self.dbuf is not None:
                self.darr = np.fromstring(self.dbuf, np.uint8).astype(np.float64)
                self.darr = np.delete(np.reshape(self.darr, (self.shape[1], self.shape[0], 4) ), 3, 2)
                self.darr = np.rollaxis(np.flipud(self.darr), 1)
            else:
                raise ValueError("No source data for conversion to array")
            self.rangearr = ( 0, 255.999 )
        if invalidate:
            self.dpil = None
            self.dbuf = None

# -----------------------------------------------------------------

## This private helper function returns a 2-tuple containing the least and most significant 16-bit portion
# of the specified unsigned 32-bit integer value.
项目:gdax-trader    作者:mcardillo55    | 项目源码 | 文件源码
def get_historical_data(self, num_periods=200):
        gdax_client = gdax.PublicClient()

        end = datetime.datetime.utcnow()
        end_iso = end.isoformat()
        start = end - datetime.timedelta(seconds=(self.period_size * num_periods))
        start_iso = start.isoformat()

        ret = gdax_client.get_product_historic_rates(self.product, granularity=self.period_size, start=start_iso, end=end_iso)
        # Check if we got rate limited, which will return a JSON message
        while not isinstance(ret, list):
            time.sleep(3)
            ret = gdax_client.get_product_historic_rates(self.product, granularity=self.period_size, start=start_iso, end=end_iso)
        hist_data = np.array(ret, dtype='object')
        for row in hist_data:
            row[0] = datetime.datetime.fromtimestamp(row[0], pytz.utc)
        return np.flipud(hist_data)
项目:hintbot    作者:madebyollin    | 项目源码 | 文件源码
def sliceImages(inputImage, targetImage):
    inputSlices = []
    targetSlices = []
    sliceSize = 32
    for y in range(0,inputImage.shape[1]//sliceSize):
        for x in range(0,inputImage.shape[0]//sliceSize):
            inputSlice = inputImage[x*sliceSize:(x+1)*sliceSize,y*sliceSize:(y+1)*sliceSize]
            targetSlice = targetImage[x*sliceSize//2:(x+1)*sliceSize//2,y*sliceSize//2:(y+1)*sliceSize//2]
            # only add slices if they're not just empty space
            # if (np.any(targetSlice)):
                # Reweight smaller sizes
                # for i in range(0,max(1,128//inputImage.shape[1])**2):
            inputSlices.append(inputSlice)
            targetSlices.append(targetSlice)
                # inputSlices.append(np.fliplr(inputSlice))
                # targetSlices.append(np.fliplr(targetSlice))
                # inputSlices.append(np.flipud(inputSlice))
                # targetSlices.append(np.flipud(targetSlice))

                    # naiveSlice = imresize(inputSlice, 0.5)
                    # deltaSlice = targetSlice - naiveSlice
                    # targetSlices.append(deltaSlice)
    # return two arrays of images in a tuple
    return (inputSlices, targetSlices)
项目:DeepNet    作者:hok205    | 项目源码 | 文件源码
def transform(patch, flip=False, mirror=False, rotations=[]):
    """Perform data augmentation on a patch.

    Args:
        patch (numpy array): The patch to be processed.
        flip (bool, optional): Up/down symetry.
        mirror (bool, optional): left/right symetry.
        rotations (int list, optional) : rotations to perform (angles in deg).

    Returns:
        array list: list of augmented patches
    """
    transformed_patches = [patch]
    for angle in rotations:
        transformed_patches.append(skimage.img_as_ubyte(skimage.transform.rotate(patch, angle)))
    if flip:
        transformed_patches.append(np.flipud(patch))
    if mirror:
        transformed_patches.append(np.fliplr(patch))
    return transformed_patches


# In[4]:
项目:chainer-deconv    作者:germanRos    | 项目源码 | 文件源码
def transformData(self, data):
        if(self.opts.has_key('newdims')):
            (H, W) = self.opts['newdims']
            data = misc.imresize(data, (H, W), interp='bilinear')

        if(self.opts.has_key('zeromean') and self.opts['zeromean']):
            mean = self.opts['dataset_mean'] # provided by bmanager
            data = data - mean


        if(self.opts.has_key('rangescale') and self.opts['rangescale']):
            min_ = self.opts['dataset_min']  # provided by bmanager
            min_ = np.abs(min_.min())
            max_ = self.opts['dataset_max']  # provided by bmanager
            max_ = np.abs(max_.max())
            data = 127 * data / max(min_, max_)
        else:
            data = data - 127.0

        if(self.opts.has_key('randomflip') and self.opts['randomflip']):
            if(np.random.rand() <= self.opts['randomflip_prob']):
                data = np.flipud(data)
                self.dataflip_state = True

        return data
项目:evaluation-toolkit    作者:lightfield-analysis    | 项目源码 | 文件源码
def write_pfm(data, fpath, scale=1, file_identifier="Pf", dtype="float32"):
    # PFM format definition: http://netpbm.sourceforge.net/doc/pfm.html

    data = np.flipud(data)
    height, width = np.shape(data)[:2]
    values = np.ndarray.flatten(np.asarray(data, dtype=dtype))
    endianess = data.dtype.byteorder

    if endianess == '<' or (endianess == '=' and sys.byteorder == 'little'):
        scale *= -1

    with open(fpath, 'wb') as ff:
        ff.write(file_identifier + '\n')
        ff.write('%d %d\n' % (width, height))
        ff.write('%d\n' % scale)
        ff.write(values)
项目:backtrackbb    作者:BackTrackBB    | 项目源码 | 文件源码
def Gaussian2D(image, sigma, padding=0):
    n, m = image.shape[0], image.shape[1]
    tmp = np.zeros((n + padding, m + padding))
    if tmp.shape[0] < 4:
        raise ValueError('Image and padding too small')
    if tmp.shape[1] < 4:
        raise ValueError('Image and padding too small')
    B, A = __gausscoeff(sigma)
    tmp[:n, :m] = image
    tmp = lfilter(B, A, tmp, axis=0)
    tmp = np.flipud(tmp)
    tmp = lfilter(B, A, tmp, axis=0)
    tmp = np.flipud(tmp)
    tmp = lfilter(B, A, tmp, axis=1)
    tmp = np.fliplr(tmp)
    tmp = lfilter(B, A, tmp, axis=1)
    tmp = np.fliplr(tmp)
    return tmp[:n, :m]
#-----------------------------------------------------------------------------
项目:world_merlin    作者:pbaljeka    | 项目源码 | 文件源码
def generate_plot(self, filename, title='', xlabel='', ylabel=''):

        data_keys = self.data.keys()
        key_num = len(data_keys)

        self.plot = plt.figure()
        if key_num == 1:   
            splt = self.plot.add_subplot(1, 1, 1)
            im_data = splt.imshow(numpy.flipud(self.data[data_keys[0]][0]), origin='lower')
            splt.set_xlabel(xlabel)
            splt.set_ylabel(ylabel)
            splt.set_title(title)
        else:   ## still plotting multiple image in one figure still has problem. the visualization is not good
            logger.error('no supported yet')

        self.plot.colorbar(im_data)
        self.plot.savefig(filename)  #, bbox_inches='tight'

#class MultipleLinesPlot(PlotWithData):
#    def generate_plot(self, filename, title='', xlabel='', ylabel=''):
项目:SCaIP    作者:simonsfoundation    | 项目源码 | 文件源码
def make_G_matrix(T,g):
    ''' create matrix of autoregression to enforce indicator dynamics
    Inputs: 
    T: positive integer
        number of time-bins
    g: nd.array, vector p x 1
        Discrete time constants

    Output:
    G: sparse diagonal matrix
        Matrix of autoregression
    '''    
    if type(g) is np.ndarray:    
        if len(g) == 1 and g < 0:
            g=0

#        gs=np.matrix(np.hstack((-np.flipud(g[:]).T,1)))
        gs=np.matrix(np.hstack((1,-(g[:]).T)))
        ones_=np.matrix(np.ones((T,1)))
        G = spdiags((ones_*gs).T,range(0,-len(g)-1,-1),T,T)    

        return G
    else:
        raise Exception('g must be an array')
#%%
项目:toothless    作者:ratt-ru    | 项目源码 | 文件源码
def fits2jpg(fname):
    hdu_list = fits.open(fname)
    image = hdu_list[0].data
    image = np.squeeze(image)
    img = np.copy(image)
    idx = np.isnan(img)
    img[idx] = 0
    img_clip = np.flipud(img)
    sigma = 3.0
    # Estimate stats
    mean, median, std = sigma_clipped_stats(img_clip, sigma=sigma, iters=10)
    # Clip off n sigma points
    img_clip = clip(img_clip,std*sigma)
    if img_clip.shape[0] !=150 or img_clip.shape[1] !=150:
        img_clip = resize(img_clip, (150,150))
    #img_clip = rgb2gray(img_clip)

    outfile = fname[0:-5] +'.png'
    imsave(outfile, img_clip)
    return img_clip,outfile




# Do the fusion classification
项目:picasso    作者:jungmannlab    | 项目源码 | 文件源码
def photonsToFrame(photonposframe,imagesize,background):
        pixels = imagesize
        edges = range(0, pixels+1)
            # HANDLE CASE FOR NO PHOTONS DETECTED AT ALL IN FRAME
        if photonposframe.size == 0:
            simframe = _np.zeros((pixels, pixels))
        else:
            xx = photonposframe[:, 0]
            yy = photonposframe[:, 1]

            simframe, xedges, yedges = _np.histogram2d(yy, xx, bins=(edges, edges))
            simframe = _np.flipud(simframe)  # to be consistent with render

        #simframenoise = noisy(simframe,background,noise)
        simframenoise = noisy_p(simframe, background)
        simframenoise[simframenoise > 2**16-1] = 2**16-1
        simframeout = _np.round(simframenoise).astype('<u2')

        return simframeout
项目:mimicry.ai    作者:fizerkhan    | 项目源码 | 文件源码
def generate_plot(self, filename, title='', xlabel='', ylabel=''):

        data_keys = self.data.keys()
        key_num = len(data_keys)

        self.plot = plt.figure()
        if key_num == 1:   
            splt = self.plot.add_subplot(1, 1, 1)
            im_data = splt.imshow(numpy.flipud(self.data[data_keys[0]][0]), origin='lower')
            splt.set_xlabel(xlabel)
            splt.set_ylabel(ylabel)
            splt.set_title(title)
        else:   ## still plotting multiple image in one figure still has problem. the visualization is not good
            logger.error('no supported yet')

        self.plot.colorbar(im_data)
        self.plot.savefig(filename)  #, bbox_inches='tight'

#class MultipleLinesPlot(PlotWithData):
#    def generate_plot(self, filename, title='', xlabel='', ylabel=''):
项目:eddylicious    作者:timofeymukha    | 项目源码 | 文件源码
def compute_tbl_properties(y, uMean, nu, flip):
    """Compute various parameters of a TBL."""

    y = y[np.nonzero(y)]
    uMean = uMean[np.nonzero(uMean)]

    if flip:
        y = np.flipud(y)
        uMean = np.flipud(uMean)

    theta = momentum_thickness(y, uMean)
    delta = delta_99(y, uMean)
    deltaStar = delta_star(y, uMean)
    uTau = np.sqrt(nu*uMean[1]/y[1])
    u0 = uMean[-1]
    yPlus1 = y[1]*uTau/nu

    return theta, deltaStar, delta, uTau, u0, yPlus1
项目:ASP    作者:TUIlmenauAMS    | 项目源码 | 文件源码
def DST4(samples):
    """
        Method to create DST4 transformation using DST3

        Arguments   :
            samples : (1D Array) Input samples to be transformed

        Returns     :
            y       :  (1D Array) Transformed output samples

    """

    # Initialize
    samplesup=np.zeros(2*N, dtype = np.float32)

    # Upsample signal
    # Reverse order to obtain DST4 out of DCT4:
    #samplesup[1::2]=np.flipud(samples)
    samplesup[0::2] = samples
    y = spfft.dst(samplesup,type=3,norm='ortho')*np.sqrt(2)#/2

    # Flip sign of every 2nd subband to obtain DST4 out of DCT4
    #y=(y[0:N])*(((-1)*np.ones(N, dtype = np.float32))**range(N))

    return y[0: N]
项目:matplotlib_venn_wordcloud    作者:paulbrodersen    | 项目源码 | 文件源码
def _get_wordcloud(img, patch, words, word_to_frequency=None, **wordcloud_kwargs):

    # get the boolean mask corresponding to each patch
    path = patch.get_path()
    mask = path.contains_points(img.pixel_coordinates).reshape((img.y_resolution, img.x_resolution))

    # make mask matplotlib-venn compatible
    mask = (~mask * 255).astype(np.uint8) # black indicates mask position
    mask = np.flipud(mask) # origin is in upper left

    # create wordcloud
    wc = WordCloud(mask=mask,
                   background_color=None,
                   mode="RGBA",
                   **wordcloud_kwargs)

    if not word_to_frequency:
        text = " ".join(words)
        wc.generate(text)
    else:
        wc.generate_from_frequencies({word: word_to_frequency[word] for word in words})

    return wc
项目:spectroscopy    作者:jgoodknight    | 项目源码 | 文件源码
def autocorrelation(self):
        "Autocorrelation as a function of time"
        if self.__autocorrelation is not None:
            return self.__autocorrelationTimeSeries, self.__autocorrelation

        negT = -np.flipud(self.timeSeries[1:])
        autocorrelationTime = np.hstack((negT, self.timeSeries))
        self.__autocorrelationTimeSeries = autocorrelationTime

        initialWF = self[0]
        ACF = []
        for WF in self:
            ACF.append(WF.overlap(initialWF))
        ACF = np.array(ACF)
        negACF = np.conj(np.flipud(ACF[1:]))
        totalACF = np.hstack((negACF, ACF))
        self.__autocorrelation = totalACF
        return self.__autocorrelationTimeSeries, self.__autocorrelation
项目:tf-Faster-RCNN    作者:kevinjliang    | 项目源码 | 文件源码
def _applyImageFlips(image, flips):
    '''
    Apply left-right and up-down flips to an image

    Args:
        image (numpy array 2D/3D): image to be flipped
        flips (tuple):
            [0]: Boolean to flip horizontally
            [1]: Boolean to flip vertically

    Returns:
        Flipped image
    '''
    image = np.fliplr(image) if flips[0] else image
    image = np.flipud(image) if flips[1] else image

    return image
项目:DBQA-KBQA    作者:Lucien-qiang    | 项目源码 | 文件源码
def convolve1d_2D_numpy(a, b, mode='full'):
  nwords, ndim = a.shape
  filter_width, ndim = b.shape
  b = np.flipud(b)  # flip the kernel
  if mode == 'full':
    pad = np.zeros((filter_width-1, ndim))
    a = np.vstack([pad, a, pad])
    shape = (nwords+filter_width-1, filter_width, ndim)
  elif mode == 'valid':
    shape = (nwords-filter_width+1, filter_width, ndim)

  strides = (a.strides[0],) + a.strides
  view = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

  conv_out = np.einsum('kij,ij->kj', view, b)
  return conv_out
项目:DEEP-CLICK-MODEL    作者:THUIR    | 项目源码 | 文件源码
def convolve1d_2D_numpy(a, b, mode='full'):
  nwords, ndim = a.shape
  filter_width, ndim = b.shape
  b = np.flipud(b)  # flip the kernel
  if mode == 'full':
    pad = np.zeros((filter_width-1, ndim))
    a = np.vstack([pad, a, pad])
    shape = (nwords+filter_width-1, filter_width, ndim)
  elif mode == 'valid':
    shape = (nwords-filter_width+1, filter_width, ndim)

  strides = (a.strides[0],) + a.strides
  view = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

  conv_out = np.einsum('kij,ij->kj', view, b)
  return conv_out
项目:LabelFusion    作者:RobotLocomotion    | 项目源码 | 文件源码
def captureLabelImage(self, filename):
        view = self.view
        self.disableLighting()
        im = sgp.saveScreenshot(view, filename, shouldRender=False, shouldWrite=False)

        if filename is not None:
            img = vnp.getNumpyFromVtk(im, 'ImageScalars')
            assert img.dtype == np.uint8

            img.shape = (im.GetDimensions()[1], im.GetDimensions()[0], 3)
            img = np.flipud(img)

            img = img[:,:,0]
            print 'writing:', filename
            scipy.misc.imsave(filename, img)

        return im
项目:kite    作者:pyrocko    | 项目源码 | 文件源码
def _plot_displacement(ms):
        if not plot:
            ms.down
            return

        import matplotlib.pyplot as plt
        from matplotlib.patches import Polygon
        fig = plt.figure()
        ax = fig.gca()
        ms.processSources()

        ax.imshow(num.flipud(ms.down), aspect='equal',
                  extent=[0, ms.frame.E.max(), 0, ms.frame.N.max()])
        for src in ms.sources:
            for seg in src.segments:
                p = Polygon(seg.outline(), alpha=.8, fill=False)
                ax.add_artist(p)
            if isinstance(src, OkadaPath):
                nodes = num.array(src.nodes)
                ax.scatter(nodes[:, 0], nodes[:, 1], color='r')
        plt.show()
        fig.clear()
项目:kite    作者:pyrocko    | 项目源码 | 文件源码
def _plot_displacement(ms):
        if not plot:
            ms.down
            return

        import matplotlib.pyplot as plt
        from matplotlib.patches import Polygon  # noqa
        fig = plt.figure()
        ax = fig.gca()
        ms.processSources()

        ax.imshow(num.flipud(ms.north), aspect='equal',
                  extent=[0, ms.frame.E.max(), 0, ms.frame.N.max()])
        # for src in ms.sources:
        #     for seg in src.segments:
        #         p = Polygon(seg.outline(), alpha=.8, fill=False)
        #         ax.add_artist(p)
        plt.show()
        fig.clear()
项目:Imitation-Learning-Dagger-Torcs    作者:zsdonghao    | 项目源码 | 文件源码
def img_reshape(input_img):
    """ (3, 64, 64) --> (64, 64, 3) """
    _img = np.transpose(input_img, (1, 2, 0))
    _img = np.flipud(_img)
    _img = np.reshape(_img, (1, img_dim[0], img_dim[1], img_dim[2]))
    return _img
项目:segmentation_DLMI    作者:imatge-upc    | 项目源码 | 文件源码
def flip_plane(array,plane=0):
    # Flip axial plane LR, i.e. change left/right hemispheres. 3D tensors-only, batch_size=1.
    # n_slices = array.shape[2]
    # for i in range(n_slices):
    #     array[:,:,i] = np.flipud(array[:,:,i])
    # return array
    n_x = array.shape[plane]
    for i in range(n_x):
        if plane == 0:
            array[i,:,:] = np.flipud(array[i,:,:])
        if plane == 1:
            array[:,i,:] = np.flipud(array[:,i,:])
        if plane == 2:
            array[:,:,i] = np.flipud(array[:,:,i])
    return array
项目:speechless    作者:JuliusKunze    | 项目源码 | 文件源码
def _trim_silence(self, audio: ndarray) -> ndarray:
        def trim_start(sound: ndarray) -> ndarray:
            return numpy.array(list(dropwhile(lambda x: x < self.silence_threshold_for_not_normalized_sound, sound)))

        def trim_end(sound: ndarray) -> ndarray:
            return flipud(trim_start(flipud(sound)))

        return trim_start(trim_end(audio))
项目:sound_field_analysis-py    作者:QULab    | 项目源码 | 文件源码
def write_SSR_IRs(filename, time_data_l, time_data_r, wavformat="float"):
    """Takes two time signals and writes out the horizontal plane as HRIRs for the SoundScapeRenderer.
    Ideally, both hold 360 IRs but smaller sets are tried to be scaled up using repeat.

    Parameters
    ----------
    filename : string
       filename to write to
    time_data_l, time_data_l : io.ArraySignal
       ArraySignals for left/right ear
    wavformat : string
       wav file format to write. Either "float" or "int16"
    """
    equator_IDX_left = utils.nearest_to_value_logical_IDX(time_data_l.grid.colatitude, _np.pi / 2)
    equator_IDX_right = utils.nearest_to_value_logical_IDX(time_data_r.grid.colatitude, _np.pi / 2)

    IRs_left = time_data_l.signal.signal[equator_IDX_left]
    IRs_right = time_data_r.signal.signal[equator_IDX_right]

    if _np.mod(360 / IRs_left.shape[0], 1) == 0:
        IRs_left = _np.repeat(IRs_left, 360 / IRs_left.shape[0], axis=0)
    else:
        raise ValueError('Number of channels for left ear cannot be fit into 360.')
    if _np.mod(360 / IRs_right.shape[0], 1) == 0:
        IRs_right = _np.repeat(IRs_right, 360 / IRs_right.shape[0], axis=0)
    else:
        raise ValueError('Number of channels for left ear cannot be fit into 360.')

    IRs_to_write = utils.interleave_channels(IRs_left, IRs_right, style="SSR")
    data_to_write = utils.simple_resample(IRs_to_write, original_fs=time_data_l.signal.fs, target_fs=44100)

    # Fix SSR IR alignment stuff: left<>right flipped and 90 degree rotation
    data_to_write = _np.flipud(data_to_write)
    data_to_write = _np.roll(data_to_write, -90, axis=0)

    if wavformat == "float":
        sio.wavfile.write(filename, 44100, data_to_write.astype(_np.float32).T)
    elif wavformat == "int16":
        sio.wavfile.write(filename, 44100, (data_to_write * 32767).astype(_np.int16).T)
    else:
        raise TypeError("Format " + wavformat + "not known. Should be either 'float' or 'int16'.")
项目:Wall-EEG    作者:neurotechuoft    | 项目源码 | 文件源码
def parsedata(self, package):
        """
            This function parses the Data Package sent by MuLES to obtain all the data 
            available in MuLES as matrix of the size [n_samples, n_columns], therefore the
            total of elements in the matrix is n_samples * n_columns. Each column represents
            one channel

            Argument:
            package: Data package sent by MuLES.
        """
        size_element = 4           # Size of each one of the elements is 4 bytes

        n_columns = len(self.params['data format'])
        n_bytes = len(package)
        n_samples = (n_bytes/size_element) / n_columns
        ####mesData = np.uint8(mesData) # Convert from binary to integers (not necessary pyton)

        bytes_per_element = np.flipud(np.reshape(list(bytearray(package)), [size_element,-1],order='F'))
        # Changes "package" to a list with size (n_bytes,1) 
        # Reshapes the list into a matrix bytes_per_element which has the size: (4,n_bytes/4)
        # Flips Up-Down the matrix of size (4,n_bytes/4) to correct the swap in bytes    

        package_correct_order = np.uint8(np.reshape(bytes_per_element,[n_bytes,-1],order='F' ))
        # Unrolls the matrix bytes_per_element, in "package_correct_order" 
        # that has a size (n_bytes,1) 

        data_format_tags = self.params['data format']*n_samples
        # Tags used to map the elements into their corresponding representation
        package_correct_order_char = "".join(map(chr,package_correct_order))

        elements = struct.unpack(data_format_tags,package_correct_order_char)
        # Elements are cast in their corresponding representation
        data = np.reshape(np.array(elements),[n_samples,n_columns],order='C')
        # Elements are reshap into data [n_samples, n_columns]        

        return data
项目:DistanceGAN    作者:sagiebenaim    | 项目源码 | 文件源码
def display_current_results(self, visuals, epoch):
        if self.display_id > 0: # show images in the browser
            idx = 1
            for label, image_numpy in visuals.items():
                #image_numpy = np.flipud(image_numpy)
                self.vis.image(image_numpy.transpose([2,0,1]), opts=dict(title=label),
                                   win=self.display_id + idx)
                idx += 1

        if self.use_html: # save images to a html file
            for label, image_numpy in visuals.items():
                img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
                util.save_image(image_numpy, img_path)
            # update website
            webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, reflesh=1)
            for n in range(epoch, 0, -1):
                webpage.add_header('epoch [%d]' % n)
                ims = []
                txts = []
                links = []

                for label, image_numpy in visuals.items():
                    img_path = 'epoch%.3d_%s.png' % (n, label)
                    ims.append(img_path)
                    txts.append(label)
                    links.append(img_path)
                webpage.add_images(ims, txts, links, width=self.win_size)
            webpage.save()

    # errors: dictionary of error labels and values
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def mirrorArray(self, x, direction="x"):
        X = x.reshape((self.nx_core, self.ny_core), order="F")
        if direction == "x" or direction == "y" :
            X2 = np.vstack((-np.flipud(X), X))
        else:
            X2 = np.vstack((np.flipud(X), X))
        return X2
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def mirrorArray(self, x, direction="x"):
        X = x.reshape((self.nx_core, self.ny_core), order="F")
        if direction == "x" or direction == "y" :
            X2 = np.vstack((-np.flipud(X), X))
        else:
            X2 = np.vstack((np.flipud(X), X))
        return X2