Python numpy 模块,uint32() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.uint32()

项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_ticks(
        task_handle, high_tick, low_tick, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTicks
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_tick, low_tick, numpy.prod(high_tick.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:MultiObjectTracker    作者:alokwhitewolf    | 项目源码 | 文件源码
def run(im):
    im_disp = im.copy()
    window_name = "Draw line here."
    cv2.namedWindow(window_name,cv2.WINDOW_AUTOSIZE)
    cv2.moveWindow(window_name, 910, 0)

    print " Drag across the screen to set lines.\n Do it twice"
    print " After drawing the lines press 'r' to resume\n"

    l1 = np.empty((2, 2), np.uint32)
    l2 = np.empty((2, 2), np.uint32)

    list = [l1,l2]

    mouse_down = False
    def callback(event, x, y, flags, param):
        global trigger, mouse_down

        if trigger<2:
            if event == cv2.EVENT_LBUTTONDOWN:
                mouse_down = True
                list[trigger][0] = (x, y)

            if event == cv2.EVENT_LBUTTONUP and mouse_down:
                mouse_down = False
                list[trigger][1] = (x,y)
                cv2.line(im_disp, (list[trigger][0][0], list[trigger][0][1]),
                         (list[trigger][1][0], list[trigger][1][1]), (255, 0, 0), 2)
                trigger += 1
        else:
            pass
    cv2.setMouseCallback(window_name, callback)
    while True:
        cv2.imshow(window_name,im_disp)
        key = cv2.waitKey(10) & 0xFF

        if key == ord('r'):
            # Press key `q` to quit the program
            return list
            exit()
项目:RasterFairy    作者:Quasimondo    | 项目源码 | 文件源码
def __init__(self, image, samplefac=10, colors=256):

        # Check Numpy
        if np is None:
            raise RuntimeError("Need Numpy for the NeuQuant algorithm.")

        # Check image
        if image.size[0] * image.size[1] < NeuQuant.MAXPRIME:
            raise IOError("Image is too small")
        if image.mode != "RGBA":
            raise IOError("Image mode should be RGBA.")

        # Initialize
        self.setconstants(samplefac, colors)
        self.pixels = np.fromstring(image.tostring(), np.uint32)
        self.setUpArrays()

        self.learn()
        self.fix()
        self.inxbuild()
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def laplace_gpu(y_gpu, mode='valid'):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  dtype = y_gpu.dtype
  block_size = (16,16,1)
  grid_size = (int(np.ceil(float(shape[1])/block_size[0])),
               int(np.ceil(float(shape[0])/block_size[1])))
  shared_size = int((2+block_size[0])*(2+block_size[1])*dtype.itemsize)

  preproc = _generate_preproc(dtype, shape)
  mod = SourceModule(preproc + kernel_code, keep=True)

  if mode == 'valid':
    laplace_fun_gpu = mod.get_function("laplace_valid")
    laplace_gpu = cua.empty((y_gpu.shape[0]-2, y_gpu.shape[1]-2), y_gpu.dtype)

  if mode == 'same':
    laplace_fun_gpu = mod.get_function("laplace_same")
    laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1]), y_gpu.dtype)

  laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata,
                  block=block_size, grid=grid_size, shared=shared_size)

  return laplace_gpu
项目:pyku    作者:dubvulture    | 项目源码 | 文件源码
def remove_artifacts(self, image):
        """
        Remove the connected components that are not within the parameters
        Operates in place
        :param image: sudoku's thresholded image w/o grid
        :return: None
        """
        labeled, features = label(image, structure=CROSS)
        lbls = np.arange(1, features + 1)
        areas = extract_feature(image, labeled, lbls, np.sum,
                                np.uint32, 0)
        sides = extract_feature(image, labeled, lbls, min_side,
                                np.float32, 0, True)
        diags = extract_feature(image, labeled, lbls, diagonal,
                                np.float32, 0, True)

        for index in lbls:
            area = areas[index - 1] / 255
            side = sides[index - 1]
            diag = diags[index - 1]
            if side < 5 or side > 20 \
                    or diag < 15 or diag > 25 \
                    or area < 40:
                image[labeled == index] = 0
        return None
项目:pyku    作者:dubvulture    | 项目源码 | 文件源码
def remove_artifacts(self, image):
        """
        Remove the connected components that are not within the parameters
        Operates in place
        :param image: sudoku's thresholded image w/o grid
        :return: None
        """
        labeled, features = label(image, structure=CROSS)
        lbls = np.arange(1, features + 1)
        areas = extract_feature(image, labeled, lbls, np.sum,
                                np.uint32, 0)
        sides = extract_feature(image, labeled, lbls, min_side,
                                np.float32, 0, True)
        diags = extract_feature(image, labeled, lbls, diagonal,
                                np.float32, 0, True)

        for index in lbls:
            area = areas[index - 1] / 255
            side = sides[index - 1]
            diag = diags[index - 1]
            if side < 5 or side > 20 \
                    or diag < 15 or diag > 25 \
                    or area < 40:
                image[labeled == index] = 0
        return None
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_binary_u_32(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteBinaryU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_digital_u_32(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteDigitalU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_digital_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_u_32(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_u_32_ex(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32Ex
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:pyelastix    作者:almarklein    | 项目源码 | 文件源码
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def report_barcodes_h5(self, filename):
        data = self.report('barcodes')

        if self.barcode_whitelist:
            bc_sequences = cr_utils.format_barcode_seqs(self.barcode_whitelist, self.gem_groups)
        elif self.barcode_summary is not None:
            bc_sequences = self.barcode_summary
        else:
            # Get all observed bc sequences
            bc_sequences = sorted(list(reduce(lambda x, y: x.union(y.keys()), data.values(), set())))

        # Build the columns for the table
        bc_table_cols = {cr_constants.H5_BC_SEQUENCE_COL: bc_sequences}

        for metric_name, metric_data in data.iteritems():
            counts = np.array([metric_data.get(bc, 0) for bc in bc_sequences], dtype=np.uint32)
            bc_table_cols[metric_name] = counts

        cr_utils.write_h5(filename, bc_table_cols)
项目:j3dview    作者:blank63    | 项目源码 | 文件源码
def load(shape,vertex_array):
        destination = vertex_array[gx.VA_PTNMTXIDX.name]
        vertex_index = 0
        matrix_table = numpy.zeros(10,numpy.uint32)

        for batch in shape.batches:
            source = numpy.concatenate([primitive.vertices[gx.VA_PTNMTXIDX.name] for primitive in batch.primitives])
            source //= 3

            for i,index in enumerate(batch.matrix_table):
                if index == 0xFFFF: continue
                matrix_table[i] = index

            length = sum(len(primitive.vertices) for primitive in batch.primitives)
            numpy.take(matrix_table,source,0,destination[vertex_index:vertex_index + length])
            vertex_index += length

        glEnableVertexAttribArray(MATRIX_INDEX_ATTRIBUTE_LOCATION)
        vertex_type = vertex_array.dtype
        stride = vertex_type.itemsize
        offset = vertex_type.fields[gx.VA_PTNMTXIDX.name][1]
        glVertexAttribIPointer(MATRIX_INDEX_ATTRIBUTE_LOCATION,1,GL_UNSIGNED_INT,stride,GLvoidp(offset))
项目:Projects    作者:it2school    | 项目源码 | 文件源码
def __init__(self, *args, **kwds):
        import numpy

        self.dst_types = [numpy.uint8, numpy.uint16, numpy.uint32]
        try:
            self.dst_types.append(numpy.uint64)
        except AttributeError:
            pass
        pygame.display.init()
        try:
            unittest.TestCase.__init__(self, *args, **kwds)
            self.sources = [self._make_src_surface(8),
                            self._make_src_surface(16),
                            self._make_src_surface(16, srcalpha=True),
                            self._make_src_surface(24),
                            self._make_src_surface(32),
                            self._make_src_surface(32, srcalpha=True)]
        finally:
            pygame.display.quit()
项目:autolab_core    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def _check_valid_data(self, data):
        """Checks that the incoming data is a 2 x #elements ndarray of ints.

        Parameters
        ----------
        data : :obj:`numpy.ndarray`
            The data to verify.

        Raises
        ------
        ValueError
            If the data is not of the correct shape or type.
        """
        if data.dtype.type != np.int8 and data.dtype.type != np.int16 \
                and data.dtype.type != np.int32 and data.dtype.type != np.int64 \
                and data.dtype.type != np.uint8 and data.dtype.type != np.uint16 \
                and data.dtype.type != np.uint32 and data.dtype.type != np.uint64:
            raise ValueError('Must initialize image coords with a numpy int ndarray')
        if data.shape[0] != 2:
            raise ValueError('Illegal data array passed to image coords. Must have 2 coordinates')
        if len(data.shape) > 2:
            raise ValueError('Illegal data array passed to point cloud. Must have 1 or 2 dimensions')
项目:compresso    作者:VCG    | 项目源码 | 文件源码
def to_best_type(array):
        '''Convert array to lowest possible bitrate.
        '''
        ui8 = np.iinfo(np.uint8)
        ui8 = ui8.max
        ui16 = np.iinfo(np.uint16)
        ui16 = ui16.max
        ui32 = np.iinfo(np.uint32)
        ui32 = ui32.max
        ui64 = np.iinfo(np.uint64)
        ui64 = ui64.max

        if array.max() <= ui64:
            new_type = np.uint64
        if array.max() <= ui32:
            new_type = np.uint32
        if array.max() <= ui16:
            new_type = np.uint16
        if array.max() <= ui8:
            new_type = np.uint8

        return array.astype(new_type)
项目:lopocs    作者:Oslandia    | 项目源码 | 文件源码
def read_uncompressed_patch(pcpatch_wkb, schema):
    '''
    Patch binary structure uncompressed:
    byte:         endianness (1 = NDR, 0 = XDR)
    uint32:       pcid (key to POINTCLOUD_SCHEMAS)
    uint32:       0 = no compression
    uint32:       npoints
    pointdata[]:  interpret relative to pcid
    '''
    patchbin = unhexlify(pcpatch_wkb)
    npoints = unpack("I", patchbin[9:13])[0]
    dt = schema_dtype(schema)
    patch = np.fromstring(patchbin[13:], dtype=dt)
    # debug
    # print(patch[:10])
    return patch, npoints
项目:CycleGAN-Tensorflow-PyTorch-Simple    作者:LynnHo    | 项目源码 | 文件源码
def __init__(self, image, samplefac=10, colors=256):

        # Check Numpy
        if np is None:
            raise RuntimeError("Need Numpy for the NeuQuant algorithm.")

        # Check image
        if image.size[0] * image.size[1] < NeuQuant.MAXPRIME:
            raise IOError("Image is too small")
        if image.mode != "RGBA":
            raise IOError("Image mode should be RGBA.")

        # Initialize
        self.setconstants(samplefac, colors)
        self.pixels = np.fromstring(image.tostring(), np.uint32)
        self.setUpArrays()

        self.learn()
        self.fix()
        self.inxbuild()
项目:codecad    作者:bluecube    | 项目源码 | 文件源码
def __init__(self, queue, grid_size, program_buffer, block_sizes):
        self.queue = queue
        self.grid_size = grid_size
        self.program_buffer = program_buffer
        self.block_sizes = block_sizes

        self.integral_one = 0
        self.integral_x = 0
        self.integral_y = 0
        self.integral_z = 0
        self.integral_xx = 0
        self.integral_yy = 0
        self.integral_zz = 0
        self.integral_xy = 0
        self.integral_xz = 0
        self.integral_yz = 0

        self.index_sums = cl_util.Buffer(queue, numpy.uint32, 10, pyopencl.mem_flags.READ_WRITE)

        self.counter = cl_util.Buffer(queue, numpy.uint32, 1, pyopencl.mem_flags.READ_WRITE)
        self.list = cl_util.Buffer(queue, cl_util.Buffer.quad_dtype(numpy.uint8), grid_size * grid_size * grid_size, pyopencl.mem_flags.WRITE_ONLY)

        self.box_corner = None
        self.level = None
项目:codecad    作者:bluecube    | 项目源码 | 文件源码
def __init__(self, queue, grid_size, program_buffer, block_sizes):
        self.queue = queue
        self.grid_size = grid_size
        self.program_buffer = program_buffer
        self.block_sizes = block_sizes

        self.integral_one = 0
        self.integral_x = 0
        self.integral_y = 0
        self.integral_z = 0
        self.integral_xx = 0
        self.integral_yy = 0
        self.integral_zz = 0
        self.integral_xy = 0
        self.integral_xz = 0
        self.integral_yz = 0

        self.index_sums = cl_util.Buffer(queue, numpy.uint32, 10, pyopencl.mem_flags.READ_WRITE)

        self.counter = cl_util.Buffer(queue, numpy.uint32, 1, pyopencl.mem_flags.READ_WRITE)
        self.list = cl_util.Buffer(queue, cl_util.Buffer.quad_dtype(numpy.uint8), grid_size * grid_size * grid_size, pyopencl.mem_flags.WRITE_ONLY)

        self.box_corner = None
        self.level = None
项目:tflearn_seq2seq    作者:ichuang    | 项目源码 | 文件源码
def generate_trainig_data(self, num_points):
        '''
        Generate training dataset.  Produce random (integer) sequences X, and corresponding
        expected output sequences Y = generate_output_sequence(X).

        Return xy_data, y_data (both of type uint32)

        xy_data = numpy array of shape [num_points, in_seq_len + out_seq_len], with each point being X + Y
        y_data  = numpy array of shape [num_points, out_seq_len]
        '''
        x_data = np.random.randint(0, self.in_max_int, size=(num_points, self.in_seq_len))      # shape [num_points, in_seq_len]
        x_data = x_data.astype(np.uint32)                       # ensure integer type

        y_data = [ self.sequence_pattern.generate_output_sequence(x) for x in x_data ]
        y_data = np.array(y_data)

        xy_data = np.append(x_data, y_data, axis=1)     # shape [num_points, 2*seq_len]
        return xy_data, y_data
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_prod(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]

        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, a.prod)
                self.assertRaises(ArithmeticError, a2.prod, axis=1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_dtype_mix(self):
        c = np.array([False, True, False, False, False, False, True, False,
                     False, False, True, False])
        a = np.uint32(1)
        b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
                      dtype=np.float64)
        r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
                     dtype=np.float64)
        assert_equal(np.where(c, a, b), r)

        a = a.astype(np.float32)
        b = b.astype(np.int64)
        assert_equal(np.where(c, a, b), r)

        # non bool mask
        c = c.astype(np.int)
        c[c != 0] = 34242324
        assert_equal(np.where(c, a, b), r)
        # invert
        tmpmask = c != 0
        c[c == 0] = 41247212
        c[tmpmask] = 0
        assert_equal(np.where(c, b, a), r)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_setdiff1d(self):
        a = np.array([6, 5, 4, 7, 1, 2, 7, 4])
        b = np.array([2, 4, 3, 3, 2, 1, 5])

        ec = np.array([6, 7])
        c = setdiff1d(a, b)
        assert_array_equal(c, ec)

        a = np.arange(21)
        b = np.arange(19)
        ec = np.array([19, 20])
        c = setdiff1d(a, b)
        assert_array_equal(c, ec)

        assert_array_equal([], setdiff1d([], []))
        a = np.array((), np.uint32)
        assert_equal(setdiff1d(a, []).dtype, np.uint32)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
                      np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)

            tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
            assert_array_equal(np.cumsum(a, axis=0), tgt)

            tgt = np.array(
                [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
            assert_array_equal(np.cumsum(a2, axis=0), tgt)

            tgt = np.array(
                [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
            assert_array_equal(np.cumsum(a2, axis=1), tgt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.prod, a)
                self.assertRaises(ArithmeticError, np.prod, a2, 1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, np.cumprod, a)
                self.assertRaises(ArithmeticError, np.cumprod, a2, 1)
                self.assertRaises(ArithmeticError, np.cumprod, a)
            else:
                assert_array_equal(np.cumprod(a, axis=-1),
                                   np.array([1, 2, 20, 220,
                                             1320, 6600, 26400], ctype))
                assert_array_equal(np.cumprod(a2, axis=0),
                                   np.array([[1, 2, 3, 4],
                                             [5, 12, 21, 36],
                                             [50, 36, 84, 180]], ctype))
                assert_array_equal(np.cumprod(a2, axis=-1),
                                   np.array([[1, 2, 6, 24],
                                             [5, 30, 210, 1890],
                                             [10, 30, 120, 600]], ctype))
项目:Sverchok    作者:Sverchok    | 项目源码 | 文件源码
def torus_faces(x, y):
    faces = np.empty((x * y, 4), dtype=np.uint32)
    tmp = np.arange(0, x * y)
    faces[:, 0] = tmp
    faces[:, 1] = np.roll(tmp, -y)
    tmp += 1
    tmp.shape = (x, y)
    tmp[:, y - 1] -= y
    tmp.shape = -1
    faces[:, 3] = tmp
    faces[:, 2] = np.roll(tmp, -y)
    faces.shape = -1
    l_total = np.empty(x * y, dtype=np.uint32)
    l_total[:] = 4
    l_start = np.arange(0, (x * y) * 4, 4, dtype=np.uint32)
    return SvPolygon(l_start, l_total, faces)
项目:indexed_gzip    作者:pauldmccarthy    | 项目源码 | 文件源码
def gen_file(fname, nbytes):

    nelems = int(nbytes / 4)

    data = np.random.randint(0, 2 ** 32, nelems, dtype=np.uint32)

    # zero out 10% so there is something to compress
    zeros = np.random.randint(0, nelems, int(nelems / 10.0))
    data[zeros] = 0
    data = data.tostring()

    # write 1GB max at a time - the gzip
    # module doesn't like writing >= 4GB
    # in one go.
    chunksize = 1073741824

    while len(data) > 0:
        chunk = data[:chunksize]
        data  = data[chunksize:]
        with gzip.open(fname, 'ab') as outf:
            outf.write(chunk)
项目:InplusTrader_Linux    作者:zhengwsh    | 项目源码 | 文件源码
def get_risk_free_rate(self, start_date, end_date):
        mongo_dates = self._yield_curve['dates'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
        _dates = np.array([np.uint32(d['date']) for d in mongo_dates])

        tenor = risk_free_helper.get_tenor_for(start_date, end_date)
        tenor = tenor[-1] + tenor[:-1]
        mongo_data = self._yield_curve[tenor].find({}, {"_id":0})
        _table = np.array([d['data'] for d in mongo_data])

        d = start_date.year * 10000 + start_date.month * 100 + start_date.day
        pos = _dates.searchsorted(d)
        if pos > 0 and (pos == len(_dates) or _dates[pos] != d):
            pos -= 1
        while pos >= 0 and np.isnan(_table[pos]):
            # data is missing ...
            pos -= 1

        return _table[pos]
项目:InplusTrader_Linux    作者:zhengwsh    | 项目源码 | 文件源码
def available_data_range(self, frequency):
        """
        ??????????????

        :param str frequency: ?????`1d` ?????, `1m` ??????

        :return: (earliest, latest)
        """
        if frequency == '1d':
            mongo_data = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']]['000001.XSHG'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
            mongo_data = list(mongo_data)
            s, e = np.uint32(mongo_data[0]['date']), np.uint32(mongo_data[-1]['date'])
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        if frequency == '1m':
            raise NotImplementedError
项目:InplusTrader_Linux    作者:zhengwsh    | 项目源码 | 文件源码
def get_risk_free_rate(self, start_date, end_date):
        mongo_dates = self._yield_curve['dates'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
        _dates = np.array([np.uint32(d['date']) for d in mongo_dates])

        tenor = risk_free_helper.get_tenor_for(start_date, end_date)
        tenor = tenor[-1] + tenor[:-1]
        mongo_data = self._yield_curve[tenor].find({}, {"_id":0})
        _table = np.array([d['data'] for d in mongo_data])

        d = start_date.year * 10000 + start_date.month * 100 + start_date.day
        pos = _dates.searchsorted(d)
        if pos > 0 and (pos == len(_dates) or _dates[pos] != d):
            pos -= 1
        while pos >= 0 and np.isnan(_table[pos]):
            # data is missing ...
            pos -= 1

        return _table[pos]
项目:InplusTrader_Linux    作者:zhengwsh    | 项目源码 | 文件源码
def available_data_range(self, frequency):
        """
        ??????????????

        :param str frequency: ?????`1d` ?????, `1m` ??????

        :return: (earliest, latest)
        """
        if frequency == '1d':
            mongo_data = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']]['000001.XSHG'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
            mongo_data = list(mongo_data)
            s, e = np.uint32(mongo_data[0]['date']), np.uint32(mongo_data[-1]['date'])
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        if frequency == '1m':
            raise NotImplementedError
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def laplace_stack_gpu(y_gpu, mode='valid'):
  """
  This funtion computes the Laplacian of each slice of a stack of images
  """
  shape = np.array(y_gpu.shape).astype(np.uint32)
  dtype = y_gpu.dtype
  block_size = (6,int(np.floor(512./6./float(shape[0]))),int(shape[0]))
  grid_size = (int(np.ceil(float(shape[1])/block_size[0])),
               int(np.ceil(float(shape[0])/block_size[1])))
  shared_size = int((2+block_size[0])*(2+block_size[1])*(2+block_size[2])
                    *dtype.itemsize)

  preproc = _generate_preproc(dtype, (shape[1],shape[2]))
  mod = SourceModule(preproc + kernel_code, keep=True)

  laplace_fun_gpu = mod.get_function("laplace_stack_same")
  laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1], y_gpu.shape[2]),
                          y_gpu.dtype)

  laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata,
                  block=block_size, grid=grid_size, shared=shared_size)

  return laplace_gpu
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def laplace3d_gpu(y_gpu):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  dtype = y_gpu.dtype
  block_size = (6,int(np.floor(512./6./float(shape[0]))),int(shape[0]))
  grid_size = (int(np.ceil(float(shape[1])/block_size[0])),
               int(np.ceil(float(shape[0])/block_size[1])))
  shared_size = int((2+block_size[0])*(2+block_size[1])*(2+block_size[2])
                    *dtype.itemsize)

  preproc = _generate_preproc(dtype, (shape[1],shape[2]))
  mod = SourceModule(preproc + kernel_code, keep=True)

  laplace_fun_gpu = mod.get_function("laplace3d_same")
  laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1], y_gpu.shape[2]),
                          y_gpu.dtype)

  laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata,
                  block=block_size, grid=grid_size, shared=shared_size)

  return laplace_gpu
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def modify_sparse23_gpu(y_gpu, beta):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  gpu_shape = np.array([np.prod(shape),np.prod(shape)])
  gpu_shape = np.uint32(np.ceil(np.sqrt(gpu_shape)))
  dtype = y_gpu.dtype
  block_size = (16,16,1)
  grid_size = (int(np.ceil(float(gpu_shape[1])/block_size[0])),
               int(np.ceil(float(gpu_shape[0])/block_size[1])))

  preproc = _generate_preproc(dtype, np.array(grid_size)
                              * np.array(block_size)[0:1])
  mod = SourceModule(preproc + kernel_code, keep=True)

  modify_alpha23_fun = mod.get_function("modify_alpha23")

  modify_alpha23_fun(y_gpu.gpudata, np.float32(beta), np.uint32(np.prod(shape)),
                     block=block_size, grid=grid_size)
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def modify_sparse_gpu(y_gpu, beta, alpha=2/3):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  gpu_shape = np.array([np.prod(shape),np.prod(shape)])
  gpu_shape = np.uint32(np.ceil(np.sqrt(gpu_shape)))
  dtype = y_gpu.dtype
  block_size = (16,16,1)
  grid_size = (int(np.ceil(float(gpu_shape[1])/block_size[0])),
               int(np.ceil(float(gpu_shape[0])/block_size[1])))

  preproc = _generate_preproc(dtype, np.array(grid_size)
                              * np.array(block_size)[0:1])
  mod = SourceModule(preproc + kernel_code, keep=True)

  modify_alpha_fun = mod.get_function("modify_alpha")

  modify_alpha_fun(y_gpu.gpudata, np.float32(beta),
                   np.float32(alpha), np.uint32(np.prod(shape)),
                     block=block_size, grid=grid_size)
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def project_on_basis_gpu(fs_gpu, basis_gpu):

  basis_length = basis_gpu.shape[0]
  shape = np.array(fs_gpu.shape).astype(np.uint32)
  dtype = fs_gpu.dtype
  block_size = (16,16,1)
  grid_size = (1,int(np.ceil(float(basis_length)/block_size[1])))

  weights_gpu = cua.empty(basis_length, dtype=dtype)

  preproc = _generate_preproc(dtype, shape)
  preproc += '#define BLOCK_SIZE %d\n' % (block_size[0]*block_size[1])
  mod = SourceModule(preproc + projection_code, keep=True)

  projection_fun = mod.get_function("projection")

  projection_fun(weights_gpu.gpudata, fs_gpu.gpudata, basis_gpu.gpudata,
                 np.uint32(basis_length),
                 block=block_size, grid=grid_size)
项目:house-of-enlightenment    作者:house-of-enlightenment    | 项目源码 | 文件源码
def hsv2rgb(hsv):
    hsv = np.array(hsv)
    input_shape = hsv.shape
    hsv = hsv.reshape(-1, 3)
    h, s, v = hsv[:, 0] / 255, hsv[:, 1] / 255, hsv[:, 2]

    i = np.uint32(h * 6.0)  # pylint: disable=no-member
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))
    i = i % 6

    rgb = np.zeros_like(hsv, np.uint8)
    v, t, p, q = v.reshape(-1, 1), t.reshape(-1, 1), p.reshape(-1, 1), q.reshape(-1, 1)
    # This could probably be much faster if replaced with np.choose
    rgb[i == 0] = np.hstack([v, t, p])[i == 0]
    rgb[i == 1] = np.hstack([q, v, p])[i == 1]
    rgb[i == 2] = np.hstack([p, v, t])[i == 2]
    rgb[i == 3] = np.hstack([p, q, v])[i == 3]
    rgb[i == 4] = np.hstack([t, p, v])[i == 4]
    rgb[i == 5] = np.hstack([v, p, q])[i == 5]
    rgb[s == 0.0] = np.hstack([v, v, v])[s == 0.0]

    return rgb.reshape(input_shape)
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def table(self):
        """Return a 2D array of UInt32 representing the sequence"""
        table = np.zeros((len(self.sequence_items), 6), dtype=np.uint32)
        for ct, entry in enumerate(self.sequence_items):
            control_word = SequenceControlWord(\
                init_marker_sequence = 1 if ct==0 else 0, \
                end_marker_sequence = 1 if ct==(len(self.sequence_items) - 1) else 0, \
                marker_enable = 1 if isinstance(entry, WaveformEntry) else 0, \
                data_cmd_sel = 1 if isinstance(entry, IdleEntry) else 0 \
            )
            table[ct,0] = control_word.packed
            table[ct,1] = self.sequence_loop_ct if ct==0 else 0
            if isinstance(entry, WaveformEntry):
                table[ct, 2] = entry.loop_ct
                table[ct, 3] = entry.segment_id
                table[ct, 5] = 0xffffffff
            elif isinstance(entry, IdleEntry):
                table[ct, 3] = entry.dac_level()
                table[ct, 4] = entry.length
            else:
                raise TypeError("Unhandled sequence entry type")

        return table
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def generate_ds2_data(max_length, str_w, nout, nbands, batch_size, num_iter):
    frame_stride = 0.01  # seconds, hard-coded value in make_aeon_dataloaders
    max_utt_len = ((int(max_length / frame_stride) - 1) // str_w) + 1
    max_lbl_len = (max_utt_len - 1) // 2

    train_set, eval_set = make_fake_dataloader(nbands, max_lbl_len, max_utt_len,
                                               nout, batch_size, num_iter)

    inputs = train_set.make_placeholders()

    if "audio_length" not in inputs:
        inputs["audio_length"] = ng.placeholder([ax.N], dtype=np.uint32)
    if "trans_length" not in inputs:
        inputs["trans_length"] = ng.placeholder([ax.N], dtype=np.uint32)

    return inputs, train_set, eval_set
项目:pyrpl    作者:lneuhaus    | 项目源码 | 文件源码
def _reads(self, addr, length):
        if length > 65535:
            length = 65535
            self.logger.warning("Maximum read-length is %d", length)
        header = b'r' + bytes(bytearray([0,
                                         length & 0xFF, (length >> 8) & 0xFF,
                                         addr & 0xFF, (addr >> 8) & 0xFF, (addr >> 16) & 0xFF, (addr >> 24) & 0xFF]))
        self.socket.send(header)
        data = self.socket.recv(length * 4 + 8)
        while (len(data) < length * 4 + 8):
            data += self.socket.recv(length * 4 - len(data) + 8)
        if data[:8] == header:  # check for in-sync transmission
            return np.frombuffer(data[8:], dtype=np.uint32)
        else:  # error handling
            self.logger.error("Wrong control sequence from server: %s", data[:8])
            self.emptybuffer()
            return None
项目:pyrpl    作者:lneuhaus    | 项目源码 | 文件源码
def _writes(self, addr, values):
        values = values[:65535 - 2]
        length = len(values)
        header = b'w' + bytes(bytearray([0,
                                         length & 0xFF,
                                         (length >> 8) & 0xFF,
                                         addr & 0xFF,
                                         (addr >> 8) & 0xFF,
                                         (addr >> 16) & 0xFF,
                                         (addr >> 24) & 0xFF]))
        # send header+body
        self.socket.send(header +
                         np.array(values, dtype=np.uint32).tobytes())
        if self.socket.recv(8) == header:  # check for in-sync transmission
            return True  # indicate successful write
        else:  # error handling
            self.logger.error("Error: wrong control sequence from server")
            self.emptybuffer()
            return None
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def generate_trainig_data(self, num_points):
        '''
        Generate training dataset.  Produce random (integer) sequences X, and corresponding
        expected output sequences Y = generate_output_sequence(X).

        Return xy_data, y_data (both of type uint32)

        xy_data = numpy array of shape [num_points, in_seq_len + out_seq_len], with each point being X + Y
        y_data  = numpy array of shape [num_points, out_seq_len]
        '''
        x_data = np.random.randint(0, self.in_max_int, size=(num_points, self.in_seq_len))      # shape [num_points, in_seq_len]
        x_data = x_data.astype(np.uint32)                       # ensure integer type

        y_data = [ self.sequence_pattern.generate_output_sequence(x) for x in x_data ]
        y_data = np.array(y_data)

        xy_data = np.append(x_data, y_data, axis=1)     # shape [num_points, 2*seq_len]
        return xy_data, y_data
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
项目:Evolutionary-Algorithm    作者:MorvanZhou    | 项目源码 | 文件源码
def train(net_shapes, net_params, optimizer, utility, pool):
    # pass seed instead whole noise matrix to parallel will save your time
    noise_seed = np.random.randint(0, 2 ** 32 - 1, size=N_KID, dtype=np.uint32).repeat(2)    # mirrored sampling

    # distribute training in parallel
    jobs = [pool.apply_async(get_reward, (net_shapes, net_params, env, CONFIG['ep_max_step'], CONFIG['continuous_a'],
                                          [noise_seed[k_id], k_id], )) for k_id in range(N_KID*2)]
    rewards = np.array([j.get() for j in jobs])
    kids_rank = np.argsort(rewards)[::-1]               # rank kid id by reward

    cumulative_update = np.zeros_like(net_params)       # initialize update values
    for ui, k_id in enumerate(kids_rank):
        np.random.seed(noise_seed[k_id])                # reconstruct noise using seed
        cumulative_update += utility[ui] * sign(k_id) * np.random.randn(net_params.size)

    gradients = optimizer.get_gradients(cumulative_update/(2*N_KID*SIGMA))
    return net_params + gradients, rewards