Python numpy 模块,ascontiguousarray() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.ascontiguousarray()

项目:FCN_train    作者:315386775    | 项目源码 | 文件源码
def _convert(matrix, arr):
    """Do the color space conversion.

    Parameters
    ----------
    matrix : array_like
        The 3x3 matrix to use.
    arr : array_like
        The input array.

    Returns
    -------
    out : ndarray, dtype=float
        The converted array.
    """
    arr = _prepare_colorarray(arr)
    arr = np.swapaxes(arr, 0, -1)
    oldshape = arr.shape
    arr = np.reshape(arr, (3, -1))
    out = np.dot(matrix, arr)
    out.shape = oldshape
    out = np.swapaxes(out, -1, 0)

    return np.ascontiguousarray(out)
项目:risk-slim    作者:ustunb    | 项目源码 | 文件源码
def filter_sort_unique(self, max_objval=float('Inf')):
        # filter
        if max_objval < float('inf'):
            good_idx = self.objvals <= max_objval
            self.objvals = self.objvals[good_idx]
            self.solutions = self.solutions[good_idx]

        if len(self.objvals) > 0:
            sort_idx = np.argsort(self.objvals)
            self.objvals = self.objvals[sort_idx]
            self.solutions = self.solutions[sort_idx]

            # unique
            b = np.ascontiguousarray(self.solutions).view(
                np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
            _, unique_idx = np.unique(b, return_index=True)
            self.objvals = self.objvals[unique_idx]
            self.solutions = self.solutions[unique_idx]
项目:pytorch-nec    作者:mjacar    | 项目源码 | 文件源码
def get_screen(self):
    screen = self.env.render(mode='rgb_array').transpose(
        (2, 0, 1))  # transpose into torch order (CHW)
    # Strip off the top and bottom of the screen
    screen = screen[:, 160:320]
    view_width = 320
    cart_location = self.get_cart_location()
    if cart_location < view_width // 2:
        slice_range = slice(view_width)
    elif cart_location > (self.screen_width - view_width // 2):
        slice_range = slice(-view_width, None)
    else:
        slice_range = slice(cart_location - view_width // 2,
                            cart_location + view_width // 2)
    # Strip off the edges, so that we have a square image centered on a cart
    screen = screen[:, :, slice_range]
    # Convert to float, rescare, convert to torch tensor
    # (this doesn't require a copy)
    screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
    screen = torch.from_numpy(screen)
    # Resize, and add a batch dimension (BCHW)
    return self.resize(screen).numpy()
项目:adversarial-frcnn    作者:xiaolonw    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:slda    作者:Savvysherpa    | 项目源码 | 文件源码
def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_slda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.sigma2,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed)
项目:slda    作者:Savvysherpa    | 项目源码 | 文件源码
def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_blslda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.b,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed)
项目:slda    作者:Savvysherpa    | 项目源码 | 文件源码
def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_slda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.sigma2,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed)
项目:slda    作者:Savvysherpa    | 项目源码 | 文件源码
def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_blslda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.b,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed)
项目:faster-rcnn-resnet    作者:Eniac-Xie    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:warhexer    作者:sudasana    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:warhexer    作者:sudasana    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:train-DeepLab    作者:martinkersner    | 项目源码 | 文件源码
def predict(self, inputs):
    # uses MEMORY_DATA layer for loading images and postprocessing DENSE_CRF layer
    img = inputs[0].transpose((2, 0, 1))
    img = img[np.newaxis, :].astype(np.float32)
    label = np.zeros((1, 1, 1, 1), np.float32)
    data_dim = np.zeros((1, 1, 1, 2), np.float32)
    data_dim[0][0][0][0] = img.shape[2]
    data_dim[0][0][0][1] = img.shape[3]

    img      = np.ascontiguousarray(img, dtype=np.float32)
    label    = np.ascontiguousarray(label, dtype=np.float32)
    data_dim = np.ascontiguousarray(data_dim, dtype=np.float32)

    self.set_input_arrays(img, label, data_dim)
    out = self.forward()

    predictions = out[self.outputs[0]] # the output layer should be called crf_inf
    segm_result = predictions[0].argmax(axis=0).astype(np.uint8)

    return segm_result
项目:lps-anchor-pos-estimator    作者:bitcraze    | 项目源码 | 文件源码
def unique(eq):
    eq = eqsize(eq)
    c1 = [None] * eq.shape
    for i in range(0, eq.size):
        c1.append[i] = hash(eq[i])

    c1 = np.asarray(c1)

    if c1.ndim == 1:
        _, ia, ic = np.unique(c1, return_index=True, return_inverse=True)
        ia = (ia[:, ]).conj().T
        ic = (ic[:, ]).conj().T
        u = eq[ia]

    else:
        a = c1
        b = np.ascontiguousarray(a).view(
            np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
        _, ia, ic = np.unique(b, return_index=True, return_inverse=True)

    return u, ia, ic
项目:py-faster-rcnn-tk1    作者:joeking11829    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:semantic-tagging    作者:bjerva    | 项目源码 | 文件源码
def write_features_hdf5(train, valid, test):
    f = h5py.File(args.hdf5, "w")

    train_grp = f.create_group("train")
    train_x = train_grp.create_dataset("train_x", train[0].shape, dtype='f', compression="gzip", compression_opts=9)
    train_y = train_grp.create_dataset("train_y", train[1].shape, dtype='i', compression="gzip", compression_opts=9)

    valid_grp = f.create_group("valid")
    valid_x = valid_grp.create_dataset("valid_x", valid[0].shape, dtype='f', compression="gzip", compression_opts=9)
    valid_y = valid_grp.create_dataset("valid_y", valid[1].shape, dtype='i', compression="gzip", compression_opts=9)

    test_grp = f.create_group("test")
    test_x = test_grp.create_dataset("test_x", test[0].shape, dtype='f', compression="gzip", compression_opts=9)
    test_y = test_grp.create_dataset("test_y", test[1].shape, dtype='i', compression="gzip", compression_opts=9)

    train_x.write_direct(np.ascontiguousarray(train[0], dtype=train[0].dtype))
    train_y.write_direct(np.ascontiguousarray(train[1], dtype=train[1].dtype))
    valid_x.write_direct(np.ascontiguousarray(valid[0], dtype=valid[0].dtype))
    valid_y.write_direct(np.ascontiguousarray(valid[1], dtype=valid[1].dtype))
    test_x.write_direct(np.ascontiguousarray(test[0], dtype=test[0].dtype))
    test_y.write_direct(np.ascontiguousarray(test[1], dtype=test[1].dtype))

    f.close()
项目:pytorch-smoothgrad    作者:pkdn    | 项目源码 | 文件源码
def preprocess_image(img, cuda=False):
    means=[0.485, 0.456, 0.406]
    stds=[0.229, 0.224, 0.225]

    preprocessed_img = img.copy()[: , :, ::-1]
    for i in range(3):
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
    preprocessed_img = \
        np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
    preprocessed_img = torch.from_numpy(preprocessed_img)
    preprocessed_img.unsqueeze_(0)
    if cuda:
        preprocessed_img = Variable(preprocessed_img.cuda(), requires_grad=True)
    else:
        preprocessed_img = Variable(preprocessed_img, requires_grad=True)

    return preprocessed_img
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def find_boundary(mesh,vals,threshold=0.5):
    """ Find boundary points on the phase diagram where the switching probability = threshold """
    boundary_points = []
    durs = mesh.points[:,0]
    volts = mesh.points[:,1]
    indices, indptr = mesh.vertex_neighbor_vertices
    for k in range(len(vals)):
        for k_nb in indptr[indices[k]:indices[k+1]]:
            if (vals[k]-threshold)*(vals[k_nb]-threshold)<0:
                x0 = find_cross([durs[k],vals[k]],[durs[k_nb],vals[k_nb]],cut=threshold)
                y0 = find_cross([volts[k],vals[k]],[volts[k_nb],vals[k_nb]],cut=threshold)
                boundary_points.append([x0,y0])

    boundary_points = np.array(boundary_points)
    if len(boundary_points) > 0:
        b = np.ascontiguousarray(boundary_points).view(np.dtype((np.void,
                            boundary_points.dtype.itemsize * boundary_points.shape[1])))
        _, idx = np.unique(b, return_index=True)
        boundary_points = boundary_points[idx]
        # Sort the boundary_points by x-axis
        boundary_points = sorted(boundary_points, key=itemgetter(0))
    return np.array(boundary_points)
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x,
                              unique_inverse_y, calc_DKL=False):
    bins = bins.astype(np.float32)
    num_of_bins = bins.shape[0]
    # bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
    # hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True)
    digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
    b2 = np.ascontiguousarray(digitized).view(
        np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
    unique_array, unique_inverse_t, unique_counts = \
        np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
    p_ts = unique_counts / float(sum(unique_counts))
    PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
    if calc_DKL:
        pxy_given_T = np.array(
            [calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))]
        )
        p_XgT = np.vstack(pxy_given_T[:, 0])
        p_YgT = pxy_given_T[:, 1]
        p_YgT = np.vstack(p_YgT).T
        DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0)
        H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1)
    local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
                                                     unique_array)
    return local_IXT, local_ITY
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs):
    iter_infomration = []
    for j in range(len(ws_iter_index)):
        data = ws_iter_index[j]
        new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1]))
        labels = np.zeros((num_of_samples * label.shape[0], label.shape[1]))
        x = np.zeros((num_of_samples * data.shape[0], 2))
        for i in range(data.shape[0]):
            cov_matrix = np.eye(data[i, :].shape[0]) * sigma
            t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples)
            new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i
            labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :]
            x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i
        b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
        unique_array, unique_indices, unique_inverse_x, unique_counts = \
            np.unique(b, return_index=True, return_inverse=True, return_counts=True)
        b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1])))
        unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
            np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
        pys1 = unique_counts_y / float(np.sum(unique_counts_y))
        iter_infomration.append(
            calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x,
                                       unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1))
        params = np.array(iter_infomration)
        return params
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def extract_probs(label, x):
    """calculate the probabilities of the given data and labels p(x), p(y) and (y|x)"""
    pys = np.sum(label, axis=0) / float(label.shape[0])
    b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
    unique_array, unique_indices, unique_inverse_x, unique_counts = \
        np.unique(b, return_index=True, return_inverse=True, return_counts=True)
    unique_a = x[unique_indices]
    b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1])))
    pxs = unique_counts / float(np.sum(unique_counts))
    p_y_given_x = []
    for i in range(0, len(unique_array)):
        indexs = unique_inverse_x == i
        py_x_current = np.mean(label[indexs, :], axis=0)
        p_y_given_x.append(py_x_current)
    p_y_given_x = np.array(p_y_given_x).T
    b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1])))
    unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
        np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
    pys1 = unique_counts_y / float(np.sum(unique_counts_y))
    return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs
项目:py-faster-rcnn-resnet-imagenet    作者:tianzhi0549    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:polara    作者:Evfro    | 项目源码 | 文件源码
def to_coo(self, tensor_mode=False):
        userid, itemid, feedback = self.fields
        user_item_data = self.training[[userid, itemid]].values

        if tensor_mode:
            # TODO this recomputes feedback data every new functon call,
            # but if data has not changed - no need for this, make a property
            new_feedback, feedback_transform = self.reindex(self.training, feedback, inplace=False)
            self.index = self.index._replace(feedback=feedback_transform)

            idx = np.hstack((user_item_data, new_feedback[:, np.newaxis]))
            idx = np.ascontiguousarray(idx)
            val = np.ones(self.training.shape[0],)
        else:
            idx = user_item_data
            val = self.training[feedback].values

        shp = tuple(idx.max(axis=0) + 1)
        idx = idx.astype(np.intp)
        val = np.ascontiguousarray(val)
        return idx, val, shp
项目:face-py-faster-rcnn    作者:playerkk    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:sporco    作者:bwohlberg    | 项目源码 | 文件源码
def swap_axis_to_0(x, axis):
    """Insert a new singleton axis at position 0 and swap it with the
    specified axis. The resulting array has an additional dimension,
    with ``axis`` + 1 (which was ``axis`` before the insertion of the
    new axis) of ``x`` at position 0, and a singleton axis at position
    ``axis`` + 1.

    Parameters
    ----------
    x : ndarray
      Input array
    axis : int
      Index of axis in ``x`` to swap to axis index 0.

    Returns
    -------
    arr : ndarray
      Output array
    """

    return np.ascontiguousarray(np.swapaxes(x[np.newaxis, ...], 0, axis+1))
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:MDT    作者:cbclab    | 项目源码 | 文件源码
def write_tvl_direction_pairs(tvl_filename, tvl_header, direction_pairs):
        """Write the given directions to TVL.

        The direction pairs should be a list with lists containing the vector and value to write. For example:
        ((vec, val), (vec1, val1), ...) up to three pairs are allowed.

        Args:
            tvl_filename (str): the filename to write to
            tvl_header (:class:`list` or tuple): the header for the TVL file. This is a list of either 4 or 10 entries.
                4 entries: [version, res, gap, offset]
                10 entries: [version, x_res, x_gap, x_offset, y_res, y_gap, y_offset, z_res, z_gap, z_offset]
            direction_pairs (list of ndarrays): The list with direction pairs, only three are used.
                This is a list with (vector, magnitude) tuples in which the vectors are 4d volumes with for
                every voxel a 3d coordinate.
        """
        direction_pairs = direction_pairs[0:3]
        dir_matrix = np.zeros(direction_pairs[0][0].shape[0:3] + (12,))
        for ind, dirs in enumerate(direction_pairs):
            dir_matrix[..., ind*3:ind*3+3] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[0])))
            dir_matrix[..., 9 + ind] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[1])))

        TrackMark.write_tvl_matrix(tvl_filename, tvl_header, dir_matrix)
项目:deep-fashion    作者:zuowang    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:RPN    作者:hfut721    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:df-style-worldgen    作者:Dozed12    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:df-style-worldgen    作者:Dozed12    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:pandas-plink    作者:limix    | 项目源码 | 文件源码
def read_bed_chunk(filepath, nrows, ncols, row_start, row_end, col_start,
                   col_end):

    X = zeros((row_end - row_start, col_end - col_start), int64)

    ptr = ffi.cast("uint64_t *", X.ctypes.data)
    strides = empty(2, int64)
    strides[:] = X.strides
    strides //= 8

    e = lib.read_bed_chunk(filepath, nrows, ncols, row_start, col_start,
                           row_end, col_end, ptr,
                           ffi.cast("uint64_t *", strides.ctypes.data))
    if e != 0:
        raise RuntimeError("Failure while reading BED file %s." % filepath)

    X = ascontiguousarray(X, float)
    X[X == 3] = nan
    return X
项目:TattDL    作者:z-harry-sun    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs

    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:pytorch-explain-black-box    作者:jacobgil    | 项目源码 | 文件源码
def preprocess_image(img):
    means=[0.485, 0.456, 0.406]
    stds=[0.229, 0.224, 0.225]

    preprocessed_img = img.copy()[: , :, ::-1]
    for i in range(3):
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
    preprocessed_img = \
        np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))

    if use_cuda:
        preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda()
    else:
        preprocessed_img_tensor = torch.from_numpy(preprocessed_img)

    preprocessed_img_tensor.unsqueeze_(0)
    return Variable(preprocessed_img_tensor, requires_grad = False)
项目:Aurora    作者:upul    | 项目源码 | 文件源码
def _sync_copyfrom(self, source_array):
        """Peform an synchronize copy from the array.
        Parameters
        ----------
        source_array : array_like
            The data source we should like to copy from.
        """
        if not isinstance(source_array, np.ndarray):
            try:
                source_array = np.array(source_array, dtype=np.float32)
            except:
                raise TypeError('array must be an array_like data,' +
                                'type %s is not supported'
                                % str(type(source_array)))
        source_array = np.ascontiguousarray(source_array, dtype=np.float32)
        if source_array.shape != self.shape:
            raise ValueError('array shape do not match the shape of NDArray')
        source_arr, shape = NDArray._numpyasarray(source_array)
        check_call(_LIB.DLArrayCopyFromTo(
            ctypes.byref(source_arr), self.handle, None))
        # de-allocate shape until now
        _ = shape
项目:armcom2    作者:sudasana    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:armcom2    作者:sudasana    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:faster_rcnn_logo    作者:romyny    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:Faster_RCNN_Training_Toolkit    作者:VerseChow    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:KITTI-detection-OHEM    作者:manutdzou    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:KITTI-detection-OHEM    作者:manutdzou    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
项目:yelpdor    作者:bhallen    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:yelpdor    作者:bhallen    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:TurbPlasma    作者:tulasinandan    | 项目源码 | 文件源码
def c_correlation(ar1,ar2,ax=0,dx=1.):
   lib = ctypes.cdll.LoadLibrary('/home/tulasi/P3D-PLASMA-PIC/p3dpy/helloworld.so')
   func = lib.c_correlation
   func.restype = None
   func.argtypes = [ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar1
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar2
                    ctypes.c_double,              #dx
                    ctypes.c_int,                 #nlen
                    ctypes.c_int,                 #nx
                    ctypes.c_int,                 #ny
                    ctypes.c_int,                 #nz
                    ctypes.c_int,                 #ax
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #r
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS")]   #corr
# nlen finds the length of the array in the specified direction
   nlen=np.shape(ar2)[ax]/2; 
   nx=np.shape(ar1)[0]; 
   ny=np.shape(ar1)[1]; 
   nz=np.shape(ar1)[2]
   r=np.zeros(nlen);corr=np.zeros(nlen)
   func(np.ascontiguousarray(ar1),np.ascontiguousarray(ar2),dx,nlen,nx,ny,nz,ax,r,corr)
#  func(ar1,ar2,dx,nlen,nx,ny,nz,ax,r,corr)
   return r,corr
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def _scale_data_to_float32(self, data):
        '''
            This function will convert data from local data dtype into float32, the default format of the algorithm
        '''
        if self.data_dtype != numpy.float32:
            data  = data.astype(numpy.float32)

        if self.dtype_offset != 0:
            data  -= self.dtype_offset

        if numpy.any(self.gain != 1):
            data *= self.gain

        return numpy.ascontiguousarray(data)
项目:alchemy    作者:voidrank    | 项目源码 | 文件源码
def _masks_as_c_order(masks):
    masks = masks.transpose((2, 0, 1))
    masks = np.ascontiguousarray(masks)
    return masks
项目:cloud-volume    作者:seung-lab    | 项目源码 | 文件源码
def upload_boss_image(self, img, offset):
    shape = Vec(*img.shape[:3])
    offset = Vec(*offset)

    bounds = Bbox(offset, shape + offset)

    if bounds.volume() < 1:
      raise EmptyRequestException('Requested less than one pixel of volume. {}'.format(bounds))

    x_rng = [ bounds.minpt.x, bounds.maxpt.x ]
    y_rng = [ bounds.minpt.y, bounds.maxpt.y ]
    z_rng = [ bounds.minpt.z, bounds.maxpt.z ]

    layer_type = 'image' if self.layer_type == 'unknown' else self.layer_type

    chan = ChannelResource(
      collection_name=self.path.bucket, 
      experiment_name=self.path.dataset, 
      name=self.path.layer, # Channel
      type=layer_type, 
      datatype=self.dtype,
    )

    if img.shape[3] == 1:
      img = img.reshape( img.shape[:3] )

    rmt = BossRemote(boss_credentials)
    img = img.T
    img = np.ascontiguousarray(img.astype(self.dtype))

    rmt.create_cutout(chan, self.mip, x_rng, y_rng, z_rng, img)
项目:cloud-volume    作者:seung-lab    | 项目源码 | 文件源码
def __new__(cls, buf, dataset_name, layer, mip, layer_type, bounds, *args, **kwargs):
    return super(VolumeCutout, cls).__new__(cls, shape=buf.shape, buffer=np.ascontiguousarray(buf), dtype=buf.dtype)
项目:risk-slim    作者:ustunb    | 项目源码 | 文件源码
def distinct(self):
        b = np.ascontiguousarray(self.solutions).view(np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
        _, unique_ind = np.unique(b, return_index = True)
        unique_ind = np.sort(unique_ind)
        new = self.copy()
        new.objvals = self.objvals[unique_ind]
        new.solutions = self.solutions[unique_ind]
        return new