我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.ascontiguousarray()。
def _convert(matrix, arr): """Do the color space conversion. Parameters ---------- matrix : array_like The 3x3 matrix to use. arr : array_like The input array. Returns ------- out : ndarray, dtype=float The converted array. """ arr = _prepare_colorarray(arr) arr = np.swapaxes(arr, 0, -1) oldshape = arr.shape arr = np.reshape(arr, (3, -1)) out = np.dot(matrix, arr) out.shape = oldshape out = np.swapaxes(out, -1, 0) return np.ascontiguousarray(out)
def filter_sort_unique(self, max_objval=float('Inf')): # filter if max_objval < float('inf'): good_idx = self.objvals <= max_objval self.objvals = self.objvals[good_idx] self.solutions = self.solutions[good_idx] if len(self.objvals) > 0: sort_idx = np.argsort(self.objvals) self.objvals = self.objvals[sort_idx] self.solutions = self.solutions[sort_idx] # unique b = np.ascontiguousarray(self.solutions).view( np.dtype((np.void, self.solutions.dtype.itemsize * self.P))) _, unique_idx = np.unique(b, return_index=True) self.objvals = self.objvals[unique_idx] self.solutions = self.solutions[unique_idx]
def get_screen(self): screen = self.env.render(mode='rgb_array').transpose( (2, 0, 1)) # transpose into torch order (CHW) # Strip off the top and bottom of the screen screen = screen[:, 160:320] view_width = 320 cart_location = self.get_cart_location() if cart_location < view_width // 2: slice_range = slice(view_width) elif cart_location > (self.screen_width - view_width // 2): slice_range = slice(-view_width, None) else: slice_range = slice(cart_location - view_width // 2, cart_location + view_width // 2) # Strip off the edges, so that we have a square image centered on a cart screen = screen[:, :, slice_range] # Convert to float, rescare, convert to torch tensor # (this doesn't require a copy) screen = np.ascontiguousarray(screen, dtype=np.float32) / 255 screen = torch.from_numpy(screen) # Resize, and add a batch dimension (BCHW) return self.resize(screen).numpy()
def _compute_targets(rois, overlaps, labels): """Compute bounding-box regression targets for an image.""" # Indices of ground-truth ROIs gt_inds = np.where(overlaps == 1)[0] if len(gt_inds) == 0: # Bail if the image has no ground-truth ROIs return np.zeros((rois.shape[0], 5), dtype=np.float32) # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = bbox_overlaps( np.ascontiguousarray(rois[ex_inds, :], dtype=np.float), np.ascontiguousarray(rois[gt_inds, :], dtype=np.float)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] targets = np.zeros((rois.shape[0], 5), dtype=np.float32) targets[ex_inds, 0] = labels[ex_inds] targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) return targets
def fit(self, X, y): """ Estimate the topic distributions per document (theta), term distributions per topic (phi), and regression coefficients (eta). Parameters ---------- X : array-like, shape = (n_docs, n_terms) The document-term matrix. y : array-like, shape = (n_docs,) Response values for each document. """ self.doc_term_matrix = X self.n_docs, self.n_terms = X.shape self.n_tokens = X.sum() doc_lookup, term_lookup = self._create_lookups(X) # iterate self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_slda( self.n_iter, self.n_report_iter, self.n_topics, self.n_docs, self.n_terms, self.n_tokens, self.alpha, self.beta, self.mu, self.nu2, self.sigma2, doc_lookup, term_lookup, np.ascontiguousarray(y, dtype=np.float64), self.seed)
def fit(self, X, y): """ Estimate the topic distributions per document (theta), term distributions per topic (phi), and regression coefficients (eta). Parameters ---------- X : array-like, shape = (n_docs, n_terms) The document-term matrix. y : array-like, shape = (n_docs,) Response values for each document. """ self.doc_term_matrix = X self.n_docs, self.n_terms = X.shape self.n_tokens = X.sum() doc_lookup, term_lookup = self._create_lookups(X) # iterate self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_blslda( self.n_iter, self.n_report_iter, self.n_topics, self.n_docs, self.n_terms, self.n_tokens, self.alpha, self.beta, self.mu, self.nu2, self.b, doc_lookup, term_lookup, np.ascontiguousarray(y, dtype=np.float64), self.seed)
def console_fill_foreground(con,r,g,b) : if len(r) != len(g) or len(r) != len(b): raise TypeError('R, G and B must all have the same size.') if (numpy_available and isinstance(r, numpy.ndarray) and isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)): #numpy arrays, use numpy's ctypes functions r = numpy.ascontiguousarray(r, dtype=numpy.int_) g = numpy.ascontiguousarray(g, dtype=numpy.int_) b = numpy.ascontiguousarray(b, dtype=numpy.int_) cr = r.ctypes.data_as(POINTER(c_int)) cg = g.ctypes.data_as(POINTER(c_int)) cb = b.ctypes.data_as(POINTER(c_int)) else: # otherwise convert using ctypes arrays cr = (c_int * len(r))(*r) cg = (c_int * len(g))(*g) cb = (c_int * len(b))(*b) _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) : if len(r) != len(g) or len(r) != len(b): raise TypeError('R, G and B must all have the same size.') if (numpy_available and isinstance(r, numpy.ndarray) and isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)): #numpy arrays, use numpy's ctypes functions r = numpy.ascontiguousarray(r, dtype=numpy.int_) g = numpy.ascontiguousarray(g, dtype=numpy.int_) b = numpy.ascontiguousarray(b, dtype=numpy.int_) cr = r.ctypes.data_as(POINTER(c_int)) cg = g.ctypes.data_as(POINTER(c_int)) cb = b.ctypes.data_as(POINTER(c_int)) else: # otherwise convert using ctypes arrays cr = (c_int * len(r))(*r) cg = (c_int * len(g))(*g) cb = (c_int * len(b))(*b) _lib.TCOD_console_fill_background(con, cr, cg, cb)
def predict(self, inputs): # uses MEMORY_DATA layer for loading images and postprocessing DENSE_CRF layer img = inputs[0].transpose((2, 0, 1)) img = img[np.newaxis, :].astype(np.float32) label = np.zeros((1, 1, 1, 1), np.float32) data_dim = np.zeros((1, 1, 1, 2), np.float32) data_dim[0][0][0][0] = img.shape[2] data_dim[0][0][0][1] = img.shape[3] img = np.ascontiguousarray(img, dtype=np.float32) label = np.ascontiguousarray(label, dtype=np.float32) data_dim = np.ascontiguousarray(data_dim, dtype=np.float32) self.set_input_arrays(img, label, data_dim) out = self.forward() predictions = out[self.outputs[0]] # the output layer should be called crf_inf segm_result = predictions[0].argmax(axis=0).astype(np.uint8) return segm_result
def unique(eq): eq = eqsize(eq) c1 = [None] * eq.shape for i in range(0, eq.size): c1.append[i] = hash(eq[i]) c1 = np.asarray(c1) if c1.ndim == 1: _, ia, ic = np.unique(c1, return_index=True, return_inverse=True) ia = (ia[:, ]).conj().T ic = (ic[:, ]).conj().T u = eq[ia] else: a = c1 b = np.ascontiguousarray(a).view( np.dtype((np.void, a.dtype.itemsize * a.shape[1]))) _, ia, ic = np.unique(b, return_index=True, return_inverse=True) return u, ia, ic
def _compute_targets(rois, overlaps, labels): """Compute bounding-box regression targets for an image.""" # Indices of ground-truth ROIs gt_inds = np.where(overlaps == 1)[0] # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = bbox_overlaps( np.ascontiguousarray(rois[ex_inds, :], dtype=np.float), np.ascontiguousarray(rois[gt_inds, :], dtype=np.float)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] targets = np.zeros((rois.shape[0], 5), dtype=np.float32) targets[ex_inds, 0] = labels[ex_inds] targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) return targets
def write_features_hdf5(train, valid, test): f = h5py.File(args.hdf5, "w") train_grp = f.create_group("train") train_x = train_grp.create_dataset("train_x", train[0].shape, dtype='f', compression="gzip", compression_opts=9) train_y = train_grp.create_dataset("train_y", train[1].shape, dtype='i', compression="gzip", compression_opts=9) valid_grp = f.create_group("valid") valid_x = valid_grp.create_dataset("valid_x", valid[0].shape, dtype='f', compression="gzip", compression_opts=9) valid_y = valid_grp.create_dataset("valid_y", valid[1].shape, dtype='i', compression="gzip", compression_opts=9) test_grp = f.create_group("test") test_x = test_grp.create_dataset("test_x", test[0].shape, dtype='f', compression="gzip", compression_opts=9) test_y = test_grp.create_dataset("test_y", test[1].shape, dtype='i', compression="gzip", compression_opts=9) train_x.write_direct(np.ascontiguousarray(train[0], dtype=train[0].dtype)) train_y.write_direct(np.ascontiguousarray(train[1], dtype=train[1].dtype)) valid_x.write_direct(np.ascontiguousarray(valid[0], dtype=valid[0].dtype)) valid_y.write_direct(np.ascontiguousarray(valid[1], dtype=valid[1].dtype)) test_x.write_direct(np.ascontiguousarray(test[0], dtype=test[0].dtype)) test_y.write_direct(np.ascontiguousarray(test[1], dtype=test[1].dtype)) f.close()
def preprocess_image(img, cuda=False): means=[0.485, 0.456, 0.406] stds=[0.229, 0.224, 0.225] preprocessed_img = img.copy()[: , :, ::-1] for i in range(3): preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i] preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i] preprocessed_img = \ np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1))) preprocessed_img = torch.from_numpy(preprocessed_img) preprocessed_img.unsqueeze_(0) if cuda: preprocessed_img = Variable(preprocessed_img.cuda(), requires_grad=True) else: preprocessed_img = Variable(preprocessed_img, requires_grad=True) return preprocessed_img
def find_boundary(mesh,vals,threshold=0.5): """ Find boundary points on the phase diagram where the switching probability = threshold """ boundary_points = [] durs = mesh.points[:,0] volts = mesh.points[:,1] indices, indptr = mesh.vertex_neighbor_vertices for k in range(len(vals)): for k_nb in indptr[indices[k]:indices[k+1]]: if (vals[k]-threshold)*(vals[k_nb]-threshold)<0: x0 = find_cross([durs[k],vals[k]],[durs[k_nb],vals[k_nb]],cut=threshold) y0 = find_cross([volts[k],vals[k]],[volts[k_nb],vals[k_nb]],cut=threshold) boundary_points.append([x0,y0]) boundary_points = np.array(boundary_points) if len(boundary_points) > 0: b = np.ascontiguousarray(boundary_points).view(np.dtype((np.void, boundary_points.dtype.itemsize * boundary_points.shape[1]))) _, idx = np.unique(b, return_index=True) boundary_points = boundary_points[idx] # Sort the boundary_points by x-axis boundary_points = sorted(boundary_points, key=itemgetter(0)) return np.array(boundary_points)
def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x, unique_inverse_y, calc_DKL=False): bins = bins.astype(np.float32) num_of_bins = bins.shape[0] # bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins)) # hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True) digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1) b2 = np.ascontiguousarray(digitized).view( np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1]))) unique_array, unique_inverse_t, unique_counts = \ np.unique(b2, return_index=False, return_inverse=True, return_counts=True) p_ts = unique_counts / float(sum(unique_counts)) PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T if calc_DKL: pxy_given_T = np.array( [calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))] ) p_XgT = np.vstack(pxy_given_T[:, 0]) p_YgT = pxy_given_T[:, 1] p_YgT = np.vstack(p_YgT).T DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0) H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1) local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y, unique_array) return local_IXT, local_ITY
def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs): iter_infomration = [] for j in range(len(ws_iter_index)): data = ws_iter_index[j] new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1])) labels = np.zeros((num_of_samples * label.shape[0], label.shape[1])) x = np.zeros((num_of_samples * data.shape[0], 2)) for i in range(data.shape[0]): cov_matrix = np.eye(data[i, :].shape[0]) * sigma t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples) new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :] x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1]))) unique_array, unique_indices, unique_inverse_x, unique_counts = \ np.unique(b, return_index=True, return_inverse=True, return_counts=True) b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1]))) unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \ np.unique(b_y, return_index=True, return_inverse=True, return_counts=True) pys1 = unique_counts_y / float(np.sum(unique_counts_y)) iter_infomration.append( calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x, unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1)) params = np.array(iter_infomration) return params
def extract_probs(label, x): """calculate the probabilities of the given data and labels p(x), p(y) and (y|x)""" pys = np.sum(label, axis=0) / float(label.shape[0]) b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1]))) unique_array, unique_indices, unique_inverse_x, unique_counts = \ np.unique(b, return_index=True, return_inverse=True, return_counts=True) unique_a = x[unique_indices] b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1]))) pxs = unique_counts / float(np.sum(unique_counts)) p_y_given_x = [] for i in range(0, len(unique_array)): indexs = unique_inverse_x == i py_x_current = np.mean(label[indexs, :], axis=0) p_y_given_x.append(py_x_current) p_y_given_x = np.array(p_y_given_x).T b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1]))) unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \ np.unique(b_y, return_index=True, return_inverse=True, return_counts=True) pys1 = unique_counts_y / float(np.sum(unique_counts_y)) return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs
def to_coo(self, tensor_mode=False): userid, itemid, feedback = self.fields user_item_data = self.training[[userid, itemid]].values if tensor_mode: # TODO this recomputes feedback data every new functon call, # but if data has not changed - no need for this, make a property new_feedback, feedback_transform = self.reindex(self.training, feedback, inplace=False) self.index = self.index._replace(feedback=feedback_transform) idx = np.hstack((user_item_data, new_feedback[:, np.newaxis])) idx = np.ascontiguousarray(idx) val = np.ones(self.training.shape[0],) else: idx = user_item_data val = self.training[feedback].values shp = tuple(idx.max(axis=0) + 1) idx = idx.astype(np.intp) val = np.ascontiguousarray(val) return idx, val, shp
def swap_axis_to_0(x, axis): """Insert a new singleton axis at position 0 and swap it with the specified axis. The resulting array has an additional dimension, with ``axis`` + 1 (which was ``axis`` before the insertion of the new axis) of ``x`` at position 0, and a singleton axis at position ``axis`` + 1. Parameters ---------- x : ndarray Input array axis : int Index of axis in ``x`` to swap to axis index 0. Returns ------- arr : ndarray Output array """ return np.ascontiguousarray(np.swapaxes(x[np.newaxis, ...], 0, axis+1))
def write_tvl_direction_pairs(tvl_filename, tvl_header, direction_pairs): """Write the given directions to TVL. The direction pairs should be a list with lists containing the vector and value to write. For example: ((vec, val), (vec1, val1), ...) up to three pairs are allowed. Args: tvl_filename (str): the filename to write to tvl_header (:class:`list` or tuple): the header for the TVL file. This is a list of either 4 or 10 entries. 4 entries: [version, res, gap, offset] 10 entries: [version, x_res, x_gap, x_offset, y_res, y_gap, y_offset, z_res, z_gap, z_offset] direction_pairs (list of ndarrays): The list with direction pairs, only three are used. This is a list with (vector, magnitude) tuples in which the vectors are 4d volumes with for every voxel a 3d coordinate. """ direction_pairs = direction_pairs[0:3] dir_matrix = np.zeros(direction_pairs[0][0].shape[0:3] + (12,)) for ind, dirs in enumerate(direction_pairs): dir_matrix[..., ind*3:ind*3+3] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[0]))) dir_matrix[..., 9 + ind] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[1]))) TrackMark.write_tvl_matrix(tvl_filename, tvl_header, dir_matrix)
def read_bed_chunk(filepath, nrows, ncols, row_start, row_end, col_start, col_end): X = zeros((row_end - row_start, col_end - col_start), int64) ptr = ffi.cast("uint64_t *", X.ctypes.data) strides = empty(2, int64) strides[:] = X.strides strides //= 8 e = lib.read_bed_chunk(filepath, nrows, ncols, row_start, col_start, row_end, col_end, ptr, ffi.cast("uint64_t *", strides.ctypes.data)) if e != 0: raise RuntimeError("Failure while reading BED file %s." % filepath) X = ascontiguousarray(X, float) X[X == 3] = nan return X
def preprocess_image(img): means=[0.485, 0.456, 0.406] stds=[0.229, 0.224, 0.225] preprocessed_img = img.copy()[: , :, ::-1] for i in range(3): preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i] preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i] preprocessed_img = \ np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1))) if use_cuda: preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda() else: preprocessed_img_tensor = torch.from_numpy(preprocessed_img) preprocessed_img_tensor.unsqueeze_(0) return Variable(preprocessed_img_tensor, requires_grad = False)
def _sync_copyfrom(self, source_array): """Peform an synchronize copy from the array. Parameters ---------- source_array : array_like The data source we should like to copy from. """ if not isinstance(source_array, np.ndarray): try: source_array = np.array(source_array, dtype=np.float32) except: raise TypeError('array must be an array_like data,' + 'type %s is not supported' % str(type(source_array))) source_array = np.ascontiguousarray(source_array, dtype=np.float32) if source_array.shape != self.shape: raise ValueError('array shape do not match the shape of NDArray') source_arr, shape = NDArray._numpyasarray(source_array) check_call(_LIB.DLArrayCopyFromTo( ctypes.byref(source_arr), self.handle, None)) # de-allocate shape until now _ = shape
def console_fill_foreground(con,r,g,b) : if len(r) != len(g) or len(r) != len(b): raise TypeError('R, G and B must all have the same size.') if (numpy_available and isinstance(r, numpy.ndarray) and isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)): #numpy arrays, use numpy's ctypes functions r = numpy.ascontiguousarray(r, dtype=numpy.int32) g = numpy.ascontiguousarray(g, dtype=numpy.int32) b = numpy.ascontiguousarray(b, dtype=numpy.int32) cr = r.ctypes.data_as(POINTER(c_int)) cg = g.ctypes.data_as(POINTER(c_int)) cb = b.ctypes.data_as(POINTER(c_int)) else: # otherwise convert using ctypes arrays cr = (c_int * len(r))(*r) cg = (c_int * len(g))(*g) cb = (c_int * len(b))(*b) _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) : if len(r) != len(g) or len(r) != len(b): raise TypeError('R, G and B must all have the same size.') if (numpy_available and isinstance(r, numpy.ndarray) and isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)): #numpy arrays, use numpy's ctypes functions r = numpy.ascontiguousarray(r, dtype=numpy.int32) g = numpy.ascontiguousarray(g, dtype=numpy.int32) b = numpy.ascontiguousarray(b, dtype=numpy.int32) cr = r.ctypes.data_as(POINTER(c_int)) cg = g.ctypes.data_as(POINTER(c_int)) cb = b.ctypes.data_as(POINTER(c_int)) else: # otherwise convert using ctypes arrays cr = (c_int * len(r))(*r) cg = (c_int * len(g))(*g) cb = (c_int * len(b))(*b) _lib.TCOD_console_fill_background(con, cr, cg, cb)
def c_correlation(ar1,ar2,ax=0,dx=1.): lib = ctypes.cdll.LoadLibrary('/home/tulasi/P3D-PLASMA-PIC/p3dpy/helloworld.so') func = lib.c_correlation func.restype = None func.argtypes = [ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), #ar1 ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), #ar2 ctypes.c_double, #dx ctypes.c_int, #nlen ctypes.c_int, #nx ctypes.c_int, #ny ctypes.c_int, #nz ctypes.c_int, #ax ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), #r ndpointer(ctypes.c_double, flags="C_CONTIGUOUS")] #corr # nlen finds the length of the array in the specified direction nlen=np.shape(ar2)[ax]/2; nx=np.shape(ar1)[0]; ny=np.shape(ar1)[1]; nz=np.shape(ar1)[2] r=np.zeros(nlen);corr=np.zeros(nlen) func(np.ascontiguousarray(ar1),np.ascontiguousarray(ar2),dx,nlen,nx,ny,nz,ax,r,corr) # func(ar1,ar2,dx,nlen,nx,ny,nz,ax,r,corr) return r,corr
def _scale_data_to_float32(self, data): ''' This function will convert data from local data dtype into float32, the default format of the algorithm ''' if self.data_dtype != numpy.float32: data = data.astype(numpy.float32) if self.dtype_offset != 0: data -= self.dtype_offset if numpy.any(self.gain != 1): data *= self.gain return numpy.ascontiguousarray(data)
def _masks_as_c_order(masks): masks = masks.transpose((2, 0, 1)) masks = np.ascontiguousarray(masks) return masks
def upload_boss_image(self, img, offset): shape = Vec(*img.shape[:3]) offset = Vec(*offset) bounds = Bbox(offset, shape + offset) if bounds.volume() < 1: raise EmptyRequestException('Requested less than one pixel of volume. {}'.format(bounds)) x_rng = [ bounds.minpt.x, bounds.maxpt.x ] y_rng = [ bounds.minpt.y, bounds.maxpt.y ] z_rng = [ bounds.minpt.z, bounds.maxpt.z ] layer_type = 'image' if self.layer_type == 'unknown' else self.layer_type chan = ChannelResource( collection_name=self.path.bucket, experiment_name=self.path.dataset, name=self.path.layer, # Channel type=layer_type, datatype=self.dtype, ) if img.shape[3] == 1: img = img.reshape( img.shape[:3] ) rmt = BossRemote(boss_credentials) img = img.T img = np.ascontiguousarray(img.astype(self.dtype)) rmt.create_cutout(chan, self.mip, x_rng, y_rng, z_rng, img)
def __new__(cls, buf, dataset_name, layer, mip, layer_type, bounds, *args, **kwargs): return super(VolumeCutout, cls).__new__(cls, shape=buf.shape, buffer=np.ascontiguousarray(buf), dtype=buf.dtype)
def distinct(self): b = np.ascontiguousarray(self.solutions).view(np.dtype((np.void, self.solutions.dtype.itemsize * self.P))) _, unique_ind = np.unique(b, return_index = True) unique_ind = np.sort(unique_ind) new = self.copy() new.objvals = self.objvals[unique_ind] new.solutions = self.solutions[unique_ind] return new