Python numpy 模块,real() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.real()

项目:blind-watermark    作者:linyacool    | 项目源码 | 文件源码
def encode(img_path, wm_path, res_path, alpha):
    img = cv2.imread(img_path)
    img_f = np.fft.fft2(img)
    height, width, channel = np.shape(img)
    watermark = cv2.imread(wm_path)
    wm_height, wm_width = watermark.shape[0], watermark.shape[1]
    x, y = range(height / 2), range(width)
    random.seed(height + width)
    random.shuffle(x)
    random.shuffle(y)
    tmp = np.zeros(img.shape)
    for i in range(height / 2):
        for j in range(width):
            if x[i] < wm_height and y[j] < wm_width:
                tmp[i][j] = watermark[x[i]][y[j]]
                tmp[height - 1 - i][width - 1 - j] = tmp[i][j]
    res_f = img_f + alpha * tmp
    res = np.fft.ifft2(res_f)
    res = np.real(res)
    cv2.imwrite(res_path, res, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def quaternion_real(quaternion):
    """Return real part of quaternion.

    >>> quaternion_real([3, 0, 1, 2])
    3.0

    """
    return float(quaternion[0])
项目:rca-evaluation    作者:sieve-microservices    | 项目源码 | 文件源码
def _ncc_c(x, y):
    """
    >>> _ncc_c([1,2,3,4], [1,2,3,4])
    array([ 0.13333333,  0.36666667,  0.66666667,  1.        ,  0.66666667,
            0.36666667,  0.13333333])
    >>> _ncc_c([1,1,1], [1,1,1])
    array([ 0.33333333,  0.66666667,  1.        ,  0.66666667,  0.33333333])
    >>> _ncc_c([1,2,3], [-1,-1,-1])
    array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
    """
    den = np.array(norm(x) * norm(y))
    den[den == 0] = np.Inf

    x_len = len(x)
    fft_size = 1<<(2*x_len-1).bit_length()
    cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
    cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
    return np.real(cc) / den
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1), dtype=numpy.float32))
    return sn
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def kaiser_bessel_ft(u, J, alpha, kb_m, d):
    '''
    Interpolation weight for given J/alpha/kb-m
    '''

    u = u * (1.0 + 0.0j)
    import scipy.special
    z = numpy.sqrt((2 * numpy.pi * (J / 2) * u) ** 2.0 - alpha ** 2.0)
    nu = d / 2 + kb_m
    y = ((2 * numpy.pi) ** (d / 2)) * ((J / 2) ** d) * (alpha ** kb_m) / \
        scipy.special.iv(kb_m, alpha) * scipy.special.jv(nu, z) / (z ** nu)
    y = numpy.real(y)
    return y
项目:mdct    作者:nils-werner    | 项目源码 | 文件源码
def mdct(x, odd=True):
    """ Calculate modified discrete cosine transform of input signal

    Parameters
    ----------
    X : array_like
        The input signal
    odd : boolean, optional
        Switch to oddly stacked transform. Defaults to :code:`True`.

    Returns
    -------
    out : array_like
        The output signal

    """
    return numpy.real(cmdct(x, odd=odd)) * numpy.sqrt(2)
项目:DenoiseAverage    作者:Pella86    | 项目源码 | 文件源码
def get_polar_t(self):
        mag = self.get_magnitude()
        sizeimg = np.real(self.imgfft).shape

        pol = np.zeros(sizeimg)
        for x in range(sizeimg[0]):
            for y in range(sizeimg[1]):
                my = y - sizeimg[1] / 2
                mx = x - sizeimg[0] / 2
                if mx != 0:
                    phi = np.arctan(my / float(mx))
                else:
                    phi = 0
                r   = np.sqrt(mx**2 + my **2)

                ix = map_range(phi, -np.pi, np.pi, sizeimg[0], 0)
                iy = map_range(r, 0, sizeimg[0], 0, sizeimg[1])

                if ix >= 0 and ix < sizeimg[0] and iy >= 0 and iy < sizeimg[1]:
                    pol[x][y] =  mag.data[int(ix)][int(iy)]    
        pol = MyImage(pol)
        pol.limit(1)
        return pol
项目:DenoiseAverage    作者:Pella86    | 项目源码 | 文件源码
def correlate(self, imgfft):
        #Very much related to the convolution theorem, the cross-correlation
        #theorem states that the Fourier transform of the cross-correlation of
        #two functions is equal to the product of the individual Fourier
        #transforms, where one of them has been complex conjugated:  


        if self.imgfft is not 0 or imgfft.imgfft is not 0:
            imgcj = np.conjugate(self.imgfft)
            imgft = imgfft.imgfft

            prod = deepcopy(imgcj)
            for x in range(imgcj.shape[0]):
                for y in range(imgcj.shape[0]):
                    prod[x][y] = imgcj[x][y] * imgft[x][y]

            cc = Corr( np.real(fft.ifft2(fft.fftshift(prod)))) # real image of the correlation

            # adjust to center
            cc.data = np.roll(cc.data, int(cc.data.shape[0] / 2), axis = 0)
            cc.data = np.roll(cc.data, int(cc.data.shape[1] / 2), axis = 1)
        else:
            raise FFTnotInit()
        return cc
项目:pyrsss    作者:butala    | 项目源码 | 文件源码
def operate(self, x):
        """
        Apply the separable filter to the signal vector *x*.
        """
        X = NP.fft.fftn(x, s=self.k_full)
        if NP.isrealobj(self.h) and NP.isrealobj(x):
            y = NP.real(NP.fft.ifftn(self.H * X))
        else:
            y = NP.fft.ifftn(self.H * X)

        if self.mode == 'full' or self.mode == 'circ':
            return y
        elif self.mode == 'valid':
            slice_list = []
            for i in range(self.ndim):
                if self.m[i]-1 == 0:
                    slice_list.append(slice(None, None, None))
                else:
                    slice_list.append(slice(self.m[i]-1, -(self.m[i]-1), None))
            return y[slice_list]
        else:
            assert(False)
项目:mpnum    作者:dseuss    | 项目源码 | 文件源码
def chain(mpas, astype=None):
    """Computes the tensor product of MPAs given in ``*args`` by adding more
    sites to the array.

    :param mpas: Iterable of MPAs in the order as they should appear in the
        chain
    :param astype: dtype of the returned MPA. If ``None``, use the type of the
        first MPA.
    :returns: MPA of length ``len(args[0]) + ... + len(args[-1])``

    .. todo:: Make this canonicalization aware
    .. todo:: Raise warning when casting complex to real dtype

    """
    mpas = iter(mpas)
    try:
        first = next(mpas)
    except StopIteration:
        raise ValueError('Argument `mpas` is an empty list')
    rest = (lt for mpa in mpas for lt in mpa.lt)
    if astype is None:
        astype = type(first)
    return astype(it.chain(first.lt, rest))
项目:droppy    作者:BV-DR    | 项目源码 | 文件源码
def fftDf( df , part = "abs") :
   #Handle series or DataFrame
   if type(df) == pd.Series :
      df = pd.DataFrame(df)
      ise = True
   else :
      ise = False
   res = pd.DataFrame( index = np.fft.rfftfreq( df.index.size, d = dx( df ) ) )
   for col in df.columns :
      if part == "abs" :
         res["FFT_"+col] = np.abs( np.fft.rfft(df[col]) )  / (0.5*df.index.size)
      elif part == "real" :
         res["FFT_"+col] = np.real( np.fft.rfft(df[col]) ) / (0.5*df.index.size)
      elif part == "imag" :
         res["FFT_"+col] = np.imag( np.fft.rfft(df[col]) ) / (0.5*df.index.size)
   if ise :
      return res.iloc[:,0]
   else :
      return res
项目:droppy    作者:BV-DR    | 项目源码 | 文件源码
def derivFFT(df, n=1  ) :
   """ Deriv a signal trought FFT, warning, edge can be a bit noisy...
   indexList : channel to derive
   n : order of derivation
   """
   deriv = []
   for iSig in range(df.shape[1]) :
      fft = np.fft.fft( df.values[:,iSig] )   #FFT
      freq = np.fft.fftfreq( df.shape[0] , dx(df) )

      from copy import deepcopy
      fft0 = deepcopy(fft)
      if n>0 :
         fft *= (1j * 2*pi* freq[:])**n                    #Derivation in frequency domain
      else :
         fft[-n:] *= (1j * 2*pi* freq[-n:])**n
         fft[0:-n] = 0.

      tts = np.real(np.fft.ifft(fft))
      tts -= tts[0]
      deriv.append( tts )    #Inverse FFT

   return pd.DataFrame( data = np.transpose(deriv), index = df.index , columns = [ "DerivFFT("+ x +")" for x in df.columns ]  )
项目:untwist    作者:IoSR-Surrey    | 项目源码 | 文件源码
def process(self, wave):
        wave.check_mono()
        if wave.sample_rate != self.sr:
            raise Exception("Wrong sample rate")                              
        n = int(np.ceil(2 * wave.num_frames / float(self.w_len)))
        m = (n + 1) * self.w_len / 2 
        swindow = self.make_signal_window(n)
        win_ratios = [self.window / swindow[t * self.w_len / 2 : 
            t * self.w_len / 2 + self.w_len] 
            for t in range(n)]
        wave = wave.zero_pad(0, int(m - wave.num_frames))
        wave = audio.Wave(signal.hilbert(wave), wave.sample_rate)        
        result = np.zeros((self.n_bins, n))

        for b in range(self.n_bins): 
            w = self.widths[b]
            wc = 1 / np.square(w + 1)
            filter = self.filters[b]
            band = fftfilt(filter, wave.zero_pad(0, int(2 * w))[:,0])
            band = band[int(w) : int(w + m), np.newaxis]    
            for t in range(n):
                frame = band[t * self.w_len / 2:
                             t * self.w_len / 2 + self.w_len,:] * win_ratios[t]
                result[b, t] =  wc * np.real(np.conj(np.dot(frame.conj().T, frame)))
        return audio.Spectrogram(result, self.sr, self.w_len, self.w_len / 2)
项目:dft    作者:rosenbrockc    | 项目源码 | 文件源码
def test_psi(adjcube):
    """Tests retrieval of the wave functions and eigenvalues.
    """
    from pydft.bases.fourier import psi, O, H
    cell = adjcube
    V = QHO(cell)
    W = W4(cell)
    Ns = W.shape[1]
    Psi, epsilon = psi(V, W, cell, forceR=False)

    #Make sure that the eigenvalues are real.
    assert np.sum(np.imag(epsilon)) < 1e-13

    checkI = np.dot(Psi.conjugate().T, O(Psi, cell))
    assert abs(np.sum(np.diag(checkI))-Ns) < 1e-13 # Should be the identity
    assert np.abs(np.sum(checkI)-Ns) < 1e-13

    checkD = np.dot(Psi.conjugate().T, H(V, Psi, cell))
    diagsum = np.sum(np.diag(checkD))
    assert np.abs(np.sum(checkD)-diagsum) < 1e-12 # Should be diagonal

    # Should match the diagonal elements of previous matrix
    assert np.allclose(np.diag(checkD), epsilon)
项目:dft    作者:rosenbrockc    | 项目源码 | 文件源码
def psi(V, W, cell, forceR=True):
    """Calculates the normalized wave functions using the basis coefficients.

    Args:
        V (pydft.potential.Potential): describing the potential for the
          particles.
        W (numpy.ndarray): wave function sample points.
        cell (pydft.geometry.Cell): describing the unit cell and sampling
          points.
        forceR (bool): forces the result to be real.
    """
    WN = Y(W, cell)
    mu = np.dot(WN.conjugate().T, H(V, WN, cell))
    epsilon, D = np.linalg.eig(mu)
    if forceR:
        epsilon = np.real(epsilon)

    return (np.dot(WN, D), epsilon)
项目:dft    作者:rosenbrockc    | 项目源码 | 文件源码
def Idag(v=None, cell=None):
    """Computes the complex conjugate of the `I` operator for Fourier basis.

    Args:
        v (numpy.ndarray): if None, then return the matrix :math:`\mathbb{I^\dag}`,
          else, return :math:`\mathbb{I^\dag}\cdot v`.
        cell (pydft.geometry.Cell): that describes the unit cell and
          sampling points for real and reciprocal space.
    """
    #It turns out that for Fourier, the complex conjugate only differs by a -1
    #on the i (symmetric in R and G), so that we can return J instead.
    cell = get_cell(cell)
    def ifft(X):
        FB = np.fft.ifftn(np.reshape(X, cell.S, order='F'))
        return np.reshape(FB, X.shape, order='F')
    return matprod(ifft, v)*np.prod(cell.S)
项目:dft    作者:rosenbrockc    | 项目源码 | 文件源码
def Jdag(v=None, cell=None):
    """Computes the complex conjugate of the `J` operator for Fourier basis.

    Args:
        v (numpy.ndarray): if None, then return the matrix :math:`\mathbb{J^\dag}`,
          else, return :math:`\mathbb{J^\dag}\cdot v`.
        cell (pydft.geometry.Cell): that describes the unit cell and
          sampling points for real and reciprocal space.
    """
    #It turns out that for Fourier, the complex conjugate only differs by a -1
    #on the i (symmetric in R and G), so that we can return I instead.
    cell = get_cell(cell)
    def fft(X):
        FF = np.fft.fftn(np.reshape(X, cell.S, order='F'))
        return np.reshape(FF, X.shape, order='F')
    return matprod(fft, v)/np.prod(cell.S)
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def plotProfileXZplane(Ax,X,Z,Hx,Hz,Flag):

    FS = 20

    if Flag == 'Hp':
        Ax.streamplot(X,Z,Hx,Hz,color='b',linewidth=3.5,arrowsize=2)
        Ax.set_title('Primary Field',fontsize=FS+6)
    elif Flag == 'Hs_real':
        Ax.streamplot(X,Z,Hx,Hz,color='r',linewidth=3.5,arrowsize=2)
        Ax.set_title('Secondary Field (real)',fontsize=FS+6)
    elif Flag == 'Hs_imag':
        Ax.streamplot(X,Z,Hx,Hz,color='r',linewidth=3.5,arrowsize=2)
        Ax.set_title('Secondary Field (imaginary)',fontsize=FS+6)

    Ax.set_xbound(np.min(X),np.max(X))
    Ax.set_ybound(np.min(Z),np.max(Z))
    Ax.set_xlabel('X [m]',fontsize=FS+2)
    Ax.set_ylabel('Z [m]',fontsize=FS+2,labelpad=-10)
    Ax.tick_params(labelsize=FS-2)
项目:blind-watermark    作者:linyacool    | 项目源码 | 文件源码
def decode(ori_path, img_path, res_path, alpha):
    ori = cv2.imread(ori_path)
    img = cv2.imread(img_path)
    ori_f = np.fft.fft2(ori)
    img_f = np.fft.fft2(img)
    height, width = ori.shape[0], ori.shape[1]
    watermark = (ori_f - img_f) / alpha
    watermark = np.real(watermark)
    res = np.zeros(watermark.shape)
    random.seed(height + width)
    x = range(height / 2)
    y = range(width)
    random.shuffle(x)
    random.shuffle(y)
    for i in range(height / 2):
        for j in range(width):
            res[x[i]][y[j]] = watermark[i][j]
    cv2.imwrite(res_path, res, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
项目:McMurchie-Davidson    作者:jjgoings    | 项目源码 | 文件源码
def genSpectra(time,dipole,signal):

    fw, frequency = pade(time,dipole)
    fw_sig, frequency = pade(time,signal,alternate=True)

    fw_re = np.real(fw)
    fw_im = np.imag(fw)
    fw_abs = fw_re**2 + fw_im**2

    #spectra = (fw_re*17.32)/(np.pi*field*damp_const)
    #spectra = (fw_re*17.32*514.220652)/(np.pi*field*damp_const)
    #numerator = np.imag((fw*np.conjugate(fw_sig)))
    numerator = np.imag(fw_abs*np.conjugate(fw_sig))
    #numerator = np.abs((fw*np.conjugate(fw_sig)))
    #numerator = np.abs(fw)
    denominator = np.real(np.conjugate(fw_sig)*fw_sig)
    #denominator = 1.0 
    spectra = ((4.0*27.21138602*2*frequency*np.pi*(numerator))/(3.0*137.036*denominator))
    spectra *= 1.0/100.0
    #plt.plot(frequency*27.2114,fourier)
    #plt.show()
    return frequency, spectra
项目:semantic-segmentation    作者:albertbuchard    | 项目源码 | 文件源码
def fft_convolve(X,Y, inv = 0):

    XF = np.fft.rfft2(X)
    YF = np.fft.rfft2(Y)
#    YF0 = np.copy(YF)
#    YF.imag = 0
#    XF.imag = 0
    if inv == 1:
 #       plt.imshow(np.real(YF)); plt.colorbar(); plt.show()
        YF = np.conj(YF)

    SF = XF*YF

    S = np.fft.irfft2(SF)
    n1,n2 = np.shape(S)

    S = np.roll(S,-n1/2+1,axis = 0)
    S = np.roll(S,-n2/2+1,axis = 1)

    return np.real(S)
项目:nimo    作者:wolfram2012    | 项目源码 | 文件源码
def __init__(self,jet,kernels,k,x,y,pt,subpixel):
        self.jet = jet
        self.kernels = kernels
        self.k = k
        self.x = x
        self.y = y

        re = np.real(jet)
        im = np.imag(jet)

        self.mag = np.sqrt(re*re + im*im)
        self.phase = np.arctan2(re,im)

        if subpixel:
            d = np.array([[pt.X()-x],[pt.Y()-y]])
            comp = np.dot(self.k,d)
            self.phase -= comp.flatten()
            self.jet = self.mag*np.exp(1.0j*self.phase)
项目:PedWorks    作者:BrnCPrz    | 项目源码 | 文件源码
def calculate_katz_centrality(graph):
    """
    Compute the katz centrality for nodes.
    """
    # if not graph.is_directed():
    #    raise nx.NetworkXError( \
    #       "katz_centrality() not defined for undirected graphs.")
    print "\n\tCalculating Katz Centrality..."
    print "\tWarning: This might take a long time larger pedigrees."
    g = graph
    A = nx.adjacency_matrix(g)
    from scipy import linalg as LA
    max_eign = float(np.real(max(LA.eigvals(A.todense()))))
    print "\t-Max.Eigenvalue(A) ", round(max_eign, 3)
    kt = nx.katz_centrality(g, tol=1.0e-4, alpha=1/max_eign-0.01, beta=1.0, max_iter=999999)
    nx.set_node_attributes(g, 'katz', kt)
    katz_sorted = sorted(kt.items(), key=itemgetter(1), reverse=True)
    for key, value in katz_sorted[0:10]:
        print "\t   > ", key, round(value, 4)
    return g, kt
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def cnvinv_gradfun(self, z, sz, y_gpu, alpha=0., beta=0.):
        """
        Computes gradient used for 'lbfgsb' mode of deconv method.
        See deconv for details.
        """

        if z.__class__ == np.ndarray:
            z = np.array(np.reshape(z,sz)).astype(np.float32)
            z_gpu = cua.to_gpu(z)            

        grad_gpu =  self.cnvtp(self.res_gpu)

        # Thikonov regularization
        # alpha > 0: Thikonov on the gradient of z
        if alpha > 0:
            grad_gpu += alpha * self.lz_gpu

        # beta  > 0: Thikonov on z
        if beta > 0:
            grad_gpu += beta * z_gpu

        grad = -np.real(grad_gpu.get())
        grad = grad.flatten()
        return grad.astype(np.float64)
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def psfScale(D, wavelength, pixSize):
  """
  Return the PSF scale appropriate for the required pixel size, wavelength and telescope diameter
  The aperture is padded by this amount; resultant pix scale is lambda/D/psf_scale, so for instance full frame 256 pix
  for 3.5 m at 532 nm is 256*5.32e-7/3.5/3 = 2.67 arcsec for psf_scale = 3

  Args:
      D (real): telescope diameter in m
      wavelength (real): wavelength in Angstrom
      pixSize (real): pixel size in arcsec

  Returns:
      real: psf scale
  """
  DInCm = D * 100.0
  wavelengthInCm = wavelength * 1e-8
  return 206265.0 * wavelengthInCm / (DInCm * pixSize)
项目:uncover-ml    作者:GeoscienceAustralia    | 项目源码 | 文件源码
def fwd_filter(img, S):
    img_w, img_h, ch = img.shape
    F = pad2(img)
    F.data[F.mask] = 0.  # make sure its zero-filled!

    # Forward transform
    specF = np.fft.fft2(F.data.astype(float), axes=(0, 1))
    specN = np.fft.fft2(1. - F.mask.astype(float), axes=(0, 1))
    specS = np.fft.fft2(S[::-1, ::-1])
    out = np.real(np.fft.ifft2(specF * specS[:, :, np.newaxis], axes=(0, 1)))
    norm = np.real(np.fft.ifft2(specN * specS[:, :, np.newaxis], axes=(0, 1)))
    eps = 1e-15
    norm = np.maximum(norm, eps)
    out /= norm
    out = out[-img_w:, -img_h:]
    out[img.mask] = 0.
    return np.ma.MaskedArray(data=out, mask=img.mask)
项目:uncover-ml    作者:GeoscienceAustralia    | 项目源码 | 文件源码
def kernel_impute(img, S):
    F = pad2(img)
    F.data[F.mask] = 0.  # make sure its zero-filled!
    img_w, img_h, img_ch = img.shape
    Q = S
    specF = np.fft.fft2(F.data.astype(float), axes=(0, 1))
    specN = np.fft.fft2(1. - F.mask.astype(float), axes=(0, 1))
    specQ = np.fft.fft2(Q[::-1, ::-1])
    numer = np.real(np.fft.ifft2(specF * specQ[:, :, np.newaxis], axes=(0, 1)))
    denom = np.real(np.fft.ifft2(specN * specQ[:, :, np.newaxis], axes=(0, 1)))
    eps = 1e-15
    fill = numer/(denom+eps)
    fill = fill[-img_w:, -img_h:]

    image = img.data.copy()

    # img = img.copy()
    image[img.mask] = fill[img.mask]
    mask = np.zeros_like(img.mask, dtype=bool)
    return np.ma.MaskedArray(data=image, mask=mask)
项目:MEEG_connectivity    作者:YingYang    | 项目源码 | 文件源码
def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E,  GL,
                     nu, V, prior_on = False):
    eps = 1E-13
    p = Phi.shape[0]
    n_ROI = len(sigma_J_list)
    Qu = Phi.dot(Phi.T)
    G_Sigma_G = np.zeros(MMT.shape)
    for i in range(n_ROI):
        G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
    cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) 
    inv_cov = np.linalg.inv(cov)    
    eigs = np.real(np.linalg.eigvals(cov)) + eps
    log_det_cov = np.sum(np.log(eigs))  
    result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
    if prior_on:
        inv_Q = np.linalg.inv(Qu)
        #det_Q = np.linalg.det(Qu)
        log_det_Q = np.sum(np.log(np.diag(Phi)**2))
        result =  result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
    return result

#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J
项目:MEEG_connectivity    作者:YingYang    | 项目源码 | 文件源码
def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E,  GL,
                     nu, V, prior_on = False):
    eps = 1E-13
    p = Phi.shape[0]
    n_ROI = len(sigma_J_list)
    Qu = Phi.dot(Phi.T)
    G_Sigma_G = np.zeros(MMT.shape)
    for i in range(n_ROI):
        G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
    cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) 
    inv_cov = np.linalg.inv(cov)    
    eigs = np.real(np.linalg.eigvals(cov)) + eps
    log_det_cov = np.sum(np.log(eigs))  
    result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
    if prior_on:
        inv_Q = np.linalg.inv(Qu)
        #det_Q = np.linalg.det(Qu)
        log_det_Q = np.sum(np.log(np.diag(Phi)**2))
        result =  result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
    return result

#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def __init__(self, qubit_names, quad="real"):
        super(PulseCalibration, self).__init__()
        self.qubit_names = qubit_names if isinstance(qubit_names, list) else [qubit_names]
        self.qubit     = [QubitFactory(qubit_name) for qubit_name in qubit_names] if isinstance(qubit_names, list) else QubitFactory(qubit_names)
        self.filename   = 'None'
        self.exp        = None
        self.axis_descriptor = None
        self.cw_mode    = False
        self.saved_settings = config.load_meas_file(config.meas_file)
        self.settings = deepcopy(self.saved_settings) #make a copy for used during calibration
        self.quad = quad
        if quad == "real":
            self.quad_fun = np.real
        elif quad == "imag":
            self.quad_fun = np.imag
        elif quad == "amp":
            self.quad_fun = np.abs
        elif quad == "phase":
            self.quad_fun = np.angle
        else:
            raise ValueError('Quadrature to calibrate must be one of ("real", "imag", "amp", "phase").')
        self.plot       = self.init_plot()
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def find_null_offset(xpts, powers, default=0.0):
    """Finds the offset corresponding to the minimum power using a fit to the measured data"""
    def model(x, a, b, c):
        return a*(x - b)**2 + c
    powers = np.power(10, powers/10.)
    min_idx = np.argmin(powers)
    try:
        fit = curve_fit(model, xpts, powers, p0=[1, xpts[min_idx], powers[min_idx]])
    except RuntimeError:
        logger.warning("Mixer null offset fit failed.")
        return default, np.zeros(len(powers))
    best_offset = np.real(fit[0][1])
    best_offset = np.minimum(best_offset, xpts[-1])
    best_offset = np.maximum(best_offset, xpts[0])
    xpts_fine = np.linspace(xpts[0],xpts[-1],101)
    fit_pts = np.array([np.real(model(x, *fit[0])) for x in xpts_fine])
    if min(fit_pts)<0: fit_pts-=min(fit_pts)-1e-10 #prevent log of a negative number
    return best_offset, xpts_fine, 10*np.log10(fit_pts)
项目:pyrpl    作者:lneuhaus    | 项目源码 | 文件源码
def make_layout(self):
        self.lay = QtWidgets.QHBoxLayout()
        self.lay.setContentsMargins(0, 0, 0, 0)
        self.real = FloatSpinBox(label=self.labeltext,
                                 min=self.minimum,
                                 max=self.maximum,
                                 increment=self.singleStep,
                                 log_increment=self.log_increment,
                                 halflife_seconds=self.halflife_seconds,
                                 decimals=self.decimals)
        self.imag = FloatSpinBox(label=self.labeltext,
                                 min=self.minimum,
                                 max=self.maximum,
                                 increment=self.singleStep,
                                 log_increment=self.log_increment,
                                 halflife_seconds=self.halflife_seconds,
                                 decimals=self.decimals)
        self.real.value_changed.connect(self.value_changed)
        self.lay.addWidget(self.real)
        self.label = QtWidgets.QLabel(" + j")
        self.lay.addWidget(self.label)
        self.imag.value_changed.connect(self.value_changed)
        self.lay.addWidget(self.imag)
        self.setLayout(self.lay)
        self.setFocusPolicy(QtCore.Qt.ClickFocus)
项目:integration-prototype    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def save_image(imager, grid_data, grid_norm, output_file):
    """Makes an image from gridded visibilities and saves it to a FITS file.

    Args:
        imager (oskar.Imager):          Handle to configured imager.
        grid_data (numpy.ndarray):      Final visibility grid.
        grid_norm (float):              Grid normalisation to apply.
        output_file (str):              Name of output FITS file to write.
    """
    # Make the image (take the FFT, normalise, and apply grid correction).
    imager.finalise_plane(grid_data, grid_norm)
    grid_data = numpy.real(grid_data)

    # Trim the image if required.
    border = (imager.plane_size - imager.image_size) // 2
    if border > 0:
        end = border + imager.image_size
        grid_data = grid_data[border:end, border:end]

    # Write the FITS file.
    hdr = fits.header.Header()
    fits.writeto(output_file, grid_data, hdr, clobber=True)
项目:integration-prototype    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def save_image(imager, grid_data, grid_norm, output_file):
    """Makes an image from gridded visibilities and saves it to a FITS file.

    Args:
        imager (oskar.Imager):          Handle to configured imager.
        grid_data (numpy.ndarray):      Final visibility grid.
        grid_norm (float):              Grid normalisation to apply.
        output_file (str):              Name of output FITS file to write.
    """
    # Make the image (take the FFT, normalise, and apply grid correction).
    imager.finalise_plane(grid_data, grid_norm)
    grid_data = numpy.real(grid_data)

    # Trim the image if required.
    border = (imager.plane_size - imager.image_size) // 2
    if border > 0:
        end = border + imager.image_size
        grid_data = grid_data[border:end, border:end]

    # Write the FITS file.
    hdr = fits.header.Header()
    fits.writeto(output_file, grid_data, hdr, clobber=True)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def show_image(im: Image, fig=None, title: str = '', pol=0, chan=0, cm='rainbow'):
    """ Show an Image with coordinates using matplotlib

    :param im:
    :param fig:
    :param title:
    :return:
    """
    import matplotlib.pyplot as plt

    assert isinstance(im, Image)
    if not fig:
        fig = plt.figure()
    plt.clf()
    fig.add_subplot(111, projection=im.wcs.sub(['longitude', 'latitude']))
    if len(im.data.shape) == 4:
        plt.imshow(numpy.real(im.data[chan, pol, :, :]), origin='lower', cmap=cm)
    elif len(im.data.shape) == 2:
        plt.imshow(numpy.real(im.data[:, :]), origin='lower', cmap=cm)
    plt.xlabel('RA---SIN')
    plt.ylabel('DEC--SIN')
    plt.title(title)
    plt.colorbar()
    return fig
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def convolve_convolve_scalestack(scalestack, img):
    """Convolve img by the specified scalestack, returning the resulting stack

    :param scalestack: stack containing the scales
    :param img: Image to be convolved
    :return: Twice convolved image [nscales, nscales, nx, ny]
    """

    nscales, nx, ny = scalestack.shape
    convolved_shape = [nscales, nscales, nx, ny]
    convolved = numpy.zeros(convolved_shape)
    ximg = numpy.fft.fftshift(numpy.fft.fft2(numpy.fft.fftshift(img)))

    xscaleshape = [nscales, nx, ny]
    xscale = numpy.zeros(xscaleshape, dtype='complex')
    for s in range(nscales):
        xscale[s] = numpy.fft.fftshift(numpy.fft.fft2(numpy.fft.fftshift(scalestack[s, ...])))

    for s in range(nscales):
        for p in range(nscales):
            xmult = ximg * xscale[p] * numpy.conjugate(xscale[s])
            convolved[s, p, ...] = numpy.real(numpy.fft.ifftshift(numpy.fft.ifft2(numpy.fft.ifftshift(xmult))))
    return convolved
项目:QGL    作者:BBN-Q    | 项目源码 | 文件源码
def plot_waveforms(waveforms, figTitle=''):
    channels = waveforms.keys()
    # plot
    plots = []
    for (ct, chan) in enumerate(channels):
        fig = bk.figure(title=figTitle + repr(chan),
                        plot_width=800,
                        plot_height=350,
                        y_range=[-1.05, 1.05],
                        x_axis_label=u'Time (?s)')
        fig.background_fill_color = config.plotBackground
        if config.gridColor:
            fig.xgrid.grid_line_color = config.gridColor
            fig.ygrid.grid_line_color = config.gridColor
        waveformToPlot = waveforms[chan]
        xpts = np.linspace(0, len(waveformToPlot) / chan.phys_chan.sampling_rate
                           / 1e-6, len(waveformToPlot))
        fig.line(xpts, np.real(waveformToPlot), color='red')
        fig.line(xpts, np.imag(waveformToPlot), color='blue')
        plots.append(fig)
    bk.show(column(*plots))
项目:QGL    作者:BBN-Q    | 项目源码 | 文件源码
def merge_waveform(n, chAB, chAm1, chAm2, chBm1, chBm2):
    '''
    Builds packed I and Q waveforms from the nth mini LL, merging in marker data.
    '''
    wfAB = np.array([], dtype=np.complex)
    for entry in chAB['linkList'][n % len(chAB['linkList'])]:
        if not entry.isTimeAmp:
            wfAB = np.append(wfAB, chAB['wfLib'][entry.key])
        else:
            wfAB = np.append(wfAB, chAB['wfLib'][entry.key][0] *
                             np.ones(entry.length * entry.repeat))

    wfAm1 = marker_waveform(chAm1['linkList'][n % len(chAm1['linkList'])],
                            chAm1['wfLib'])
    wfAm2 = marker_waveform(chAm2['linkList'][n % len(chAm2['linkList'])],
                            chAm2['wfLib'])
    wfBm1 = marker_waveform(chBm1['linkList'][n % len(chBm1['linkList'])],
                            chBm1['wfLib'])
    wfBm2 = marker_waveform(chBm2['linkList'][n % len(chBm2['linkList'])],
                            chBm2['wfLib'])

    wfA = pack_waveform(np.real(wfAB), wfAm1, wfAm2)
    wfB = pack_waveform(np.imag(wfAB), wfBm1, wfBm2)

    return wfA, wfB
项目:YellowFin_Pytorch    作者:JianGoForIt    | 项目源码 | 文件源码
def tune_everything(x0squared, C, T, gmin, gmax):
  # First tune based on dynamic range    
  if C==0:
    dr=gmax/gmin
    mustar=((np.sqrt(dr)-1)/(np.sqrt(dr)+1))**2
    alpha_star = (1+np.sqrt(mustar))**2/gmax

    return alpha_star,mustar

  dist_to_opt = x0squared
  grad_var = C
  max_curv = gmax
  min_curv = gmin
  const_fact = dist_to_opt * min_curv**2 / 2 / grad_var
  coef = [-1, 3, -(3 + const_fact), 1]
  roots = np.roots(coef)
  roots = roots[np.real(roots) > 0]
  roots = roots[np.real(roots) < 1]
  root = roots[np.argmin(np.imag(roots) ) ]

  assert root > 0 and root < 1 and np.absolute(root.imag) < 1e-6

  dr = max_curv / min_curv
  assert max_curv >= min_curv
  mu = max( ( (np.sqrt(dr) - 1) / (np.sqrt(dr) + 1) )**2, root**2)

  lr_min = (1 - np.sqrt(mu) )**2 / min_curv
  lr_max = (1 + np.sqrt(mu) )**2 / max_curv

  alpha_star = lr_min
  mustar = mu

  return alpha_star, mustar
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def reflection_from_matrix(matrix):
    """Return mirror plane point and normal vector from reflection matrix.

    >>> v0 = numpy.random.random(3) - 0.5
    >>> v1 = numpy.random.random(3) - 0.5
    >>> M0 = reflection_matrix(v0, v1)
    >>> point, normal = reflection_from_matrix(M0)
    >>> M1 = reflection_matrix(point, normal)
    >>> is_same_transform(M0, M1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    # normal: unit eigenvector corresponding to eigenvalue -1
    l, V = numpy.linalg.eig(M[:3, :3])
    i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
    normal = numpy.real(V[:, i[0]]).squeeze()
    # point: any unit eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(V[:, i[-1]]).squeeze()
    point /= point[3]
    return point, normal
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def rotation_from_matrix(matrix):
    """Return rotation angle and axis from rotation matrix.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> angle, direc, point = rotation_from_matrix(R0)
    >>> R1 = rotation_matrix(angle, direc, point)
    >>> is_same_transform(R0, R1)
    True

    """
    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
    R33 = R[:3, :3]
    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
    l, W = numpy.linalg.eig(R33.T)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    direction = numpy.real(W[:, i[-1]]).squeeze()
    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
    l, Q = numpy.linalg.eig(R)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(Q[:, i[-1]]).squeeze()
    point /= point[3]
    # rotation angle depending on direction
    cosa = (numpy.trace(R33) - 1.0) / 2.0
    if abs(direction[2]) > 1e-8:
        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
    elif abs(direction[1]) > 1e-8:
        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
    else:
        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
    angle = math.atan2(sina, cosa)
    return angle, direction, point
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def scale_from_matrix(matrix):
    """Return scaling factor, origin and direction from scaling matrix.

    >>> factor = random.random() * 10 - 5
    >>> origin = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> S0 = scale_matrix(factor, origin)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True
    >>> S0 = scale_matrix(factor, origin, direct)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    M33 = M[:3, :3]
    factor = numpy.trace(M33) - 2.0
    try:
        # direction: unit eigenvector corresponding to eigenvalue factor
        l, V = numpy.linalg.eig(M33)
        i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
        direction = numpy.real(V[:, i]).squeeze()
        direction /= vector_norm(direction)
    except IndexError:
        # uniform scaling
        factor = (factor + 2.0) / 3.0
        direction = None
    # origin: any eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no eigenvector corresponding to eigenvalue 1")
    origin = numpy.real(V[:, i[-1]]).squeeze()
    origin /= origin[3]
    return factor, origin, direction
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def reflection_from_matrix(matrix):
    """Return mirror plane point and normal vector from reflection matrix.

    >>> v0 = numpy.random.random(3) - 0.5
    >>> v1 = numpy.random.random(3) - 0.5
    >>> M0 = reflection_matrix(v0, v1)
    >>> point, normal = reflection_from_matrix(M0)
    >>> M1 = reflection_matrix(point, normal)
    >>> is_same_transform(M0, M1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    # normal: unit eigenvector corresponding to eigenvalue -1
    w, V = numpy.linalg.eig(M[:3, :3])
    i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
    normal = numpy.real(V[:, i[0]]).squeeze()
    # point: any unit eigenvector corresponding to eigenvalue 1
    w, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(V[:, i[-1]]).squeeze()
    point /= point[3]
    return point, normal
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def rotation_from_matrix(matrix):
    """Return rotation angle and axis from rotation matrix.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> angle, direc, point = rotation_from_matrix(R0)
    >>> R1 = rotation_matrix(angle, direc, point)
    >>> is_same_transform(R0, R1)
    True

    """
    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
    R33 = R[:3, :3]
    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, W = numpy.linalg.eig(R33.T)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    direction = numpy.real(W[:, i[-1]]).squeeze()
    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, Q = numpy.linalg.eig(R)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(Q[:, i[-1]]).squeeze()
    point /= point[3]
    # rotation angle depending on direction
    cosa = (numpy.trace(R33) - 1.0) / 2.0
    if abs(direction[2]) > 1e-8:
        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
    elif abs(direction[1]) > 1e-8:
        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
    else:
        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
    angle = math.atan2(sina, cosa)
    return angle, direction, point
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def scale_from_matrix(matrix):
    """Return scaling factor, origin and direction from scaling matrix.

    >>> factor = random.random() * 10 - 5
    >>> origin = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> S0 = scale_matrix(factor, origin)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True
    >>> S0 = scale_matrix(factor, origin, direct)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    M33 = M[:3, :3]
    factor = numpy.trace(M33) - 2.0
    try:
        # direction: unit eigenvector corresponding to eigenvalue factor
        w, V = numpy.linalg.eig(M33)
        i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0]
        direction = numpy.real(V[:, i]).squeeze()
        direction /= vector_norm(direction)
    except IndexError:
        # uniform scaling
        factor = (factor + 2.0) / 3.0
        direction = None
    # origin: any eigenvector corresponding to eigenvalue 1
    w, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no eigenvector corresponding to eigenvalue 1")
    origin = numpy.real(V[:, i[-1]]).squeeze()
    origin /= origin[3]
    return factor, origin, direction
项目:SLP-Annotator    作者:PhonologicalCorpusTools    | 项目源码 | 文件源码
def rotation_from_matrix(matrix):
    """Return rotation angle and axis from rotation matrix.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> angle, direc, point = rotation_from_matrix(R0)
    >>> R1 = rotation_matrix(angle, direc, point)
    >>> is_same_transform(R0, R1)
    True

    """
    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
    R33 = R[:3, :3]
    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, W = numpy.linalg.eig(R33.T)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    direction = numpy.real(W[:, i[-1]]).squeeze()
    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, Q = numpy.linalg.eig(R)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(Q[:, i[-1]]).squeeze()
    point /= point[3]
    # rotation angle depending on direction
    cosa = (numpy.trace(R33) - 1.0) / 2.0
    if abs(direction[2]) > 1e-8:
        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
    elif abs(direction[1]) > 1e-8:
        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
    else:
        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
    angle = math.atan2(sina, cosa)
    return angle, direction, point

# Function to translate handshape coding to degrees of rotation, adduction, flexion
项目:SLP-Annotator    作者:PhonologicalCorpusTools    | 项目源码 | 文件源码
def rotation_from_matrix(matrix):
    """Return rotation angle and axis from rotation matrix.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> angle, direc, point = rotation_from_matrix(R0)
    >>> R1 = rotation_matrix(angle, direc, point)
    >>> is_same_transform(R0, R1)
    True

    """
    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
    R33 = R[:3, :3]
    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, W = numpy.linalg.eig(R33.T)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    direction = numpy.real(W[:, i[-1]]).squeeze()
    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
    w, Q = numpy.linalg.eig(R)
    i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(Q[:, i[-1]]).squeeze()
    point /= point[3]
    # rotation angle depending on direction
    cosa = (numpy.trace(R33) - 1.0) / 2.0
    if abs(direction[2]) > 1e-8:
        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
    elif abs(direction[1]) > 1e-8:
        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
    else:
        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
    angle = math.atan2(sina, cosa)
    return angle, direction, point

# Function to translate handshape coding to degrees of rotation, adduction, flexion
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def nufft_alpha_kb_fit(N, J, K):
    '''
    find out parameters alpha and beta
    of scaling factor st['sn']
    Note, when J = 1 , alpha is hardwired as [1,0,0...]
    (uniform scaling factor)
    '''
    beta = 1
    Nmid = (N - 1.0) / 2.0
    if N > 40:
        L = 13
    else:
        L = numpy.ceil(N / 3)

    nlist = numpy.arange(0, N) * 1.0 - Nmid
    (kb_a, kb_m) = kaiser_bessel('string', J, 'best', 0, K / N)
    if J > 1:
        sn_kaiser = 1 / kaiser_bessel_ft(nlist / K, J, kb_a, kb_m, 1.0)
    elif J == 1:  # The case when samples are on regular grids
        sn_kaiser = numpy.ones((1, N), dtype=dtype)
    gam = 2 * numpy.pi / K
    X_ant = beta * gam * nlist.reshape((N, 1), order='F')
    X_post = numpy.arange(0, L + 1)
    X_post = X_post.reshape((1, L + 1), order='F')
    X = numpy.dot(X_ant, X_post)  # [N,L]
    X = numpy.cos(X)
    sn_kaiser = sn_kaiser.reshape((N, 1), order='F').conj()
    X = numpy.array(X, dtype=dtype)
    sn_kaiser = numpy.array(sn_kaiser, dtype=dtype)
    coef = numpy.linalg.lstsq(numpy.nan_to_num(X), numpy.nan_to_num(sn_kaiser))[0]  # (X \ sn_kaiser.H);
    alphas = coef
    if J > 1:
        alphas[0] = alphas[0]
        alphas[1:] = alphas[1:] / 2.0
    elif J == 1:  # cases on grids
        alphas[0] = 1.0
        alphas[1:] = 0.0
    alphas = numpy.real(alphas)
    return (alphas, beta)
项目:mbin    作者:fanglab    | 项目源码 | 文件源码
def init_bh_tsne(samples, workdir, no_dims=DEFAULT_NO_DIMS, initial_dims=INITIAL_DIMENSIONS, perplexity=DEFAULT_PERPLEXITY,
            theta=DEFAULT_THETA, randseed=EMPTY_SEED, verbose=False, use_pca=DEFAULT_USE_PCA, max_iter=DEFAULT_MAX_ITERATIONS):

    if use_pca:
        samples = samples - np.mean(samples, axis=0)
        cov_x = np.dot(np.transpose(samples), samples)
        [eig_val, eig_vec] = np.linalg.eig(cov_x)

        # sorting the eigen-values in the descending order
        eig_vec = eig_vec[:, eig_val.argsort()[::-1]]

        if initial_dims > len(eig_vec):
            initial_dims = len(eig_vec)

        # truncating the eigen-vectors matrix to keep the most important vectors
        eig_vec = np.real(eig_vec[:, :initial_dims])
        samples = np.dot(samples, eig_vec)

    # Assume that the dimensionality of the first sample is representative for
    #   the whole batch
    sample_dim = len(samples[0])
    sample_count = len(samples)

    # Note: The binary format used by bh_tsne is roughly the same as for
    #   vanilla tsne
    with open(path_join(workdir, 'data.dat'), 'wb') as data_file:
        # Write the bh_tsne header
        data_file.write(pack('iiddii', sample_count, sample_dim, theta, perplexity, no_dims, max_iter))
        # Then write the data
        for sample in samples:
            data_file.write(pack('{}d'.format(len(sample)), *sample))
        # Write random seed if specified
        if randseed != EMPTY_SEED:
            data_file.write(pack('i', randseed))
项目:autolab_core    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def reflection_from_matrix(matrix):
    """Return mirror plane point and normal vector from reflection matrix.

    >>> v0 = numpy.random.random(3) - 0.5
    >>> v1 = numpy.random.random(3) - 0.5
    >>> M0 = reflection_matrix(v0, v1)
    >>> point, normal = reflection_from_matrix(M0)
    >>> M1 = reflection_matrix(point, normal)
    >>> is_same_transform(M0, M1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    # normal: unit eigenvector corresponding to eigenvalue -1
    l, V = numpy.linalg.eig(M[:3, :3])
    i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
    normal = numpy.real(V[:, i[0]]).squeeze()
    # point: any unit eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(V[:, i[-1]]).squeeze()
    point /= point[3]
    return point, normal