我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.unravel_index()。
def _parse_action(self, action): move_type, y, x = np.unravel_index(action, (8, self.map_height, self.map_width)) start = y * self.map_width + x index = move_type % 4 if index == 0: end = start + self.map_width elif index == 1: end = start + 1 elif index == 2: end = start - self.map_width elif index == 3: end = start - 1 else: raise("invalid index") is_50 = True if move_type >= 4 else False return {'start': start, 'end': end, 'is50': is_50}
def is_valid_move(self, start, end, player_index): start_label = self.label_map.flat[start] if end < len(self.label_map.flat) and end >= 0: end_label = self.label_map.flat[end] else: return False index = start_label - 1 if player_index != None and (player_index != index): return False if self.army_map.flat[start] == 0: return False start_x, start_y = np.unravel_index(start, (self.map_height, self.map_width)) end_x, end_y = np.unravel_index(end, (self.map_height, self.map_width)) if abs(start_x - end_x) + abs(start_y - end_y) != 1: return False return True
def _sample_cond_single(rng, marginal_pmf, n_group, out, eps): """Single sample from conditional probab. (call :func:`self.sample`)""" n_sites = len(marginal_pmf[-1]) # Probability of the incomplete output. Empty output has unit probab. out_p = 1.0 # `n_out` sites of the output have been sampled. We will add # at most `n_group` sites to the output at a time. for n_out in range(0, n_sites, n_group): # Select marginal probability distribution on (at most) # `n_out + n_group` sites. p = marginal_pmf[min(n_sites, n_out + n_group)] # Obtain conditional probab. from joint `p` and marginal `out_p` p = p.get(tuple(out[:n_out]) + (slice(None),) * (len(p) - n_out)) p = project_pmf(mp.prune(p).to_array() / out_p, eps, eps) # Sample from conditional probab. for next `n_group` sites choice = rng.choice(p.size, p=p.flat) out[n_out:n_out + n_group] = np.unravel_index(choice, p.shape) # Update probability of the partial output out_p *= np.prod(p.flat[choice]) # Verify we have the correct partial output probability p = marginal_pmf[-1].get(tuple(out)).to_array() assert abs(p - out_p) <= eps
def unpack_samples(self, samples): """Unpack samples into several integers per sample Inverse of :func:`MPPovm.pack_samples`. Example: >>> p = pauli_mpp(nr_sites=2, local_dim=2) >>> p.outdims (6, 6) >>> p.unpack_samples(np.array([0, 6, 7, 12])) array([[0, 0], [1, 0], [1, 1], [2, 0]], dtype=uint8) """ assert samples.ndim == 1 assert all(dim <= 255 for dim in self.outdims) return np.array(np.unravel_index(samples, self.nsoutdims)) \ .T.astype(np.uint8)
def batch_works(k): if k == n_processes - 1: paths = all_paths[k * int(len(all_paths) / n_processes) : ] else: paths = all_paths[k * int(len(all_paths) / n_processes) : (k + 1) * int(len(all_paths) / n_processes)] for path in paths: o_path = os.path.join(output_path, os.path.basename(path)) if not os.path.exists(o_path): os.makedirs(o_path) x, y, z = perturb_patch_locations(base_locs, patch_size / 16) probs = generate_patch_probs(path, (x, y, z), patch_size, image_size) selections = np.random.choice(range(len(probs)), size=patches_per_image, replace=False, p=probs) image = read_image(path) for num, sel in enumerate(selections): i, j, k = np.unravel_index(sel, (len(x), len(y), len(z))) patch = image[int(x[i] - patch_size / 2) : int(x[i] + patch_size / 2), int(y[j] - patch_size / 2) : int(y[j] + patch_size / 2), int(z[k] - patch_size / 2) : int(z[k] + patch_size / 2), :] f = os.path.join(o_path, str(num)) np.save(f, patch)
def __process_path__(self, path, next_move_only=True): if len(path) != 0: path = path[:-1] print("[INFO] Received path: %s" % (path)) path_list = [] for a in path.split('.'): path_list.append(int(a)) path_list = np.unravel_index(path_list, self.imsize) solution_list = [] for i in xrange(path_list[0].shape[0]): solution_list.append((path_list[0][i], path_list[1][i])) if next_move_only: return False, solution_list[1] else: return False, solution_list else: print("[ERROR] Errors found while running dstar algorithm.") return True
def __init__(self): self.shape = (4, 12) nS = np.prod(self.shape) nA = 4 # Cliff Location self._cliff = np.zeros(self.shape, dtype=np.bool) self._cliff[3, 1:-1] = True # Calculate transition probabilities P = {} for s in range(nS): position = np.unravel_index(s, self.shape) P[s] = { a : [] for a in range(nA) } P[s][UP] = self._calculate_transition_prob(position, [-1, 0]) P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1]) P[s][DOWN] = self._calculate_transition_prob(position, [1, 0]) P[s][LEFT] = self._calculate_transition_prob(position, [0, -1]) # We always start in state (3, 0) isd = np.zeros(nS) isd[np.ravel_multi_index((3,0), self.shape)] = 1.0 super(CliffWalkingEnv, self).__init__(nS, nA, P, isd)
def _render(self, mode='human', close=False): if close: return outfile = StringIO() if mode == 'ansi' else sys.stdout for s in range(self.nS): position = np.unravel_index(s, self.shape) # print(self.s) if self.s == s: output = " x " elif position == (3,7): output = " T " else: output = " o " if position[1] == 0: output = output.lstrip() if position[1] == self.shape[1] - 1: output = output.rstrip() output += "\n" outfile.write(output) outfile.write("\n")
def joints_pred_numpy(self, img, coord = 'hm', thresh = 0.2, sess = None): """ Create Tensor for joint position prediction NON TRAINABLE TO CALL AFTER GENERATING GRAPH Notes: Not more efficient than Numpy, prefer Numpy for such operation! """ if sess is None: hm = self.HG.Session.run(self.HG.pred_sigmoid , feed_dict = {self.HG.img: img}) else: hm = sess.run(self.HG.pred_sigmoid , feed_dict = {self.HG.img: img}) joints = -1*np.ones(shape = (self.params['num_joints'], 2)) for i in range(self.params['num_joints']): index = np.unravel_index(hm[0,:,:,i].argmax(), (self.params['hm_size'],self.params['hm_size'])) if hm[0,index[0], index[1],i] > thresh: if coord == 'hm': joints[i] = np.array(index) elif coord == 'img': joints[i] = np.array(index) * self.params['img_size'] / self.params['hm_size'] return joints
def get_i_j(lats, lons, lat, lon): """ Finds the nearest neighbour in a lat lon grid. If the point is outside the grid, the nearest point within the grid is still returned. Arguments: lats (np.array): 2D array of latitudes lons (np.array): 2D array of longitude lat (float): Loopup latitude lon (float): Loopup longitude Returns: I (int): First index into lats/lons arrays J (int): Second index into lats/lons arrays """ dist = distance(lat, lon, lats, lons) indices = np.unravel_index(dist.argmin(), dist.shape) X = lats.shape[0] Y = lats.shape[1] I = indices[0] J = indices[1] if(indices[0] == 0 or indices[0] >= X-1 or indices[1] == 0 or indices[1] >= Y-1): debug("Lat/lon %g,%g outside grid" % (lat, lon)) return I, J
def find_beam_position_blur(z, sigma=30): """Estimate direct beam position by blurring the image with a large Gaussian kernel and finding the maximum. Parameters ---------- sigma : float Sigma value for Gaussian blurring kernel. Returns ------- center : np.array np.array containing indices of estimated direct beam positon. """ blurred = ndi.gaussian_filter(z, sigma) center = np.unravel_index(blurred.argmax(), blurred.shape) return np.array(center)
def smallest_k(matrix: np.ndarray, k: int, only_first_row: bool = False) -> Tuple[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ Find the smallest elements in a numpy matrix. :param matrix: Any matrix. :param k: The number of smallest elements to return. :param only_first_row: If true the search is constrained to the first row of the matrix. :return: The row indices, column indices and values of the k smallest items in matrix. """ if only_first_row: flatten = matrix[:1, :].flatten() else: flatten = matrix.flatten() # args are the indices in flatten of the k smallest elements args = np.argpartition(flatten, k)[:k] # args are the indices in flatten of the sorted k smallest elements args = args[np.argsort(flatten[args])] # flatten[args] are the values for args return np.unravel_index(args, matrix.shape), flatten[args]
def smallest_k_mx(matrix: mx.nd.NDArray, k: int, only_first_row: bool = False) -> Tuple[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ Find the smallest elements in a NDarray. :param matrix: Any matrix. :param k: The number of smallest elements to return. :param only_first_row: If True the search is constrained to the first row of the matrix. :return: The row indices, column indices and values of the k smallest items in matrix. """ if only_first_row: matrix = mx.nd.reshape(matrix[0], shape=(1, -1)) # pylint: disable=unbalanced-tuple-unpacking values, indices = mx.nd.topk(matrix, axis=None, k=k, ret_typ='both', is_ascend=True) return np.unravel_index(indices.astype(np.int32).asnumpy(), matrix.shape), values
def partition_index_2d(self, axis): if not self._distributed: return False, self.index.grid_collection(self.center, self.index.grids) xax = self.ds.coordinates.x_axis[axis] yax = self.ds.coordinates.y_axis[axis] cc = MPI.Compute_dims(self.comm.size, 2) mi = self.comm.rank cx, cy = np.unravel_index(mi, cc) x = np.mgrid[0:1:(cc[0]+1)*1j][cx:cx+2] y = np.mgrid[0:1:(cc[1]+1)*1j][cy:cy+2] DLE, DRE = self.ds.domain_left_edge.copy(), self.ds.domain_right_edge.copy() LE = np.ones(3, dtype='float64') * DLE RE = np.ones(3, dtype='float64') * DRE LE[xax] = x[0] * (DRE[xax]-DLE[xax]) + DLE[xax] RE[xax] = x[1] * (DRE[xax]-DLE[xax]) + DLE[xax] LE[yax] = y[0] * (DRE[yax]-DLE[yax]) + DLE[yax] RE[yax] = y[1] * (DRE[yax]-DLE[yax]) + DLE[yax] mylog.debug("Dimensions: %s %s", LE, RE) reg = self.ds.region(self.center, LE, RE) return True, reg
def _unravel_flat_index(self, i): """Unravels a flat index i to multi-indexes. :param i: Flat index :type i: int or slice :rtype: Tuple of np.array :raises IndexError: If the index is out of bounds """ # i is int => make sure we deal with negative i properly # i is slice => use i.indices to compute the actual indices total = len(self) if isinstance(i, int): indexes = [i] if i >= 0 else [total + i] else: indexes = list(range(*i.indices(total))) # Convert to multi-indexes try: unraveled = np.unravel_index(indexes, self.controlpoints.shape[:-1], order='F') except ValueError: raise IndexError return unraveled
def estimateBackgroundLevel(img, image_is_artefact_free=False, min_rel_size=0.05, max_abs_size=11): ''' estimate background level through finding the most homogeneous area and take its average min_size - relative size of the examined area ''' s0,s1 = img.shape[:2] s = min(max_abs_size, int(max(s0,s1)*min_rel_size)) arr = np.zeros(shape=(s0-2*s, s1-2*s), dtype=img.dtype) #fill arr: _spatialStd(img, arr, s) #most homogeneous area: i,j = np.unravel_index(arr.argmin(), arr.shape) sub = img[int(i+0.5*s):int(i+s*1.5), int(j+s*0.5):int(j+s*1.5)] return np.median(sub)
def _pixel_select(self, event): x, y = event.xdata, event.ydata # get index by assuming even spacing # TODO use kdtree? diff = np.hypot((self.x_pos - x), (self.y_pos - y)) y_ind, x_ind = np.unravel_index(np.argmin(diff), diff.shape) # get the spectrum for this point new_y_data = self.counts[y_ind, x_ind, :] self.mask = np.zeros(self.x_pos.shape, dtype='bool') self.mask[y_ind, x_ind] = True self.mask_im.set_data(self._overlay_image) self._pixel_txt.set_text( 'pixel: [{:d}, {:d}] ({:.3g}, {:.3g})'.format( y_ind, x_ind, self.x_pos[y_ind, x_ind], self.y_pos[y_ind, x_ind])) self.spec.set_ydata(new_y_data) self.ax_spec.relim() self.ax_spec.autoscale(True, axis='y') self.fig.canvas.draw_idle()
def all_out_attack(self): cells_to_consider_moving = [] for square in itertools.chain.from_iterable(self.squares): # Do we risk undoing a multi-move capture if we move a piece that's "STILL"? if square.owner == self.my_id and (square.move == -1 or square.move == STILL) and square.strength > (square.production * late_game_buildup_multiplier): cells_to_consider_moving.append(square) for square in cells_to_consider_moving: # # Find an enemy square to attack! # #if (square.x + square.y) % 2 == self.frame % 2: # value_map = numpy.zeros((self.width, self.height)) # #value_map += numpy.multiply(numpy.divide(self.influence_enemy_strength_map[3], self.dij_prod_distance_map[square.x, square.y]), self.combat_zone_map) # value_map += numpy.multiply(self.distance_map_no_decay[square.x, square.y], self.is_enemy_map) # tx, ty = numpy.unravel_index(value_map.argmax(), (self.width, self.height)) # target = self.squares[tx, ty] # square.move_to_target(target, False) self.find_nearest_non_npc_enemy_direction(square)
def update_value_maps(self): self.base_value_map = np.divide(self.production_map_01, self.strength_map_1) * (self.is_neutral_map - self.combat_zone_map) # Each neutral cell gets assigned to the closest border non-combat cell global_targets_indices = np.transpose(np.nonzero(self.is_neutral_map - self.combat_zone_map)) global_targets = [self.squares[c[0], c[1]] for c in global_targets_indices] self.global_border_map = np.zeros((self.w, self.h)) for g in global_targets: # Find the closest border square that routes to g gb_map = self.dij_recov_distance_map[g.x, g.y] * (self.border_map - self.combat_zone_map) gb_map[gb_map == 0] = 9999 tx, ty = np.unravel_index(gb_map.argmin(), (self.w, self.h)) self.global_border_map[tx, ty] += self.base_value_map[g.x, g.y] / self.dij_recov_distance_map[g.x, g.y, tx, ty] self.value_map = 1 / np.maximum(self.base_value_map + self.global_border_map * 1, 0.001) print_map(self.global_border_map, "global_border_") print_map(self.base_value_map, "base_value_") print_map(self.value_map, "value_map_")
def update_value_maps(self): base_value_map = np.divide(self.production_map_01, self.strength_map_1) * (self.is_neutral_map - self.combat_zone_map) # Each neutral cell gets assigned to the closest border non-combat cell global_targets_indices = np.transpose(np.nonzero(self.is_neutral_map - self.combat_zone_map)) global_targets = [self.squares[c[0], c[1]] for c in global_targets_indices] # border_squares_indices = np.transpose(np.nonzero(self.border_map - self.combat_zone_map)) # border_squares = [self.squares[c[0], c[1]] for c in border_squares_indices] global_border_map = np.zeros((self.w, self.h)) for g in global_targets: # Find the closest border square that routes to g gb_map = self.dij_recov_distance_map[g.x, g.y] * (self.border_map - self.combat_zone_map) gb_map[gb_map == 0] = 9999 tx, ty = np.unravel_index(gb_map.argmin(), (self.w, self.h)) global_border_map[tx, ty] += base_value_map[g.x, g.y] / self.dij_recov_distance_map[g.x, g.y, tx, ty] self.value_map = 1 / np.maximum(base_value_map + global_border_map * 1, 0.001) print_map(global_border_map, "global_border_") print_map(base_value_map, "base_value_") print_map(self.value_map, "value_map_")
def update_value_production_map(self): self.value_production_map = (self.border_map - self.combat_zone_map * (self.enemy_strength_map[1] == 0)) * self.recover_wtd_map #self.value_production_map = (self.border_map - self.combat_zone_map) * self.recover_wtd_map self.value_production_map[self.value_production_map == 0] = 9999 turns_left = self.max_turns - self.frame recover_threshold = turns_left * 0.6 self.value_production_map[self.value_production_map > recover_threshold] == 9999 bx, by = np.unravel_index(self.value_production_map.argmin(), (self.width, self.height)) best_cell_value = self.value_production_map[bx, by] avg_recov_threshold = 2 avg_map_recovery = np.sum(self.strength_map * self.border_map) / np.sum(self.production_map * self.border_map) self.value_production_map[self.value_production_map > (avg_recov_threshold * avg_map_recovery)] = 9999 if self.frame > 5 and self.my_production_sum / self.next_highest_production_sum > 1.1 and np.sum(self.combat_zone_map) > 2: self.value_production_map = np.ones((self.width, self.height)) * 9999
def update_value_maps(self): self.base_value_map = np.divide(self.strength_map, self.production_map_01) * (self.is_neutral_map - self.combat_zone_map) self.value_map = np.zeros((self.width, self.height)) cells_out = 5 num_cells = cells_out * (cells_out + 1) * 2 + 1 for x in range(self.width): for y in range(self.height): if self.is_neutral_map[x, y]: self.value_map += (self.distance_map_no_decay[x, y] + self.base_value_map[x, y]) * (self.distance_map_no_decay[x, y] <= cells_out) else: self.value_map += (self.distance_map_no_decay[x, y] + 100) * (self.distance_map_no_decay[x, y] <= cells_out) # Add in the cost to get to each square. self.global_search_map = np.copy(self.value_map) self.value_map /= num_cells for x in range(self.width): for y in range(self.height): temp_map = self.dij_recov_distance_map[x, y] * (self.is_owned_map == 1) temp_map[temp_map == 0] = 9999 tx, ty = np.unravel_index(temp_map.argmin(), (self.width, self.height)) self.global_search_map[x, y] += self.dij_recov_distance_map[x, y, tx, ty] print_map(self.value_map, "value_map_") print_map(self.global_search_map, "global_search_map_")
def update_value_maps(self): self.base_value_map = np.divide(self.production_map_01, self.strength_map_1) * (self.is_neutral_map - self.combat_zone_map) # Each neutral cell gets assigned to the closest border non-combat cell global_targets_indices = np.transpose(np.nonzero(self.is_neutral_map - self.combat_zone_map)) global_targets = [self.squares[c[0], c[1]] for c in global_targets_indices] # border_squares_indices = np.transpose(np.nonzero(self.border_map - self.combat_zone_map)) # border_squares = [self.squares[c[0], c[1]] for c in border_squares_indices] self.global_border_map = np.zeros((self.w, self.h)) for g in global_targets: # Find the closest border square that routes to g gb_map = self.dij_recov_distance_map[g.x, g.y] * (self.border_map - self.combat_zone_map) gb_map[gb_map == 0] = 9999 tx, ty = np.unravel_index(gb_map.argmin(), (self.w, self.h)) self.global_border_map[tx, ty] += self.base_value_map[g.x, g.y] / self.dij_recov_distance_map[g.x, g.y, tx, ty] self.value_map = 1 / np.maximum(self.base_value_map + self.global_border_map * 1, 0.001) print_map(self.global_border_map, "global_border_") print_map(self.base_value_map, "base_value_") print_map(self.value_map, "value_map_")
def process_batch(self, batch): """ Execution of an update step, infer cg_id from selectors, and pick corresponding computational graph, and apply batch to the CG. """ cg_id = self.get_cg_id_from_selectors(batch['src_selector'][0], batch['trg_selector'][0]) # Apply input replacement with <UNK> if necessary if self.drop_input[cg_id] > 0.0: num_els = numpy.prod(batch['source'].shape) num_reps = max(1, int(num_els * self.drop_input[cg_id])) replace_idx = numpy.random.choice(num_els, num_reps, replace=False) # TODO: set it according to unk_id in config batch['source'][numpy.unravel_index( replace_idx, batch['source'].shape)] = 1 ordered_batch = [batch[v.name] for v in self.algorithms[cg_id].inputs] # To save memory, we may combine f_update and f_grad_shared if self.f_grad_shareds[cg_id] is None: inps = [self.learning_rate] + ordered_batch cost = self.f_updates[cg_id](*inps) self._cost = ('cost_' + cg_id, cost) else: cost = self.f_grad_shareds[cg_id](*ordered_batch) self._cost = ('cost_' + cg_id, cost) self.f_updates[cg_id](self.learning_rate)
def make_gaussian_batch(heatmaps, size, fwhm): """ Make a square gaussian kernel. size is the length of a side of the square fwhm is full-width-half-maximum, which can be thought of as an effective radius. """ stride = heatmaps.shape[1] // size batch_datum = np.zeros(shape=(heatmaps.shape[0], size, size, heatmaps.shape[3])) for data_num in range(heatmaps.shape[0]): for joint_num in range(heatmaps.shape[3] - 1): heatmap = heatmaps[data_num, :, :, joint_num] center = np.unravel_index(np.argmax(heatmap), (heatmap.shape[0], heatmap.shape[1])) x = np.arange(0, size, 1, float) y = x[:, np.newaxis] if center is None: x0 = y0 = size * stride // 2 else: x0 = center[1] y0 = center[0] batch_datum[data_num, :, :, joint_num] = np.exp( -((x * stride - x0) ** 2 + (y * stride - y0) ** 2) / 2.0 / fwhm / fwhm) batch_datum[data_num, :, :, heatmaps.shape[3] - 1] = np.ones((size, size)) - np.amax( batch_datum[data_num, :, :, 0:heatmaps.shape[3] - 1], axis=2) return batch_datum
def backward(self, pre_grad, *args, **kwargs): new_h, new_w = self.out_shape[-2:] pool_h, pool_w = self.pool_size layer_grads = _zero(self.input_shape) if np.ndim(pre_grad) == 4: nb_batch, nb_axis, _, _ = pre_grad.shape for a in np.arange(nb_batch): for b in np.arange(nb_axis): for h in np.arange(new_h): for w in np.arange(new_w): patch = self.last_input[a, b, h:h + pool_h, w:w + pool_w] max_idx = np.unravel_index(patch.argmax(), patch.shape) h_shift, w_shift = h * pool_h + max_idx[0], w * pool_w + max_idx[1] layer_grads[a, b, h_shift, w_shift] = pre_grad[a, b, a, w] elif np.ndim(pre_grad) == 3: nb_batch, _, _ = pre_grad.shape for a in np.arange(nb_batch): for h in np.arange(new_h): for w in np.arange(new_w): patch = self.last_input[a, h:h + pool_h, w:w + pool_w] max_idx = np.unravel_index(patch.argmax(), patch.shape) h_shift, w_shift = h * pool_h + max_idx[0], w * pool_w + max_idx[1] layer_grads[a, h_shift, w_shift] = pre_grad[a, a, w] else: raise ValueError() return layer_grads
def riess_reject(n_c_ch, app_mag_err_c, sig_int_c, res, threshold = 2.7): res_scaled = np.zeros(res.shape) for i in range(0, len(n_c_ch)): res_scaled[i, 0: n_c_ch[i]] = np.abs(res[i, 0: n_c_ch[i]]) / \ np.sqrt(app_mag_err_c[i, 0: n_c_ch[i]] ** 2 + sig_int_c ** 2) to_rej = np.unravel_index(np.argmax(res_scaled), res.shape) if res_scaled[to_rej] > threshold: return to_rej else: return None
def gen_valid_move(move_index, label_map, army_map, dims): """Generate the top valid move given an output from network""" x1, y1, x2, y2 = 0, 0, 0, 0 move_half = False for i in range(moves.shape[0]): move = moves[i] if action_mask[move] == 0: break move_type, y1, x1 = np.unravel_index(move, (8, dims[0], dims[1])) index = move_type % 4 if index == 0: x2, y2 = x1, y1 + 1 elif index == 1: x2, y2 = x1 + 1, y1 elif index == 2: x2, y2 = x1, y1 - 1 elif index == 3: x2, y2 = x1 - 1, y1 move_half = True if move_type >= 4 else False if y2 < 0 or y2 >= dims[0] or x2 < 0 or x2 >= dims[1]: continue if not ( label_map[ y2, x2] == generals.MOUNTAIN) and ( army_map[ y1, x1] > 1): break return x1, y1, x2, y2, move_half
def find_peak(corr, method='gaussian'): """Peak detection algorithm switch After loading the correlation window an maximum finder is invoked. The correlation window is cut down to the necessary 9 points around the maximum. Afterwards the maximum is checked not to be close to the boarder of the correlation frame. This cropped window is used in along with the chosen method to interpolate the sub pixel shift. Each interpolation method returns a tuple with the sub pixel shift in x and y direction. The maximums position and the sub pixel shift are added and returned. If an error occurred during the sub pixel interpolation the shift is set to nan. Also if the interpolation method is unknown an exception in thrown. :param corr: correlation window :param method: peak finder algorithm (gaussian, centroid, parabolic, 9point) :raises: Sub pixel interpolation method not found :returns: shift in interrogation window """ i, j = np.unravel_index(corr.argmax(), corr.shape) if check_peak_position(corr, i, j) is False: return np.nan, np.nan window = corr[i-1:i+2, j-1:j+2] if method == 'gaussian': subpixel_interpolation = gaussian elif method == 'centroid': subpixel_interpolation = centroid elif method == 'parabolic': subpixel_interpolation = parabolic elif method == '9point': subpixel_interpolation = gaussian2D else: raise Exception('Sub pixel interpolation method not found!') try: dx, dy = subpixel_interpolation(window) except: return np.nan, np.nan else: return (i + dx, j + dy)
def _sample_direct(self, rng, state, mode, n_samples, out, eps): """Sample from full pmfilities (call :func:`self.sample`)""" pmf = self.pmf_as_array(state, mode, eps) choices = rng.choice(pmf.size, n_samples, p=pmf.flat) for pos, c in enumerate(np.unravel_index(choices, pmf.shape)): out[:, pos] = c
def test_array_orientation_consistency_tilt(): ''' The pupil array should be shaped as arr[x,y], as should the psf and MTF. A linear phase error in the pupil along y should cause a motion of the PSF in y. Specifically, for a positive-signed phase, that should cause a shift in the +y direction. ''' samples = 128 p = Seidel(W111=1, samples=samples) ps = PSF.from_pupil(p, 1) idx_y, idx_x = np.unravel_index(ps.data.argmax(), ps.data.shape) # row-major y, x assert idx_x == ps.center_x assert idx_y > ps.center_y
def nanargmax(a): idx = np.argmax(a, axis=None) multi_idx = np.unravel_index(idx, a.shape) if np.isnan(a[multi_idx]): nan_count = np.sum(np.isnan(a)) # In numpy < 1.8 use idx = np.argsort(a, axis=None)[-nan_count-1] idx = np.argpartition(a, -nan_count-1, axis=None)[-nan_count-1] multi_idx = np.unravel_index(idx, a.shape) return multi_idx
def create_world_from_grid(self, grid, im_size, start, goal): # Create gazebo world out of the grid scale = 0.75 # Add start box self.add_target_box_green(start[0], start[1]) # Add goal box self.add_target_box_red(goal[0], goal[1]) # Build walls around the field wall_width = 0.5 self.add_wall(scale*(im_size[0]-1)/2.0, 0, 0, scale*(im_size[0]-1), wall_width) self.add_wall(0, scale*(im_size[1]-1)/2.0, pi / 2.0, scale*(im_size[0]-1), wall_width) self.add_wall(scale*(im_size[0]-1), scale*(im_size[1]-1)/2.0, - pi / 2.0, scale*(im_size[0]-1), wall_width) self.add_wall(scale*(im_size[0]-1)/2.0, scale*(im_size[1]-1), pi, scale*(im_size[0]-1), wall_width) # Add asphalt self.add_tarmac(scale*(im_size[0]-1)/2.0, scale*(im_size[1]-1)/2.0, 0, scale*(im_size[0]-1), scale*(im_size[1]-1)) # Add cones wherever there should be obstacles i = 1 j = 1 obstacle_indices = np.where(grid != 1) unraveled_indices = np.unravel_index(obstacle_indices, im_size, order='C') for x in grid: if (grid[j+i*im_size[0]] != 1): self.add_cone(scale*j, scale*i) self.write() j += 1 if (j % (im_size[1]-1)) == 0: j = 1 i +=1 if (i == im_size[0]-1): break
def ind2sub(shape, inds): """From the given shape, returns the subscripts of the given index""" if type(inds) is not np.ndarray: inds = np.array(inds) assert len(inds.shape) == 1, ( 'Indexing must be done as a 1D row vector, e.g. [3,6,6,...]' ) return np.unravel_index(inds, shape, order='F')
def test_basic(self): assert_equal(np.unravel_index(2, (2, 2)), (1, 0)) assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2) assert_equal(np.unravel_index(254, (17, 94)), (2, 66)) assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254) assert_raises(ValueError, np.unravel_index, -1, (2, 2)) assert_raises(TypeError, np.unravel_index, 0.5, (2, 2)) assert_raises(ValueError, np.unravel_index, 4, (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2)) assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2)) assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4]) assert_equal( np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4) arr = np.array([[3, 6, 6], [4, 5, 1]]) assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37]) assert_equal( np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13]) assert_equal( np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19]) assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')), [12, 13, 13]) assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621) assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)), [[3, 6, 6], [4, 5, 1]]) assert_equal( np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'), [[3, 6, 6], [4, 5, 1]]) assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
def test_dtypes(self): # Test with different data types for dtype in [np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64]: coords = np.array( [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype) shape = (5, 8) uncoords = 8*coords[0]+coords[1] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*coords[1] assert_equal( np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) coords = np.array( [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], dtype=dtype) shape = (5, 8, 10) uncoords = 10*(8*coords[0]+coords[1])+coords[2] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*(coords[1]+8*coords[2]) assert_equal( np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
def compute(a, b): """ Compute an optimal displacement between two ndarrays. Finds the displacement between two ndimensional arrays. Arrays must be of the same size. Algorithm uses a cross correlation, computed efficiently through an n-dimensional fft. Parameters ---------- a : ndarray The first array b : ndarray The second array """ from numpy.fft import rfftn, irfftn from numpy import unravel_index, argmax # compute real-valued cross-correlation in fourier domain s = a.shape f = rfftn(a) f *= rfftn(b).conjugate() c = abs(irfftn(f, s)) # find location of maximum inds = unravel_index(argmax(c), s) # fix displacements that are greater than half the total size pairs = zip(inds, a.shape) # cast to basic python int for serialization adjusted = [int(d - n) if d > n // 2 else int(d) for (d, n) in pairs] return Displacement(adjusted)
def update_tracker(response,img_size,pos,HOG_flag,scale_factor=1): start_w,start_h = response.shape w,h = img_size px,py,ww,wh = pos res_pos = np.unravel_index(response.argmax(),response.shape) scale_w = 1.0*scale_factor*(ww*2)/start_w scale_h = 1.0*scale_factor*(wh*2)/start_h move = list(res_pos) if not HOG_flag: px_new = [px+1.0*move[0]*scale_w,px-(start_w-1.0*move[0])*scale_w][move[0]>start_w/2] py_new = [py+1.0*move[1]*scale_h,py-(start_h-1.0*move[1])*scale_h][move[1]>start_h/2] px_new = np.int(px_new) py_new = np.int(py_new) else: move[0] = np.floor(res_pos[0]/32.0*(2*ww)) move[1] = np.floor(res_pos[1]/32.0*(2*wh)) px_new = [px+move[0],px-(2*ww-move[0])][move[0]>ww] py_new = [py+move[1],py-(2*wh-move[1])][move[1]>wh] if px_new<0: px_new = 0 if px_new>w: px_new = w-1 if py_new<0: py_new = 0 if py_new>h: py_new = h-1 ww_new = np.ceil(ww*scale_factor) wh_new = np.ceil(wh*scale_factor) new_pos = (px_new,py_new,ww_new,wh_new) return new_pos
def act(self, observation, reward): """ Interact with and learn from the environment. Returns the suggested control vector. """ observation = np.ravel_multi_index(observation, self.input_shape) self.xp_q.update_reward(reward) action = self.best_action(observation) self.xp_q.add(observation, action) action = np.unravel_index(action, self.output_shape) return action
def stabilize(self, prior_columns, percent): """ This activates prior columns to force active in order to maintain the given percent of column overlap between time steps. Always call this between compute and learn! """ # num_active = (len(self.columns) + len(prior_columns)) / 2 num_active = len(self.columns) overlap = self.columns.overlap(prior_columns) stabile_columns = int(round(num_active * overlap)) target_columns = int(round(num_active * percent)) add_columns = target_columns - stabile_columns if add_columns <= 0: return eligable_columns = np.setdiff1d(prior_columns.flat_index, self.columns.flat_index) eligable_excite = self.raw_excitment[eligable_columns] selected_col_nums = np.argpartition(-eligable_excite, add_columns-1)[:add_columns] selected_columns = eligable_columns[selected_col_nums] selected_index = np.unravel_index(selected_columns, self.columns.dimensions) # Learn. Note: selected columns will learn twice. The previously # active segments learn now, the current most excited segments in the # method SP.learn(). # Or learn not at all if theres a bug in my code... # if self.multisegment: # if hasattr(self, 'prior_segment_excitement'): # segment_excitement = self.prior_segment_excitement[selected_index] # seg_idx = np.argmax(segment_excitement, axis=-1) # self.proximal.learn_outputs(input_sdr=input_sdr, # output_sdr=selected_index + (seg_idx,)) # self.prev_segment_excitement = self.segment_excitement # else: # 1/0 self.columns.flat_index = np.concatenate([self.columns.flat_index, selected_columns])
def _render(self, mode='human', close=False): if close: return outfile = StringIO() if mode == 'ansi' else sys.stdout for s in range(self.nS): position = np.unravel_index(s, self.shape) # print(self.s) if self.s == s: output = " x " elif position == (3,11): output = " T " elif self._cliff[position]: output = " C " else: output = " o " if position[1] == 0: output = output.lstrip() if position[1] == self.shape[1] - 1: output = output.rstrip() output += "\n" outfile.write(output) outfile.write("\n")
def __init__(self): self.shape = (7, 10) nS = np.prod(self.shape) nA = 4 # Wind strength winds = np.zeros(self.shape) winds[:,[3,4,5,8]] = 1 winds[:,[6,7]] = 2 # Calculate transition probabilities P = {} for s in range(nS): position = np.unravel_index(s, self.shape) P[s] = { a : [] for a in range(nA) } P[s][UP] = self._calculate_transition_prob(position, [-1, 0], winds) P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1], winds) P[s][DOWN] = self._calculate_transition_prob(position, [1, 0], winds) P[s][LEFT] = self._calculate_transition_prob(position, [0, -1], winds) # We always start in state (3, 0) isd = np.zeros(nS) isd[np.ravel_multi_index((3,0), self.shape)] = 1.0 super(WindyGridworldEnv, self).__init__(nS, nA, P, isd)
def argmax(a): """ Return unravelled index of the maximum param: a: array to be searched """ return numpy.unravel_index(a.argmax(), a.shape)
def find_max_abs_stack(stack, windowstack, couplingmatrix): """Find the location and value of the absolute maximum in this stack :param stack: stack to be searched :param windowstack: Window for the search :param couplingmatrix: Coupling matrix between difference scales :return: x, y, scale """ pabsmax = 0.0 pscale = 0 px = 0 py = 0 nscales = stack.shape[0] assert nscales > 0 pshape = [stack.shape[1], stack.shape[2]] for iscale in range(nscales): if windowstack is not None: resid = stack[iscale, :, :] * windowstack[iscale, :, :] / couplingmatrix[iscale, iscale] else: resid = stack[iscale, :, :] / couplingmatrix[iscale, iscale] # Find the peak in the scaled residual image mx, my = numpy.unravel_index(numpy.abs(resid).argmax(), pshape) # Is this the peak over all scales? thisabsmax = numpy.abs(resid[mx, my]) if thisabsmax > pabsmax: px = mx py = my pscale = iscale pabsmax = thisabsmax return px, py, pscale
def fit_gaussian(x, y, z_2d, save_fits=False): z = z_2d max_idx = np.unravel_index(z.argmax(), z.shape) max_row = max_idx[0] - 1 max_col = max_idx[1] - 1 z_max_row = z[max_row, :] z_max_col = z[:, max_col] A = z[max_row, max_col] p_guess_x = (A, x[max_col], 0.1*(x[-1] - x[0])) p_guess_y = (A, y[max_row], 0.1*(y[-1] - y[0])) coeffs_x, var_matrix_x = sciopt.curve_fit(gaussian, x, z_max_row, p_guess_x) coeffs_y, var_matrix_y = sciopt.curve_fit(gaussian, y, z_max_col, p_guess_y) c_x = (x[-1]-x[0])*(max_col+1)/x.size + x[0] c_y = (y[-1]-y[0])*(y.size-(max_row+1))/y.size + y[0] centre = (c_x, c_y) sigma = np.array([coeffs_x[2], coeffs_y[2]]) fwhm = 2.355 * sigma sigma_2 = 1.699 * fwhm if save_fits: with open('x_fit.dat', 'w') as fs: for c in np.c_[x, z_max_row, gaussian(x, *coeffs_x)]: s = ','.join([str(v) for v in c]) fs.write(s+'\n') with open('y_fit.dat', 'w') as fs: for c in np.c_[y, z_max_col, gaussian(y, *coeffs_y)]: s = ','.join([str(v) for v in c]) fs.write(s+'\n') return A, centre, sigma_2
def argmax(x): return np.unravel_index(x.argmax(), x.shape)
def get_test_tensor(self, test_data, shape, start, end): slice_idx = self._slice_test_data(test_data, start, end) num_users = end - start num_items = shape[1] num_fdbks = shape[2] slice_shp = (num_users, num_items, num_fdbks) idx_flat = np.ravel_multi_index(slice_idx, slice_shp) shp_flat = (num_users*num_items, num_fdbks) idx = np.unravel_index(idx_flat, shp_flat) val = np.ones_like(slice_idx[2]) test_tensor_unfolded = csr_matrix((val, idx), shape=shp_flat, dtype=val.dtype) return test_tensor_unfolded, slice_idx