Python numpy 模块,add() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.add()

项目:treecat    作者:posterior    | 项目源码 | 文件源码
def add_row(self, row_id):
        logger.debug('TreeCatTrainer.add_row %d', row_id)
        assert row_id not in self._added_rows, row_id
        self._added_rows.add(row_id)

        # These are used for scratch work, so we create them each step.
        np.add(self._vert_ss, self._vert_prior, out=self._vert_probs)
        np.add(self._feat_ss, self._feat_prior, out=self._feat_probs)
        np.add(self._meas_ss, self._meas_prior, out=self._meas_probs)

        treecat_add_row(
            self._table.feature_types,
            self._table.ragged_index,
            self._table.data[row_id, :],
            self._tree.tree_grid,
            self._program,
            self._assignments[row_id, :],
            self._vert_ss,
            self._edge_ss,
            self._feat_ss,
            self._meas_ss,
            self._vert_probs,
            self._edge_probs,
            self._feat_probs,
            self._meas_probs, )
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_out_parameter(self):
        """ Test that the kwargs ``out`` is correctly passed to reduction function """

        with self.subTest('axis = -1'):
            not_out = last(ireduce_ufunc(self.source, np.add, axis = -1))
            out = np.empty_like(self.source[0])
            last(ireduce_ufunc(self.source, ufunc = np.add, out = out))

            self.assertTrue(np.allclose(not_out, out))

        with self.subTest('axis != -1'):
            not_out = last(ireduce_ufunc(self.source, np.add, axis = 2))
            out = np.empty_like(self.source[0])
            from_out = last(ireduce_ufunc(self.source, ufunc = np.add, out = out, axis = 2))

            self.assertTrue(np.allclose(not_out, from_out))
项目:Tencent2017_Final_Rank28_code    作者:Dojocat-GO    | 项目源码 | 文件源码
def proc(csv_na,con):
    dicts=[]
    for i in range(0,len(con)):
        dicts.append(dict())
    sum=0
    f=csv.DictReader(open(csv_na))
    for rec in f:
        rec['single']='1'
        #print(csv_na,rec['clickTime'])
        label=int(rec['label'])
        for i in range(0,len(con)):
            k=rec[con[i][0]]+'#'+rec[con[i][1]]
            if dicts[i].__contains__(k):
                dicts[i][k]=np.add(dicts[i][k],[label,1])
            else:
                dicts[i][k]=[label,1]
        sum+=1
    return  dicts,sum
项目:OCR    作者:OrangeGuo    | 项目源码 | 文件源码
def train(self, training_data_array):
        for data in training_data_array:
            # ??????????
            y1 = np.dot(np.mat(self.theta1), np.mat(data.y0).T)
            sum1 = y1 + np.mat(self.input_layer_bias)
            y1 = self.sigmoid(sum1)

            y2 = np.dot(np.array(self.theta2), y1)
            y2 = np.add(y2, self.hidden_layer_bias)
            y2 = self.sigmoid(y2)

            # ??????????
            actual_vals = [0] * 10
            actual_vals[data.label] = 1
            output_errors = np.mat(actual_vals).T - np.mat(y2)
            hidden_errors = np.multiply(np.dot(np.mat(self.theta2).T, output_errors), self.sigmoid_prime(sum1))

            # ???????????
            self.theta1 += self.LEARNING_RATE * np.dot(np.mat(hidden_errors), np.mat(data.y0))
            self.theta2 += self.LEARNING_RATE * np.dot(np.mat(output_errors), np.mat(y1).T)
            self.hidden_layer_bias += self.LEARNING_RATE * output_errors
            self.input_layer_bias += self.LEARNING_RATE * hidden_errors
项目:nrc    作者:IcarPA-TBlab    | 项目源码 | 文件源码
def getComplexRepr(sequenza, K):
    """
    Crea la rappresentazione ottenuta dalla somma delle varie rappresentazioni 
    in una unica matrice. K e' la lista delle dimensioni dei k-mers.
    """
    m_init=getMatrice(sequenza, K[0])
    dim=2**K[-1]
    #out=np.zeros((dim, dim))
    for ki in K[1:]:
        m_init=espandiMatrice(m_init)
        # divido gli elementi per due per diminuire l'impatto dei termini 
        # piu' corti e quindi piu' comuni
        m_init /= 2.0
        temp=getMatrice(sequenza, ki)
        m_init=np.add(m_init,temp)
    return m_init
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_ufunc_override_normalize_signature(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # gh-5674
        class SomeClass(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return kw

        a = SomeClass()
        kw = np.add(a, [1])
        assert_('sig' not in kw and 'signature' not in kw)
        kw = np.add(a, [1], sig='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')
        kw = np.add(a, [1], signature='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_forced_sig(self):
        a = 0.5*np.arange(3, dtype='f8')
        assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
        assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
                                            casting='unsafe'), [0, 0, 1])

        b = np.zeros((3,), dtype='f8')
        np.add(a, 0.5, out=b)
        assert_equal(b, [0.5, 1, 1.5])
        b[:] = 0
        np.add(a, 0.5, sig='i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_safe_casting(self):
        # In old versions of numpy, in-place operations used the 'unsafe'
        # casting rules. In versions >= 1.10, 'same_kind' is the
        # default and an exception is raised instead of a warning.
        # when 'same_kind' is not satisfied.
        a = np.array([1, 2, 3], dtype=int)
        # Non-in-place addition is fine
        assert_array_equal(assert_no_warnings(np.add, a, 1.1),
                           [2.1, 3.1, 4.1])
        assert_raises(TypeError, np.add, a, 1.1, out=a)

        def add_inplace(a, b):
            a += b

        assert_raises(TypeError, add_inplace, a, 1.1)
        # Make sure that explicitly overriding the exception is allowed:
        assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe")
        assert_array_equal(a, [2, 3, 4])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _test_type_repr(self, t):
        finfo = np.finfo(t)
        last_fraction_bit_idx = finfo.nexp + finfo.nmant
        last_exponent_bit_idx = finfo.nexp
        storage_bytes = np.dtype(t).itemsize*8
        # could add some more types to the list below
        for which in ['small denorm', 'small norm']:
            # Values from http://en.wikipedia.org/wiki/IEEE_754
            constr = np.array([0x00]*storage_bytes, dtype=np.uint8)
            if which == 'small denorm':
                byte = last_fraction_bit_idx // 8
                bytebit = 7-(last_fraction_bit_idx % 8)
                constr[byte] = 1 << bytebit
            elif which == 'small norm':
                byte = last_exponent_bit_idx // 8
                bytebit = 7-(last_exponent_bit_idx % 8)
                constr[byte] = 1 << bytebit
            else:
                raise ValueError('hmm')
            val = constr.view(t)[0]
            val_repr = repr(val)
            val2 = t(eval(val_repr))
            if not (val2 == 0 and val < 1e-100):
                assert_equal(val, val2)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_datafriendly_add(self):
        # Test keeping data w/ (inplace) addition
        x = array([1, 2, 3], mask=[0, 0, 1])
        # Test add w/ scalar
        xx = x + 1
        assert_equal(xx.data, [2, 3, 3])
        assert_equal(xx.mask, [0, 0, 1])
        # Test iadd w/ scalar
        x += 1
        assert_equal(x.data, [2, 3, 3])
        assert_equal(x.mask, [0, 0, 1])
        # Test add w/ array
        x = array([1, 2, 3], mask=[0, 0, 1])
        xx = x + array([1, 2, 3], mask=[1, 0, 0])
        assert_equal(xx.data, [1, 4, 3])
        assert_equal(xx.mask, [1, 0, 1])
        # Test iadd w/ array
        x = array([1, 2, 3], mask=[0, 0, 1])
        x += array([1, 2, 3], mask=[1, 0, 0])
        assert_equal(x.data, [1, 4, 3])
        assert_equal(x.mask, [1, 0, 1])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testAddSumProd(self):
        # Test add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
        self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
        self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0)))
        self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
        self.assertTrue(eq(np.sum(x, 0), sum(x, 0)))
        self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0)))
        self.assertTrue(eq(np.product(x, 0), product(x, 0)))
        self.assertTrue(eq(np.product(filled(xm, 1), axis=0),
                           product(xm, axis=0)))
        if len(s) > 1:
            self.assertTrue(eq(np.concatenate((x, y), 1),
                               concatenate((xm, ym), 1)))
            self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
            self.assertTrue(eq(np.sum(x, 1), sum(x, 1)))
            self.assertTrue(eq(np.product(x, 1), product(x, 1)))
项目:bpy_lambda    作者:bcongdon    | 项目源码 | 文件源码
def _as_spline(curve, geometry):
        """
            add a spline into a blender curve
            @curve : blender curve
        """
        if hasattr(geometry, 'exterior'):
            # Polygon
            Io._add_spline(curve, geometry.exterior)
            for geom in geometry.interiors:
                Io._add_spline(curve, geom)
        elif hasattr(geometry, 'geoms'):
            # Multi and Collections
            for geom in geometry.geoms:
                Io._as_spline(curve, geom)
        else:
            # LinearRing, LineString and Shape
            Io._add_spline(curve, geometry)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_cputensor_fusion():
    """TODO."""
    M = ng.make_axis(length=1)
    N = ng.make_axis(length=3)

    np_a = np.array([[1, 2, 3]], dtype=np.float32)
    np_b = np.array([[3, 2, 1]], dtype=np.float32)
    np_d = np.multiply(np_b, np.add(np_a, 2))

    a = ng.constant(np_a, [M, N])
    b = ng.constant(np_b, [M, N])
    c = ng.constant(2)
    d = ng.multiply(b, ng.add(a, c))

    with executor(d) as ex:
        result = ex()
    print(result)
    assert np.array_equal(result, np_d)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_4d_elementwise(transformer_factory, input_axes):

    # Limiting maximum absolute value for tensors elements to 7.9.
    # See description in function test_exit_condition above

    is_flex = is_flex_factory(transformer_factory)
    clip_val = 7.9 if is_flex else 0

    x_val = rng.randn_abs_clip(input_axes, clip_max=clip_val)
    y_val = rng.randn_abs_clip(input_axes, clip_max=clip_val)
    x = ng.constant(x_val, input_axes)
    y = ng.constant(y_val, input_axes)

    out = ng.add(x, y)

    with executor(out) as ex:
        graph_val = ex()

    np_val = np.add(x_val, y_val)

    ng.testing.assert_allclose(graph_val, np_val, rtol=1e-4)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def discrete_uniform(self, low, high, quantum, axes, dtype=None):
        """
        Returns a tensor initialized with a discrete uniform distribution.

        Arguments:
            low: The lower limit of the values.
            high: The upper limit of the values.
            quantum: Distance between values.
            axes: The axes of the tensor.

        Returns:
            The tensor.

        """
        if dtype is None:
            dtype = self.dtype

        n = math.floor((high - low) / quantum)
        result = np.array(self.rng.random_integers(
            0, n, ng.make_axes(axes).lengths), dtype=dtype)
        np.multiply(result, quantum, result)
        np.add(result, low, result)
        return result
项目:BioIR    作者:nlpaueb    | 项目源码 | 文件源码
def get_centroid_idf(text, emb, idf, stopwords, D):
    # Computing Terms' Frequency
    tf = defaultdict(int)
    tokens = bioclean(text)
    for word in tokens:
        if word in emb and word not in stopwords:
            tf[word] += 1

    # Computing the centroid
    centroid = np.zeros((1, D))
    div = 0

    for word in tf:
        if word in idf:
            p = tf[word] * idf[word]
            centroid = np.add(centroid, emb[word]*p)
            div += p
    if div != 0:
        centroid = np.divide(centroid, div)
    return centroid
项目:LSTM_PIT    作者:snsun    | 项目源码 | 文件源码
def apply_cmvn(utt, mean, variance, reverse=False):
    """Apply mean and variance normalisation based on previously computed statistics.

    Args:
        utt: The utterance feature numpy matrix.
        stats: A numpy array containing the mean and variance statistics.
            The first row contains the sum of all the fautures and as a last
            element the total numbe of features. The second row contains the
            squared sum of the features and a zero at the end

    Returns:
        A numpy array containing the mean and variance normalized features
    """
    if not reverse:
        #return mean and variance normalised utterance
        return np.divide(np.subtract(utt, mean), np.sqrt(variance))
    else:
        #reversed normalization
        return np.add(np.multiply(utt, np.sqrt(variance)), mean)
项目:saliency    作者:shuuchen    | 项目源码 | 文件源码
def sumNormalizedFeatures(features, levels=9, startSize=(1983*8, 1088*8)):
    """
        Normalizes the feature maps in argument features and combines them into one.
        Arguments:
            features    : list of feature maps (images)
            levels      : the levels of the Gaussian pyramid used to
                            calculate the feature maps.
            startSize   : the base size of the Gaussian pyramit used to
                            calculate the feature maps.
        returns:
            a combined feature map.
    """
    commonWidth = startSize[0] / 2**(levels/2 - 1)
    commonHeight = startSize[1] / 2**(levels/2 - 1)
    commonSize = commonWidth, commonHeight
    logger.info("Size of conspicuity map: %s", commonSize)
    consp = N(cv2.resize(features[0][1], commonSize))
    for f in features[1:]:
        resized = N(cv2.resize(f[1], commonSize))
        consp = cv2.add(consp, resized)
    return consp
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_ufunc_override_normalize_signature(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # gh-5674
        class SomeClass(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return kw

        a = SomeClass()
        kw = np.add(a, [1])
        assert_('sig' not in kw and 'signature' not in kw)
        kw = np.add(a, [1], sig='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')
        kw = np.add(a, [1], signature='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_forced_sig(self):
        a = 0.5*np.arange(3, dtype='f8')
        assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
        assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
                                            casting='unsafe'), [0, 0, 1])

        b = np.zeros((3,), dtype='f8')
        np.add(a, 0.5, out=b)
        assert_equal(b, [0.5, 1, 1.5])
        b[:] = 0
        np.add(a, 0.5, sig='i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_safe_casting(self):
        # In old versions of numpy, in-place operations used the 'unsafe'
        # casting rules. In versions >= 1.10, 'same_kind' is the
        # default and an exception is raised instead of a warning.
        # when 'same_kind' is not satisfied.
        a = np.array([1, 2, 3], dtype=int)
        # Non-in-place addition is fine
        assert_array_equal(assert_no_warnings(np.add, a, 1.1),
                           [2.1, 3.1, 4.1])
        assert_raises(TypeError, np.add, a, 1.1, out=a)

        def add_inplace(a, b):
            a += b

        assert_raises(TypeError, add_inplace, a, 1.1)
        # Make sure that explicitly overriding the exception is allowed:
        assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe")
        assert_array_equal(a, [2, 3, 4])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _test_type_repr(self, t):
        finfo = np.finfo(t)
        last_fraction_bit_idx = finfo.nexp + finfo.nmant
        last_exponent_bit_idx = finfo.nexp
        storage_bytes = np.dtype(t).itemsize*8
        # could add some more types to the list below
        for which in ['small denorm', 'small norm']:
            # Values from http://en.wikipedia.org/wiki/IEEE_754
            constr = np.array([0x00]*storage_bytes, dtype=np.uint8)
            if which == 'small denorm':
                byte = last_fraction_bit_idx // 8
                bytebit = 7-(last_fraction_bit_idx % 8)
                constr[byte] = 1 << bytebit
            elif which == 'small norm':
                byte = last_exponent_bit_idx // 8
                bytebit = 7-(last_exponent_bit_idx % 8)
                constr[byte] = 1 << bytebit
            else:
                raise ValueError('hmm')
            val = constr.view(t)[0]
            val_repr = repr(val)
            val2 = t(eval(val_repr))
            if not (val2 == 0 and val < 1e-100):
                assert_equal(val, val2)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_datafriendly_add(self):
        # Test keeping data w/ (inplace) addition
        x = array([1, 2, 3], mask=[0, 0, 1])
        # Test add w/ scalar
        xx = x + 1
        assert_equal(xx.data, [2, 3, 3])
        assert_equal(xx.mask, [0, 0, 1])
        # Test iadd w/ scalar
        x += 1
        assert_equal(x.data, [2, 3, 3])
        assert_equal(x.mask, [0, 0, 1])
        # Test add w/ array
        x = array([1, 2, 3], mask=[0, 0, 1])
        xx = x + array([1, 2, 3], mask=[1, 0, 0])
        assert_equal(xx.data, [1, 4, 3])
        assert_equal(xx.mask, [1, 0, 1])
        # Test iadd w/ array
        x = array([1, 2, 3], mask=[0, 0, 1])
        x += array([1, 2, 3], mask=[1, 0, 0])
        assert_equal(x.data, [1, 4, 3])
        assert_equal(x.mask, [1, 0, 1])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_testAddSumProd(self):
        # Test add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
        self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
        self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0)))
        self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
        self.assertTrue(eq(np.sum(x, 0), sum(x, 0)))
        self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0)))
        self.assertTrue(eq(np.product(x, 0), product(x, 0)))
        self.assertTrue(eq(np.product(filled(xm, 1), axis=0),
                           product(xm, axis=0)))
        if len(s) > 1:
            self.assertTrue(eq(np.concatenate((x, y), 1),
                               concatenate((xm, ym), 1)))
            self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
            self.assertTrue(eq(np.sum(x, 1), sum(x, 1)))
            self.assertTrue(eq(np.product(x, 1), product(x, 1)))
项目:carvana-challenge    作者:chplushsieh    | 项目源码 | 文件源码
def __getitem__(self, idx):

        img_name = self.img_names[idx]
        ensembled = np.zeros(const.img_size)

        for i, pred_dir in enumerate(self.pred_dirs):
            pred_path = os.path.join(const.OUTPUT_DIR, pred_dir, const.PROBS_DIR_NAME, img_name + '.npy')
            img_prob = np.load(pred_path)

            weighted_img_prob = np.multiply(img_prob, self.weights[i])
            ensembled = np.add(ensembled, weighted_img_prob)

        # save into new output/ folder
        submit.save_ensembled_prob_map(self.ensemble_dir, img_name, ensembled)
        #plt.imshow(ensembled)
        #plt.show()

        return img_name, ensembled
项目:carvana-challenge    作者:chplushsieh    | 项目源码 | 文件源码
def __getitem__(self, idx):

        img_name = self.img_names[idx]

        ensembled_mask = np.zeros((const.img_size[0], const.img_size[1]))

        for i, submission in enumerate(self.submissions):

            rle = submission[img_name]
            mask = run_length.decode(rle)
            weighted_mask = np.multiply(mask, self.weights[i])
            ensembled_mask = np.add(ensembled_mask, weighted_mask)

        ensembled_mask[ ensembled_mask > 0.5 ] = 1
        ensembled_mask[ ensembled_mask <= 0.5 ] = 0

        # plt.imshow(ensembled_mask)
        # plt.show()

        ensembled_rle = run_length.encode(ensembled_mask)

        return img_name, ensembled_rle
项目:GASP-python    作者:henniggroup    | 项目源码 | 文件源码
def compute_num_adds(self, cell, composition_space, random):
        """
        Computes the number of atoms (or stoichiometries worth of atoms) to add
        or remove. Returns a non-zero integer.

        Args:
            cell: the Cell of the parent organism

            composition_space: the CompositionSpace of the search

            random: a copy of Python's built in PRNG
        """

        num_adds = int(round(random.gauss(self.mu_num_adds,
                                          self.sigma_num_adds)))
        # keep trying until we get a valid number
        while num_adds == 0 or \
            (composition_space.objective_function == 'epa' and num_adds*-1 >=
             cell.num_sites/composition_space.endpoints[0].num_atoms) or \
            (composition_space.objective_function == 'pd' and
                num_adds*-1 >= cell.num_sites):
            num_adds = int(round(random.gauss(self.mu_num_adds,
                                              self.sigma_num_adds)))
        return num_adds
项目:stockstats    作者:jealous    | 项目源码 | 文件源码
def _get_boll(cls, df):
        """ Get Bollinger bands.

        boll_ub means the upper band of the Bollinger bands
        boll_lb means the lower band of the Bollinger bands
        boll_ub = MA + K?
        boll_lb = MA ? K?
        M = BOLL_PERIOD
        K = BOLL_STD_TIMES
        :param df: data
        :return: None
        """
        moving_avg = df['close_{}_sma'.format(cls.BOLL_PERIOD)]
        moving_std = df['close_{}_mstd'.format(cls.BOLL_PERIOD)]
        df['boll'] = moving_avg
        moving_avg = list(map(np.float64, moving_avg))
        moving_std = list(map(np.float64, moving_std))
        # noinspection PyTypeChecker
        df['boll_ub'] = np.add(moving_avg,
                               np.multiply(cls.BOLL_STD_TIMES, moving_std))
        # noinspection PyTypeChecker
        df['boll_lb'] = np.subtract(moving_avg,
                                    np.multiply(cls.BOLL_STD_TIMES,
                                                moving_std))
项目:Neural_Network    作者:Shoeboxam    | 项目源码 | 文件源码
def __add__(self, other):
        """Implicitly broadcast lesser operand to a higher conformable dimension"""
        if type(self) in self._types or type(other) in self._types:
            return super().__add__(other)

        # Stimuli become vectorized, but bias units remain 1D. To add wx + b, must broadcast
        if self.ndim == 2 and other.ndim == 1:
            return Array(np.add(self, np.tile(other[..., np.newaxis], self.shape[1])))
        if self.ndim == 1 and other.ndim == 2:
            return Array(np.add(np.tile(self[..., np.newaxis], other.shape[1]), other))

        if self.ndim == 3 and other.ndim == 2:
            return Array(np.add(self, np.tile(other[..., np.newaxis], self.shape[2])))
        if self.ndim == 2 and other.ndim == 3:
            return Array(np.add(np.tile(self[..., np.newaxis], other.shape[2]), other))
        return np.add(self, other)
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def logprob_dc(counts, prior, axis=None):
    """Non-normalized log probability of a Dirichlet-Categorical distribution.

    See https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution
    """
    # Note that this excludes the factorial(counts) term, since we explicitly
    # track permutations in assignments.
    return gammaln(np.add(counts, prior, dtype=np.float32)).sum(axis)
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def set_edges(self, edges):
        TreeTrainer.set_edges(self, edges)
        V, E, K, M = self._VEKM
        assignments = self._assignments[sorted(self._added_rows), :]
        for e, v1, v2 in self._tree.tree_grid.T:
            self._edge_ss[e, :, :] = count_pairs(assignments, v1, v2, M)
        np.add(self._edge_ss, self._edge_prior, out=self._edge_probs)
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def add_row(self, row_id):
        logger.debug('TreeGaussTrainer.add_row %d', row_id)
        assert row_id not in self._added_rows, row_id
        self._added_rows.add(row_id)

        treegauss_add_row(
            self._data[row_id, :],
            self._tree.tree_grid,
            self._program,
            self._latent[row_id, :, :],
            self._vert_ss,
            self._edge_ss,
            self._feat_ss, )
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def isum(arrays, axis = -1, dtype = None, ignore_nan = False):
    """ 
    Streaming sum of array elements.

    Parameters
    ----------
    arrays : iterable
        Arrays to be summed. 
    axis : int or None, optional
        Reduction axis. Default is to sum the arrays in the stream as if 
        they had been stacked along a new axis, then sum along this new axis.
        If None, arrays are flattened before summing. If `axis` is an int larger that
        the number of dimensions in the arrays of the stream, arrays are summed
        along the new axis.
    dtype : numpy.dtype, optional
        The type of the yielded array and of the accumulator in which the elements 
        are summed. The dtype of a is used by default unless a has an integer dtype 
        of less precision than the default platform integer. In that case, if a is 
        signed then the platform integer is used while if a is unsigned then an 
        unsigned integer of the same precision as the platform integer is used.
    ignore_nan : bool, optional
        If True, NaNs are ignored. Default is propagation of NaNs.

    Yields
    ------
    online_sum : ndarray
    """    
    yield from ireduce_ufunc(arrays, ufunc = np.add, axis = axis, ignore_nan = ignore_nan, dtype = dtype)
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_no_side_effects(self):
        """ Test that no arrays in the stream are modified """
        for arr in self.source:
            arr.setflags(write = False)
        out = last(ireduce_ufunc(self.source, np.add))
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_single_array(self):
        """ Test ireduce_ufunc on a single array, not a sequence """
        source = np.ones( (16, 16), dtype = np.int)
        out = last(ireduce_ufunc(source, np.add, axis = -1))
        self.assertTrue(np.allclose(source, out))
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_output_shape(self):
        """ Test output shape """
        for axis in (0, 1, 2, 3, None):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.add.reduce(self.stack, axis = axis)
                out = last(ireduce_ufunc(self.source, np.add, axis = axis))
                self.assertSequenceEqual(from_numpy.shape, out.shape)
                self.assertTrue(np.allclose(out, from_numpy))
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def test_ignore_nan(self):
        """ Test that ignore_nan is working """
        for axis in (0, 1, 2, 3, None):
            with self.subTest('axis = {}'.format(axis)):
                out = last(ireduce_ufunc(self.source, np.add, axis = axis, ignore_nan = True))
                self.assertFalse(np.any(np.isnan(out)))

# Dynamics generation of tests on binary ufuncs
项目:Tencent2017_Final_Rank28_code    作者:Dojocat-GO    | 项目源码 | 文件源码
def con_two_dict(dic1,dic2):
    dic=[]
    for item in dic1:
        dic.append(item.copy())
    for i in range(0,len(dic)):
        for k in dic2[i].keys():
            if dic[i].__contains__(k):
                dic[i][k]=np.add(dic[i][k],dic2[i][k])
            else:
                dic[i][k]=dic2[i][k]
    return dic
项目:simple_rl    作者:david-abel    | 项目源码 | 文件源码
def compute_conf_intervals(data, cumulative=False):
    '''
    Args:
        data (list): A 3D matrix, [algorithm][instance][episode]
        cumulative (bool) *opt
    '''

    confidence_intervals_each_alg = [] # [alg][conf_inv_for_episode]

    for i, all_instances in enumerate(data):

        num_instances = len(data[i])
        num_episodes = len(data[i][0])

        all_instances = np.array(all_instances)
        alg_i_ci = []
        total_so_far = np.zeros(num_instances)
        for j in xrange(num_episodes):
            # Compute datum for confidence interval.
            episode_j_all_instances = all_instances[:, j]

            if cumulative:
                # Cumulative.
                summed_vector = np.add(episode_j_all_instances, total_so_far)
                total_so_far = np.add(episode_j_all_instances, total_so_far)
                episode_j_all_instances = summed_vector

            # Compute the interval and add it to list.
            conf_interv = compute_single_conf_interval(episode_j_all_instances)
            alg_i_ci.append(conf_interv)

        confidence_intervals_each_alg.append(alg_i_ci)

    return confidence_intervals_each_alg
项目:Wall-EEG    作者:neurotechuoft    | 项目源码 | 文件源码
def __call__(self, sample):
        # keep tract of absolute value of
        self.diff = np.add(self.diff,
                           np.absolute(np.asarray(sample.channel_data)))
        self.sample_count = self.sample_count + 1

        elapsed_time = timeit.default_timer() - self.last_report
        if elapsed_time > self.polling_interval:
            channel_noise_power = np.divide(self.diff, self.sample_count)

            print (channel_noise_power)
            self.diff = np.zeros(self.eeg_channels)
            self.last_report = timeit.default_timer()

    # # Instanciate "monitor" thread
项目:OCR    作者:OrangeGuo    | 项目源码 | 文件源码
def predict(self, test):
        print('predict')
        y1 = np.dot(np.mat(self.theta1), np.mat(test).T)
        y1 = y1 + np.mat(self.input_layer_bias)  # Add the bias
        y1 = self.sigmoid(y1)

        y2 = np.dot(np.array(self.theta2), y1)
        y2 = np.add(y2, self.hidden_layer_bias)  # Add the bias
        y2 = self.sigmoid(y2)

        results = y2.T.tolist()[0]
        return results.index(max(results))
项目:PyMDNet    作者:HungWei-Andy    | 项目源码 | 文件源码
def sample(gt, n, im_size, scale_factor, transfer_range, scale_range, valid, verbose=False):
  samp = np.array([gt[0]+gt[2]/2.0, gt[1]+gt[3]/2.0, gt[2], gt[3]])
  samples = np.repeat(np.reshape(samp, [1, -1]), n, axis=0)
  h, w = im_size

  if verbose:
    print(w, h)
    print(gt)
    print(samp)
    print(transfer_range)
    print(scale_range)

  samples[:, 0] = np.add(samples[:, 0], transfer_range*samp[2]*(np.random.rand(n)*2-1))
  samples[:, 1] = np.add(samples[:, 1], transfer_range*samp[3]*(np.random.rand(n)*2-1))
  samples[:, 2:]  = np.multiply(samples[:, 2:], np.power(scale_factor, scale_range*np.repeat(np.random.rand(n,1)*2-1,2,axis=1)))
  samples[:, 2] = np.maximum(0, np.minimum(w-5, samples[:,2]))
  samples[:, 3] = np.maximum(0, np.minimum(h-5, samples[:,3]))

  if verbose:
    print(samples[0])

  samples = np.c_[samples[:,0]-samples[:,2]/2, samples[:,1]-samples[:,3]/2, samples[:,2], samples[:,3]]

  if verbose:
    print(samples[0])

  if valid:
    samples[:,0] = np.maximum(0,np.minimum(w-samples[:,2],samples[:,0]))
    samples[:,1] = np.maximum(0,np.minimum(h-samples[:,3],samples[:,1]))
  else:
    samples[:,0] = np.maximum(0-samples[:,2]/2,np.minimum(w-samples[:,2]/2,samples[:,0]))
    samples[:,1] = np.maximum(0-samples[:,3]/2,np.minimum(h-samples[:,3]/2,samples[:,1]))

  if verbose:
    print(samples[0])
  return samples

###########################################################################
#                          overlap_ratio                                  #
###########################################################################
项目:MOSFiT    作者:guillochon    | 项目源码 | 文件源码
def set_attributes(self, task):
        """Set key replacement dictionary."""
        Utility.set_attributes(self, task)
        self._operands = task.get('operands', [])
        if not self._operands:
            raise ValueError('`Operator` must have at least one operand.')
        self._result = task.get('result', 'result')
        self._op = self.ops.get(task.get('operator', '+'), np.add)
项目:ltls    作者:kjasinska    | 项目源码 | 文件源码
def evaluate_model(self, x, w):
        if not self.regularization or self.lambd == 0:
            edge_weight = x.dot(w)
            edge_weight = np.multiply(edge_weight, self.skipped)
        else:
            edge_weight = np.zeros((1, self.num_edges))
            for idx, value in izip(x.indices, x.data):
                # edge_weight = np.add(edge_weight, np.multiply(value, np.multiply(np.maximum(np.subtract(np.abs(w[idx, :]), self.lambd), 0), np.sign(w[idx, :]))))
                for edge in xrange(self.num_edges):
                    if w[idx, edge] > self.lambd:
                        edge_weight[0, edge] += value * (w[idx, edge] - self.lambd)
                    elif w[idx, edge] < -self.lambd:
                        edge_weight[0, edge] += value * (w[idx, edge] + self.lambd)
        return edge_weight
项目:ltls    作者:kjasinska    | 项目源码 | 文件源码
def get_unseen_labels(self, y):
        unseen = set(y).difference(self.classes_seen)
        for c in unseen:
            self.classes_seen.add(c)
        return unseen
项目:wiicop    作者:barnabuskev    | 项目源码 | 文件源码
def pathl(cop_dat):
    # to calculate COP path length
    delt = np.diff(cop_dat[:,(0,1)], axis = 0)
    sqs = np.square(delt)
    sum_s = np.add(sqs[:,0],sqs[:,1])
    lgths = np.sqrt(sum_s)
    return np.sum(lgths)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_reduce(self,level=rlevel):
        # Ticket #40
        assert_almost_equal(np.add.reduce([1., .5], dtype=None), 1.5)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_add_identity(self,level=rlevel):
        # Ticket #143
        assert_equal(0, np.add.identity)