我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.mgrid()。
def get_points(): # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*8,3), np.float32) objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1 , 2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob('calibration_wide/GO*.jpg') # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (8,6), None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners cv2.drawChessboardCorners(img, (8,6), corners, ret) #write_name = 'corners_found'+str(idx)+'.jpg' #cv2.imwrite(write_name, img) cv2.imshow('img', img) cv2.waitKey(500) cv2.destroyAllWindows() return objpoints, imgpoints
def find_points(images): pattern_size = (9, 6) obj_points = [] img_points = [] # Assumed object points relation a_object_point = np.zeros((PATTERN_SIZE[1] * PATTERN_SIZE[0], 3), np.float32) a_object_point[:, :2] = np.mgrid[0:PATTERN_SIZE[0], 0:PATTERN_SIZE[1]].T.reshape(-1, 2) # Termination criteria for sub pixel corners refinement stop_criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001) print('Finding points ', end='') debug_images = [] for (image, color_image) in images: found, corners = cv.findChessboardCorners(image, PATTERN_SIZE, None) if found: obj_points.append(a_object_point) cv.cornerSubPix(image, corners, (11, 11), (-1, -1), stop_criteria) img_points.append(corners) print('.', end='') else: print('-', end='') if DEBUG: cv.drawChessboardCorners(color_image, PATTERN_SIZE, corners, found) debug_images.append(color_image) sys.stdout.flush() if DEBUG: display_images(debug_images, DISPLAY_SCALE) print('\nWas able to find points in %s images' % len(img_points)) return obj_points, img_points # images is a lis of tuples: (gray_image, color_image)
def draw_flow(img, flow, step=8): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int) fx, fy = flow[y,x].T lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis ##################################################################### # define video capture object
def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1) fx, fy = flow[y,x].T m = np.bitwise_and(np.isfinite(fx), np.isfinite(fy)) lines = np.vstack([x[m], y[m], x[m]+fx[m], y[m]+fy[m]]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis
def __init__(self, pos, size): """ pos is (...,3) array of the bar positions (the corner of each bar) size is (...,3) array of the sizes of each bar """ nCubes = reduce(lambda a,b: a*b, pos.shape[:-1]) cubeVerts = np.mgrid[0:2,0:2,0:2].reshape(3,8).transpose().reshape(1,8,3) cubeFaces = np.array([ [0,1,2], [3,2,1], [4,5,6], [7,6,5], [0,1,4], [5,4,1], [2,3,6], [7,6,3], [0,2,4], [6,4,2], [1,3,5], [7,5,3]]).reshape(1,12,3) size = size.reshape((nCubes, 1, 3)) pos = pos.reshape((nCubes, 1, 3)) verts = cubeVerts * size + pos faces = cubeFaces + (np.arange(nCubes) * 8).reshape(nCubes,1,1) md = MeshData(verts.reshape(nCubes*8,3), faces.reshape(nCubes*12,3)) GLMeshItem.__init__(self, meshdata=md, shader='shaded', smooth=False)
def make3dplot(ax, sample, density): ax.scatter(sample[:,0], sample[:,1], zdir='z') ax.set_aspect('equal', 'datalim') xlim = ax.get_xlim() ylim = ax.get_ylim() gridsize=50 xs, ys = np.mgrid[xlim[0]:xlim[1]:(xlim[1]-xlim[0])/float(gridsize), ylim[0]:ylim[1]:(ylim[1]-ylim[0])/float(gridsize)] pos = np.empty(xs.shape + (2,)) pos[:, :, 0] = xs; pos[:, :, 1] = ys zs = density(pos) surf = ax.plot_surface(xs, ys, zs, rstride=1, cstride=1, linewidth=0, antialiased=False, alpha=.3) ax.set_xlabel('x') ax.set_ylabel('y')
def nufft_T(N, J, K, alpha, beta): ''' equation (29) and (26)Fessler's paper create the overlapping matrix CSSC (diagonal dominent matrix) of J points and then find out the pseudo-inverse of CSSC ''' # import scipy.linalg L = numpy.size(alpha) - 1 # print('L = ', L, 'J = ',J, 'a b', alpha,beta ) cssc = numpy.zeros((J, J)) [j1, j2] = numpy.mgrid[1:J + 1, 1:J + 1] overlapping_mat = j2 - j1 for l1 in range(-L, L + 1): for l2 in range(-L, L + 1): alf1 = alpha[abs(l1)] # if l1 < 0: alf1 = numpy.conj(alf1) alf2 = alpha[abs(l2)] # if l2 < 0: alf2 = numpy.conj(alf2) tmp = overlapping_mat + beta * (l1 - l2) tmp = dirichlet(1.0 * tmp / (1.0 * K / N)) cssc = cssc + alf1 * numpy.conj(alf2) * tmp return mat_inv(cssc)
def nufft_T(N, J, K, alpha, beta): ''' The Equation (29) and (26) in Fessler and Sutton 2003. Create the overlapping matrix CSSC (diagonal dominent matrix) of J points and find out the pseudo-inverse of CSSC ''' # import scipy.linalg L = numpy.size(alpha) - 1 # print('L = ', L, 'J = ',J, 'a b', alpha,beta ) cssc = numpy.zeros((J, J)) [j1, j2] = numpy.mgrid[1:J + 1, 1:J + 1] overlapping_mat = j2 - j1 for l1 in range(-L, L + 1): for l2 in range(-L, L + 1): alf1 = alpha[abs(l1)] # if l1 < 0: alf1 = numpy.conj(alf1) alf2 = alpha[abs(l2)] # if l2 < 0: alf2 = numpy.conj(alf2) tmp = overlapping_mat + beta * (l1 - l2) tmp = dirichlet(1.0 * tmp / (1.0 * K / N)) cssc = cssc + alf1 * alf2 * tmp return mat_inv(cssc)
def x_frame2D(X, plot_limits=None, resolution=None): """ Internal helper function for making plots, returns a set of input values to plot as well as lower and upper limits """ assert X.shape[1] == 2, \ 'x_frame2D is defined for two-dimensional inputs' if plot_limits is None: (xmin, xmax) = (X.min(0), X.max(0)) (xmin, xmax) = (xmin - 0.2 * (xmax - xmin), xmax + 0.2 * (xmax - xmin)) elif len(plot_limits) == 2: (xmin, xmax) = plot_limits else: raise ValueError, 'Bad limits for plotting' resolution = resolution or 50 (xx, yy) = np.mgrid[xmin[0]:xmax[0]:1j * resolution, xmin[1]: xmax[1]:1j * resolution] Xnew = np.vstack((xx.flatten(), yy.flatten())).T return (Xnew, xx, yy, xmin, xmax)
def test_pdf(self): ''' Tests the probability density function. ''' # Calculate probability density function on lattice bnds = np.empty((3), dtype=object) bnds[0] = [-1, 1] bnds[1] = [0, 2] bnds[2] = [0.5, 2] (x0g, x1g, x2g) = np.mgrid[bnds[0][0]:bnds[0][1], bnds[1][0]:bnds[1][1], bnds[2][0]:bnds[2][1]] points = np.array([x0g.ravel(), x1g.ravel(), x2g.ravel()]).T r_logpdf = np.array([-6.313469, -17.406428, -4.375992, -6.226508, -8.836115, -20.430739, -5.107053, -6.687987]) p_logpdf = self.vine.logpdf(points) assert_allclose(p_logpdf, r_logpdf) r_pdf = np.array([1.811738e-03, 2.757302e-08, 1.257566e-02, 1.976342e-03, 1.453865e-04, 1.339808e-09, 6.053895e-03, 1.245788e-03]) p_pdf = self.vine.pdf(points) assert_allclose(p_pdf, r_pdf, rtol=1e-5)
def plotImage(dta, saveFigName): plt.clf() dx, dy = 1, 1 # generate 2 2d grids for the x & y bounds with np.errstate(invalid='ignore'): y, x = np.mgrid[ slice(0, len(dta) , dx), slice(0, len(dta[0]), dy) ] z = dta z_min, z_max = -np.abs(z).max(), np.abs(z).max() #try: c = plt.pcolormesh(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max) #except ??? as err: # data not regular? # c = plt.pcolor(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max) d = plt.colorbar(c, orientation='vertical') lx = plt.xlabel("index") ly = plt.ylabel("season length") plt.savefig(str(saveFigName))
def areaxy(self, lowerbound=-np.inf, upperbound=np.inf, spacing=0.1): mask = (self.coord[:,2] > lowerbound) & (self.coord[:,2] < upperbound) points = self.coord[mask, :2] # The magic number factor 1.1 is not critical at all # Just a number to set a margin to the bounding box and # have all points fall within the boundaries bbmin, bbmax = 1.1*points.min(axis=0), 1.1*points.max(axis=0) size = bbmax - bbmin cells = (size / spacing + 0.5).astype('int') # Grid points over bounding box with specified spacing grid = np.mgrid[bbmin[0]:bbmax[0]:(cells[0]*1j), bbmin[1]:bbmax[1]:(cells[1]*1j)].reshape((2,-1)).T # Occupied cells is approximately equal to grid points within # gridspacing distance of points occupied = occupancy(grid, points, spacing) # The occupied area follows from the fraction of occupied # cells times the area spanned by the bounding box return size[0]*size[1]*sum(occupied > 0)/occupied.size
def generate_hills(width, height, nhills): ''' @param width float, terrain width @param height float, terrain height @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2 ''' # setup coordinate grid xmin, xmax = -width/2.0, width/2.0 ymin, ymax = -height/2.0, height/2.0 x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y # generate hilltops xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)] mu = np.c_[xm.flat, ym.flat] sigma = float(width*height)/(nhills*8) for i in range(mu.shape[0]): mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma) # generate hills sigma = sigma + sigma*np.random.rand(mu.shape[0]) rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ] hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0) return x, y, hfield
def joint_density(X, Y, bounds=None): """ Plots joint distribution of variables. Inherited from method in src/graphics.py module in project git://github.com/aflaxman/pymc-example-tfr-hdi.git """ if bounds: X_min, X_max, Y_min, Y_max = bounds else: X_min = X.min() X_max = X.max() Y_min = Y.min() Y_max = Y.max() pylab.plot(X, Y, linestyle='none', marker='o', color='green', mec='green', alpha=.2, zorder=-99) gkde = scipy.stats.gaussian_kde([X, Y]) x,y = pylab.mgrid[X_min:X_max:(X_max-X_min)/25.,Y_min:Y_max:(Y_max-Y_min)/25.] z = pylab.array(gkde.evaluate([x.flatten(), y.flatten()])).reshape(x.shape) pylab.contour(x, y, z, linewidths=2) pylab.axis([X_min, X_max, Y_min, Y_max])
def hyperball(ndim, radius): """Return a binary morphological filter containing pixels within `radius`. Parameters ---------- ndim : int The number of dimensions of the filter. radius : int The radius of the filter. Returns ------- ball : array of bool, shape [2 * radius + 1,] * ndim The required structural element """ size = 2 * radius + 1 center = [(radius,) * ndim] coords = np.mgrid[[slice(None, size),] * ndim].reshape(ndim, -1).T distances = np.ravel(spatial.distance_matrix(coords, center)) selector = distances <= radius ball = np.zeros((size,) * ndim, dtype=bool) ball.ravel()[selector] = True return ball
def _generate_random_grids(self): if self.num_grids > 40: starter = np.random.randint(0, 20) random_sample = np.mgrid[starter:len(self.grids)-1:20j].astype("int32") # We also add in a bit to make sure that some of the grids have # particles gwp = self.grid_particle_count > 0 if np.any(gwp) and not np.any(gwp[(random_sample,)]): # We just add one grid. This is not terribly efficient. first_grid = np.where(gwp)[0][0] random_sample.resize((21,)) random_sample[-1] = first_grid mylog.debug("Added additional grid %s", first_grid) mylog.debug("Checking grids: %s", random_sample.tolist()) else: random_sample = np.mgrid[0:max(len(self.grids),1)].astype("int32") return self.grids[(random_sample,)]
def test_linear_interpolator_2d(): random_data = np.random.random((64, 64)) # evenly spaced bins fv = dict((ax, v) for ax, v in zip("xyz", np.mgrid[0.0:1.0:64j, 0.0:1.0:64j])) bfi = lin.BilinearFieldInterpolator(random_data, (0.0, 1.0, 0.0, 1.0), "xy", True) assert_array_equal(bfi(fv), random_data) # randomly spaced bins size = 64 bins = np.linspace(0.0, 1.0, size) shifts = dict((ax, (1. / size) * np.random.random(size) - (0.5 / size)) \ for ax in "xy") fv["x"] += shifts["x"][:, np.newaxis] fv["y"] += shifts["y"] bfi = lin.BilinearFieldInterpolator(random_data, (bins + shifts["x"], bins + shifts["y"]), "xy", True) assert_array_almost_equal(bfi(fv), random_data, 15)
def test_linear_interpolator_3d(): random_data = np.random.random((64, 64, 64)) # evenly spaced bins fv = dict((ax, v) for ax, v in zip("xyz", np.mgrid[0.0:1.0:64j, 0.0:1.0:64j, 0.0:1.0:64j])) tfi = lin.TrilinearFieldInterpolator(random_data, (0.0, 1.0, 0.0, 1.0, 0.0, 1.0), "xyz", True) assert_array_almost_equal(tfi(fv), random_data) # randomly spaced bins size = 64 bins = np.linspace(0.0, 1.0, size) shifts = dict((ax, (1. / size) * np.random.random(size) - (0.5 / size)) \ for ax in "xyz") fv["x"] += shifts["x"][:, np.newaxis, np.newaxis] fv["y"] += shifts["y"][:, np.newaxis] fv["z"] += shifts["z"] tfi = lin.TrilinearFieldInterpolator(random_data, (bins + shifts["x"], bins + shifts["y"], bins + shifts["z"]), "xyz", True) assert_array_almost_equal(tfi(fv), random_data, 15)
def partition_index_2d(self, axis): if not self._distributed: return False, self.index.grid_collection(self.center, self.index.grids) xax = self.ds.coordinates.x_axis[axis] yax = self.ds.coordinates.y_axis[axis] cc = MPI.Compute_dims(self.comm.size, 2) mi = self.comm.rank cx, cy = np.unravel_index(mi, cc) x = np.mgrid[0:1:(cc[0]+1)*1j][cx:cx+2] y = np.mgrid[0:1:(cc[1]+1)*1j][cy:cy+2] DLE, DRE = self.ds.domain_left_edge.copy(), self.ds.domain_right_edge.copy() LE = np.ones(3, dtype='float64') * DLE RE = np.ones(3, dtype='float64') * DRE LE[xax] = x[0] * (DRE[xax]-DLE[xax]) + DLE[xax] RE[xax] = x[1] * (DRE[xax]-DLE[xax]) + DLE[xax] LE[yax] = y[0] * (DRE[yax]-DLE[yax]) + DLE[yax] RE[yax] = y[1] * (DRE[yax]-DLE[yax]) + DLE[yax] mylog.debug("Dimensions: %s %s", LE, RE) reg = self.ds.region(self.center, LE, RE) return True, reg
def init_fill(self): rext = 1.0 Ns = 51 x, y = np.mgrid[ -rext:rext:1j*Ns, -rext:rext:1j*Ns ] z = np.zeros_like(x) self.controller.ax_xstress.pcolor(x,y,z, cmap=plt.cm.coolwarm) self.controller.ax_ystress.pcolor(x,y,z, cmap=plt.cm.coolwarm) self.controller.ax_xystress.pcolor(x,y,z, cmap=plt.cm.coolwarm) self.controller.ax_rstress.pcolor(x,y,z, cmap=plt.cm.coolwarm) self.controller.ax_tstress.pcolor(x,y,z, cmap=plt.cm.coolwarm) return # =======================
def evaluate_model(self, model): """ This function ... :param model: :return: """ # Make a local copy of the model so that we can adapt its position to be relative to this box rel_model = fitting.shifted_model(model, -self.x_min, -self.y_min) # Create x and y meshgrid for evaluating y_values, x_values = np.mgrid[:self.ysize, :self.xsize] # Evaluate the model data = rel_model(x_values, y_values) # Return a new box return Box(data, self.x_min, self.x_max, self.y_min, self.y_max) # -----------------------------------------------------------------
def polarToLinearMaps(orig_shape, out_shape=None, center=None): s0, s1 = orig_shape if out_shape is None: out_shape = (int(round(2 * s0 / 2**0.5)) - (1 - s0 % 2), int(round(2 * s1 / (2 * np.pi) / 2**0.5))) ss0, ss1 = out_shape if center is None: center = ss1 // 2, ss0 // 2 yy, xx = np.mgrid[0:ss0:1., 0:ss1:1.] r, phi = _cart2polar(xx, yy, center) # scale-pi...pi->0...s1: phi = (phi + np.pi) / (2 * np.pi) * (s1 - 2) return phi.astype(np.float32), r.astype(np.float32)
def calculateExtrinsics(self, cameraParameters): ''' Inputs: cameraParameters is CameraParameters object Calculate: rotate vector and transform vector >>> marker.calculateExtrinsics(camera_matrix, dist_coeff) >>> print(marker.rvec, marker.tvec) ''' object_points = np.zeros((4,3), dtype=np.float32) object_points[:,:2] = np.mgrid[0:2,0:2].T.reshape(-1,2) # Test Code. # object_points[:] -= 0.5 marker_points = self.corners if marker_points is None: raise TypeError('The marker.corners is None') camera_matrix = cameraParameters.camera_matrix dist_coeff = cameraParameters.dist_coeff ret, rvec, tvec = cv2.solvePnP(object_points, marker_points, camera_matrix, dist_coeff) if ret: self.rvec, self.tvec = rvec, tvec return ret
def _compute_gaussian_kernel(histogram_shape, relative_bw): """Compute a gaussian kernel double the size of the histogram matrix""" if len(histogram_shape) == 2: kernel_shape = [2 * n for n in histogram_shape] # Create a scaled grid in which the kernel is symmetric to avoid matrix # inversion problems when the bandwiths are very different bw_ratio = relative_bw[0] / relative_bw[1] bw = relative_bw[0] X, Y = np.mgrid[-bw_ratio:bw_ratio:kernel_shape[0] * 1j, -1:1:kernel_shape[1] * 1j] grid_points = np.vstack([X.ravel(), Y.ravel()]).T Cov = np.array(((bw, 0), (0, bw)))**2 K = stats.multivariate_normal.pdf(grid_points, mean=(0, 0), cov=Cov) return K.reshape(kernel_shape) else: grid = np.mgrid[-1:1:histogram_shape[0] * 2j] return stats.norm.pdf(grid, loc=0, scale=relative_bw)
def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2, -1).astype(int) # ????????????????????????16?reshape?2??array fx, fy = flow[y, x].T # ??????????????? lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2) # ????????????2*2??? lines = np.int32(lines + 0.5) # ???????????? vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) # ??????????????? for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) # ??????????????????? return vis
def flow2parallax(u,v,q): """ Given the flow fields (after correction!) and the epipole, return: - The normalized parallax (HxW array) - The vectors pointing to the epipoles (HxWx2 array) - The distances of all points to the epipole (HxW array) """ h,w = u.shape y,x = np.mgrid[:h,:w] u_f = q[0] - x v_f = q[1] - y dists = np.sqrt(u_f**2 + v_f**2) u_f_n = u_f / np.maximum(dists,1e-3) v_f_n = v_f / np.maximum(dists,1e-3) parallax = u * u_f_n + v * v_f_n return parallax, np.dstack((u_f_n, v_f_n)), dists
def create_test_dataset(image_shape, n, circle_radius, donut_radius): img = np.zeros((image_shape[0], image_shape[1])) y_pixels = np.arange(0, image_shape[0], 1) x_pixels = np.arange(0, image_shape[1], 1) cell_y_coords = np.random.choice(y_pixels, n, replace=False) cell_x_coords = np.random.choice(x_pixels, n, replace=False) for x, y in zip(cell_x_coords, cell_y_coords): xx, yy = np.mgrid[:512, :512] # create mesh grid of image dimensions circle = (xx - x) ** 2 + (yy - y) ** 2 # apply circle formula donut = np.logical_and(circle < (circle_radius+donut_radius), circle > (circle_radius-5)) # donuts are thresholded circles thresholded_circle = circle < circle_radius img[np.where(thresholded_circle)] = 1 img[np.where(donut)] = 2 return img
def test_square_grid(): X = np.mgrid[0:16, 0:16] X = X.reshape((len(X), -1)).T name = 'square' D, Q = test_toy_embedding(X, 32, 2, name, palette='hls') def plot_mat_on_data(mat, sample): plt.figure() plot_data_embedded(X, palette='w') alpha = np.maximum(mat[sample], 0) / mat[sample].max() plot_data_embedded(X, palette='#FF0000', alpha=alpha) pdf_file_name = '{}{}_plot_{}_on_data_{}{}' plot_mat_on_data(D, 7 * 16 + 7) plt.savefig(pdf_file_name.format(dir_name, name, 'D', 'middle', '.pdf')) plot_mat_on_data(Q, 7 * 16 + 7) plt.savefig(pdf_file_name.format(dir_name, name, 'Q', 'middle', '.pdf')) # for s in range(len(X)): # plot_mat_on_data(Q, s) # plt.savefig(pdf_file_name.format(dir_name, name, 'Q', s, '.png')) # plt.close()
def plot(self, ax, idx1, idx2, range1, range2, n=100): assert len(range1) == len(range2) == 2 and idx1 != idx2 x, y = np.mgrid[range1[0]:range1[1]:(n+0j), range2[0]:range2[1]:(n+0j)] if isinstance(self.action_space, ContinuousSpace): points_B_Doa = np.zeros((n*n, self.obsfeat_space.storage_size + self.action_space.storage_size)) points_B_Doa[:,idx1] = x.ravel() points_B_Doa[:,idx2] = y.ravel() obsfeat_B_Df, a_B_Da = points_B_Doa[:,:self.obsfeat_space.storage_size], points_B_Doa[:,self.obsfeat_space.storage_size:] assert a_B_Da.shape[1] == self.action_space.storage_size t_B = np.zeros(a_B_Da.shape[0]) # XXX make customizable z = self.compute_reward(obsfeat_B_Df, a_B_Da, t_B).reshape(x.shape) else: obsfeat_B_Df = np.zeros((n*n, self.obsfeat_space.storage_size)) obsfeat_B_Df[:,idx1] = x.ravel() obsfeat_B_Df[:,idx2] = y.ravel() a_B_Da = np.zeros((obsfeat_B_Df.shape[0], 1), dtype=np.int32) # XXX make customizable t_B = np.zeros(a_B_Da.shape[0]) # XXX make customizable z = self.compute_reward(obsfeat_B_Df, a_B_Da, t_B).reshape(x.shape) ax.pcolormesh(x, y, z, cmap='viridis') ax.contour(x, y, z, levels=np.log(np.linspace(2., 3., 10))) # ax.contourf(x, y, z, levels=[np.log(2.), np.log(2.)+.5], alpha=.5) # high-reward region is highlighted
def calculate_scalar_matrix(values_a, values_b): """ convenience function wrapper of py:function:`calculate_scalar_product_matrix` for the case of scalar elements. :param values_a: :param values_b: :return: """ return calculate_scalar_product_matrix(np.multiply, sanitize_input(values_a, Number), sanitize_input(values_b, Number)) # i, j = np.mgrid[0:values_a.shape[0], 0:values_b.shape[0]] # vals_i = values_a[i] # vals_j = values_b[j] # return np.multiply(vals_i, vals_j)
def gabor_2d(M, N, sigma, theta, xi, slant=1.0, offset=0, fft_shift=None): gab = np.zeros((M, N), np.complex64) R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]], np.float32) R_inv = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]], np.float32) D = np.array([[1, 0], [0, slant * slant]]) curv = np.dot(R, np.dot(D, R_inv)) / ( 2 * sigma * sigma) for ex in [-2, -1, 0, 1, 2]: for ey in [-2, -1, 0, 1, 2]: [xx, yy] = np.mgrid[offset + ex * M:offset + M + ex * M, offset + ey * N:offset + N + ey * N] arg = -(curv[0, 0] * np.multiply(xx, xx) + (curv[0, 1] + curv[1, 0]) * np.multiply(xx, yy) + curv[ 1, 1] * np.multiply(yy, yy)) + 1.j * (xx * xi * np.cos(theta) + yy * xi * np.sin(theta)) gab = gab + np.exp(arg) norm_factor = (2 * 3.1415 * sigma * sigma / slant) gab = gab / norm_factor if (fft_shift): gab = np.fft.fftshift(gab, axes=(0, 1)) return gab
def test(): import PIL.Image y, x = np.mgrid[0:256, 0:256] z = np.ones((256,256)) * 128 img0 = np.dstack((x, y, z)).astype(np.uint8) img1 = y.astype(np.uint8) img2 = np.arange(256, dtype=np.uint8) img3 = PIL.Image.open("pics/RGB.png") img3 = np.array(img3)[:,:,0:3] img4 = PIL.Image.open("pics/banff.jpg") img4 = np.array(img4)[:,:,0:3] img5, _ = (np.mgrid[0:1242, 0:1276] / 1242. * 255.).astype(np.uint8) img6, _ = (np.mgrid[0:1007, 0:12] / 1007. * 255.).astype(np.uint8) for i in (1, 2, 4, 8): write_tiff("Test0_" + str(i) + ".TIF", img0, bit_depth=i) write_tiff("Test1_" + str(i) + ".TIF", img1, bit_depth=i) write_tiff("Test2_" + str(i) + ".TIF", img2, bit_depth=i) write_tiff("Test3_" + str(i) + ".TIF", img3, bit_depth=i) write_tiff("Test4_" + str(i) + ".TIF", img4, bit_depth=i) write_tiff("Test5_" + str(i) + ".TIF", img5, bit_depth=i) write_tiff("Test6_" + str(i) + ".TIF", img6, bit_depth=i)
def gauss_kernel(size, sigma=None, size_y=None, sigma_y=None): """ Generates a 2D Gaussian kernel as a numpy array Args: size (int): 1/2 the width of the kernel; total width := 2*size+1 sigma (float): spread of the gaussian in the width direction size_y (int): 1/2 the height of the kernel; defaults to size sigma_y (float): spread of the gaussian in the height direction; defaults to sigma Returns: numpy array: normalized 2D gaussian array """ size = int(size) if not size_y: size_y = size else: size_y = int(size_y) if not sigma: sigma = 0.5 * size + .1 if not sigma_y: sigma_y = sigma x, y = np.mgrid[-size:size+1, -size_y:size_y+1] g = np.exp(-0.5 * (x ** 2 / sigma ** 2 + y ** 2 / sigma_y ** 2)) return g / g.sum()
def __init__(self, im, sigma_spatial=12, sigma_luma=4, sigma_chroma=4): im_yuv = rgb2yuv(im) # Compute 5-dimensional XYLUV bilateral-space coordinates Iy, Ix = np.mgrid[:im.shape[0], :im.shape[1]] x_coords = (Ix / sigma_spatial).astype(int) y_coords = (Iy / sigma_spatial).astype(int) luma_coords = (im_yuv[..., 0] /sigma_luma).astype(int) chroma_coords = (im_yuv[..., 1:] / sigma_chroma).astype(int) coords = np.dstack((x_coords, y_coords, luma_coords, chroma_coords)) coords_flat = coords.reshape(-1, coords.shape[-1]) self.npixels, self.dim = coords_flat.shape # Hacky "hash vector" for coordinates, # Requires all scaled coordinates be < MAX_VAL self.hash_vec = (MAX_VAL**np.arange(self.dim)) # Construct S and B matrix self._compute_factorization(coords_flat)
def get_local_mesh(self): # Create the mesh X = np.mgrid[self.rank*self.Np[0]:(self.rank+1)*self.Np[0], :self.N[1]].astype(self.float) X[0] *= self.L[0]/self.N[0] X[1] *= self.L[1]/self.N[1] return X
def get_local_mesh(self): xyrank = self.comm0.Get_rank() # Local rank in xz-plane yzrank = self.comm1.Get_rank() # Local rank in xy-plane # Create the physical mesh x1 = slice(xyrank * self.N1[0], (xyrank+1) * self.N1[0], 1) x2 = slice(yzrank * self.N2[1], (yzrank+1) * self.N2[1], 1) X = np.mgrid[x1, x2, :self.N[2]].astype(self.float) X[0] *= self.L[0]/self.N[0] X[1] *= self.L[1]/self.N[1] X[2] *= self.L[2]/self.N[2] return X
def get_tform_coords(im_size): coords0, coords1, coords2 = np.mgrid[:im_size[0], :im_size[1], :im_size[2]] coords = np.array([coords0 - im_size[0] / 2, coords1 - im_size[1] / 2, coords2 - im_size[2] / 2]) return np.append(coords.reshape(3, -1), np.ones((1, np.prod(im_size))), axis=0)
def _FSpecialGauss(size, sigma): """Function to mimic the 'fspecial' gaussian MATLAB function.""" radius = size // 2 offset = 0.0 start, stop = -radius, radius + 1 if size % 2 == 0: offset = 0.5 stop -= 1 x, y = np.mgrid[offset + start:stop, offset + start:stop] assert len(x) == size g = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2))) return g / g.sum()
def replace_field(f, mask): """Interpolates positions in field according to mask with a 2D cubic interpolator""" lx, ly = f.shape x, y = np.mgrid[0:lx, 0:ly] C = CT_intp((x[~mask],y[~mask]),f[~mask], fill_value=0) return C(x, y)
def get_frame(self, i, j): """ Perform interpolation to produce the deformed window for correlation. This function takes the previously set displacement and interpolates the image for these coordinates. If the cubic interpolation method is chosen, the cubic interpolation of this API is use. For the bilinear method the build in scipy method `map_coordinates <https://goo.gl/wucmUO>`_ is used with *order* set to 1. :param int i: first index in grid coordinates :param int j: second index in grid coordinates :returns: interpolated window for the grid coordinates i,j and the image set in initialization """ dws = self._shape[-1] offset_x, offset_y = np.mgrid[-dws/2+0.5:dws/2+0.5, -dws/2+0.5:dws/2+0.5] gx, gy = np.mgrid[0:dws, 0:dws] grid_x = gx + self._distance*i grid_y = gy + self._distance*j ptsax = (grid_x + self._u_disp(i, j, offset_x, offset_y)).ravel() ptsay = (grid_y + self._v_disp(i, j, offset_x, offset_y)).ravel() p, q = self._shape[-2:] if self._ipmethod == 'bilinear': return map_coordinates(self._frame, [ptsax, ptsay], order=1).reshape(p, q) if self._ipmethod == 'cubic': return self._cube_ip.interpolate(ptsax, ptsay).reshape(p, q)
def makeMTX(spat_coeffs, radial_filter, kr_IDX, viz_order=None, stepsize_deg=1): """Returns a plane wave decomposition over a full sphere Parameters ---------- spat_coeffs : array_like Spatial fourier coefficients radial_filter : array_like Modal radial filters kr_IDX : int Index of kr to be computed viz_order : int, optional Order of the spatial fourier transform [Default: Highest available] stepsize_deg : float, optional Integer Factor to increase the resolution. [Default: 1] Returns ------- mtxData : array_like Plane wave decomposition (frequency domain) Note ---- The file generates a Matrix of 181x360 pixels for the visualisation with visualize3D() in 1[deg] Steps (65160 plane waves). """ if not viz_order: viz_order = _np.int(_np.ceil(_np.sqrt(spat_coeffs.shape[0]) - 1)) angles = _np.mgrid[0:360:stepsize_deg, 0:181:stepsize_deg].reshape((2, -1)) * _np.pi / 180 Y = plane_wave_decomp(viz_order, angles, spat_coeffs[:, kr_IDX], radial_filter[:, kr_IDX]) return Y.reshape((360, -1)).T # Return pwd data as [181, 360] matrix
def plot3Dgrid(rows, cols, viz_data, style, normalize=True, title=None): if len(viz_data) > rows * cols: raise ValueError('Number of plot data is more than the specified rows and columns.') fig = tools.make_subplots(rows, cols, specs=[[{'is_3d': True}] * cols] * rows, print_grid=False) if style == 'flat': layout_3D = dict( xaxis=dict(range=[0, 360]), yaxis=dict(range=[0, 181]), aspectmode='manual', aspectratio=dict(x=3.6, y=1.81, z=1) ) else: layout_3D = dict( xaxis=dict(range=[-1, 1]), yaxis=dict(range=[-1, 1]), zaxis=dict(range=[-1, 1]), aspectmode='cube' ) rows, cols = _np.mgrid[1:rows + 1, 1: cols + 1] rows = rows.flatten() cols = cols.flatten() for IDX in range(0, len(viz_data)): cur_row = rows[IDX] cur_col = cols[IDX] fig.append_trace(genVisual(viz_data[IDX], style=style, normalize=normalize), cur_row, cur_col) fig.layout['scene' + str(IDX + 1)].update(layout_3D) if title is not None: fig.layout.update(title=title) filename = title + '.html' else: filename = str(current_time()) + '.html' if env_info() == 'jupyter_notebook': plotly_off.iplot(fig) else: plotly_off.plot(fig, filename=filename)
def gk(c1,r1,c2,r2): # First, create X and Y arrays indicating distance to the boundaries of the paintbrush # In this current context, im is the ordinal number of pixels (64 typically) sigma = 0.3 im = 64 x = np.repeat([np.concatenate([np.mgrid[-c1:0],np.zeros(c2-c1),np.mgrid[1:1+im-c2]])],im,axis=0) y = np.repeat(np.vstack(np.concatenate([np.mgrid[-r1:0],np.zeros(r2-r1),np.mgrid[1:1+im-r2]])),im,axis=1) g = np.exp(-(x**2/float(im)+y**2/float(im))/(2*sigma**2)) return np.repeat([g],3,axis=0) # remove the 3 if you want to apply this to mask rather than an RGB channel # This function reduces the likelihood of a change based on how close each individual pixel is to a maximal value. # Consider conditioning this based on the gK value and the requested color. I.E. instead of just a flat distance from 128, # have it be a difference from the expected color at a given location. This could also be used to "weight" the image towards staying the same.
def fcn_FDEM_InductionSpherePlaneWidget(xtx,ytx,ztx,m,orient,x0,y0,z0,a,sig,mur,xrx,yrx,zrx,logf,Comp,Phase): sig = 10**sig f = 10**logf fvec = np.logspace(0,8,41) xmin, xmax, dx, ymin, ymax, dy = -30., 30., 0.3, -30., 30., 0.4 X,Y = np.mgrid[xmin:xmax+dx:dx, ymin:ymax+dy:dy] X = np.transpose(X) Y = np.transpose(Y) Obj = SphereFEM(m,orient,xtx,ytx,ztx) Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,y0,z0,X,Y,zrx) Hxi,Hyi,Hzi,Habsi = Obj.fcn_ComputeFrequencyResponse(fvec,sig,mur,a,x0,y0,z0,xrx,yrx,zrx) fig1 = plt.figure(figsize=(17,6)) Ax1 = fig1.add_axes([0.04,0,0.43,1]) Ax2 = fig1.add_axes([0.6,0,0.4,1]) if Comp == 'x': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hx,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hxi,Comp) elif Comp == 'y': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hy,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hyi,Comp) elif Comp == 'z': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hz,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hzi,Comp) elif Comp == 'abs': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Habs,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Habsi,Comp) plt.show(fig1)
def rebin(a, newshape): """Rebin an array to a new shape.""" assert len(a.shape) == len(newshape) slices = [slice(0, old, float(old) / new) for old, new in zip(a.shape, newshape)] coordinates = np.mgrid[slices] indices = coordinates.astype('i') return a[tuple(indices)]