Python numpy 模块,seterr() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.seterr()

项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _logcdf(self, samples):
        lower = np.full(2, -np.inf)
        upper = norm.ppf(samples)
        limit_flags = np.zeros(2)
        if upper.shape[0] > 0:

            def func1d(upper1d):
                '''
                Calculates the multivariate normal cumulative distribution
                function of a single sample.
                '''
                return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1]

            vals = np.apply_along_axis(func1d, -1, upper)
        else:
            vals = np.empty((0, ))
        old_settings = np.seterr(divide='ignore')
        vals = np.log(vals)
        np.seterr(**old_settings)
        vals[np.any(samples == 0.0, axis=1)] = -np.inf
        vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1])
        vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0])
        return vals
项目:Poccala    作者:Byshx    | 项目源码 | 文件源码
def gaussian_function(y, dimension, ?, cov, log=False, standard=False):
            """??????????? y???(???) ??????(?????) cov??????,log????????,standard??????"""
            x = y - ?
            if standard:
                x = np.dot(x, np.linalg.inv(cov) ** 0.5)
                cov_ = np.eye(dimension)
            else:
                cov_ = cov
            np.seterr(all='ignore')  # ??????
            if log:
                func = - (dimension / 2) * np.log(2 * math.pi) - 0.5 * np.log(np.linalg.det(cov_))
                exp = -0.5 * np.dot(np.dot(x, np.linalg.inv(cov_)), x.T)
                return func + exp
            else:
                sigma = (2 * math.pi) ** (dimension / 2) * np.linalg.det(cov_) ** 0.5
                func = 1. / sigma
                exp = np.exp(-0.5 * np.dot(np.dot(x, np.linalg.inv(cov_)), x.T))
                return func * exp
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def with_error_settings(**new_settings):
    """
    TODO.

    Arguments:
      **new_settings: TODO

    Returns:
    """
    @decorator.decorator
    def dec(f, *args, **kwargs):
        old_settings = np.geterr()

        np.seterr(**new_settings)
        ret = f(*args, **kwargs)

        np.seterr(**old_settings)

        return ret

    return dec
项目:BlurDetection    作者:whdcumt    | 项目源码 | 文件源码
def evaluate(img_col, args):
    numpy.seterr(all='ignore')
    assert isinstance(img_col, numpy.ndarray), 'img_col must be a numpy array'
    assert img_col.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format(img_col.ndim)
    assert isinstance(args, argparse.Namespace), 'args must be of type argparse.Namespace not {0}'.format(type(args))
    img_gry = cv2.cvtColor(img_col, cv2.COLOR_RGB2GRAY)
    rows, cols = img_gry.shape
    crow, ccol = rows/2, cols/2
    f = numpy.fft.fft2(img_gry)
    fshift = numpy.fft.fftshift(f)
    fshift[crow-75:crow+75, ccol-75:ccol+75] = 0
    f_ishift = numpy.fft.ifftshift(fshift)
    img_fft = numpy.fft.ifft2(f_ishift)
    img_fft = 20*numpy.log(numpy.abs(img_fft))
    if args.display and not args.testing:
        cv2.destroyAllWindows()
        scripts.display('img_fft', img_fft)
        scripts.display('img_col', img_col)
        cv2.waitKey(0)
    result = numpy.mean(img_fft)
    return img_fft, result, result < args.thresh
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:alfpy    作者:aziele    | 项目源码 | 文件源码
def pwdist_canberra(self, seq1idx, seq2idx):
        """Compute the Canberra distance between two vectors.

        References:
            1. http://scipy.org/

        Notes:
            When `u[i]` and `v[i]` are 0 for given i, then
            the fraction 0/0 = 0 is used in the calculation.
        """
        u = self[seq1idx]
        v = self[seq2idx]
        olderr = np.seterr(invalid='ignore')
        try:
            d = np.nansum(abs(u - v) / (abs(u) + abs(v)))
        finally:
            np.seterr(**olderr)
        return d
项目:Link-Prediction    作者:CodeZWT    | 项目源码 | 文件源码
def Salton(MatrixAdjacency_Train):
    similarity_StartTime = time.clock()

    similarity = np.dot(MatrixAdjacency_Train,MatrixAdjacency_Train)

    deg_row = sum(MatrixAdjacency_Train)
    deg_row.shape = (deg_row.shape[0],1)
    deg_row_T = deg_row.T
    tempdeg = np.dot(deg_row,deg_row_T)
    temp = np.sqrt(tempdeg)

    np.seterr(divide='ignore', invalid='ignore')
    Matrix_similarity = np.nan_to_num(similarity / temp)

#     print np.isnan(Matrix_similarity)
#     Matrix_similarity = np.nan_to_num(Matrix_similarity)
#     print np.isnan(Matrix_similarity)
    similarity_EndTime = time.clock()
    print "    SimilarityTime: %f s" % (similarity_EndTime- similarity_StartTime)
    return Matrix_similarity
项目:ar-embeddings    作者:iamaziz    | 项目源码 | 文件源码
def feature(self, words):
        """average words' vectors"""

        feature_vec = np.zeros((self.dimension,), dtype="float32")
        retrieved_words = 0
        for token in words:
            try:
                feature_vec = np.add(feature_vec, self.embeddings[token])
                retrieved_words += 1
            except KeyError:
                pass  # if a word is not in the embeddings' vocabulary discard it

        np.seterr(divide='ignore', invalid='ignore')
        feature_vec = np.divide(feature_vec, retrieved_words)

        return feature_vec
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:mushroom    作者:carloderamo    | 项目源码 | 文件源码
def __init__(self, policy, mdp_info, params, features=None):
        self.__name__ = 'GPOMDP'

        super(GPOMDP, self).__init__(policy, mdp_info, params, features)

        self.sum_d_log_pi = None
        self.list_sum_d_log_pi = list()
        self.list_sum_d_log_pi_ep = list()

        self.list_reward = list()
        self.list_reward_ep = list()

        self.baseline_num = list()
        self.baseline_den = list()

        self.step_count = 0

        # Ignore divide by zero
        np.seterr(divide='ignore', invalid='ignore')
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:RottenCrawler    作者:kevin940726    | 项目源码 | 文件源码
def main():
    with open(path, 'r') as data_file:
        movieList = json.load(data_file)

    count = 0
    np.seterr(divide='ignore', invalid='ignore')
    for movie in movieList:
        if movie["reviews"] and movie["critics"]:
            readMovie(movie)
            # reviewer_list[movie["movieTitle"]] = recommender(movie)
            # cluster[movie["movieTitle"]] = HAC(movie)
            score_list[movie["movieTitle"]] = newScore(movie)

        count += 1
        print count
        break

    with open("scoreList.json", 'w+') as outfile:
        json.dump(score_list, outfile, indent=4, separators=(',', ': '))
项目:nanoraw    作者:marcus1487    | 项目源码 | 文件源码
def get_base_means(raw_read_coverage, chrm_sizes):
    # ignore divide by zero errors that occur where there is no
    # coverage. Need to correct nan values after subtracting two sets of
    # coverage so leave as nan for now
    old_err_settings = np.seterr(all='ignore')
    # take the mean over all signal overlapping each base
    mean_base_signal = {}
    for chrm, strand in [(c, s) for c in chrm_sizes.keys()
                         for s in ('+', '-')]:
        if (chrm, strand) in raw_read_coverage:
            cs_base_means = get_reads_base_means(
                raw_read_coverage[(chrm, strand)], chrm_sizes[chrm],
                strand == '-')
        else:
            cs_base_means = np.empty(chrm_sizes[chrm])
            cs_base_means[:] = np.nan
        mean_base_signal[(chrm, strand)] = cs_base_means
    _ = np.seterr(**old_err_settings)

    return mean_base_signal
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:ramp-workflow    作者:paris-saclay-cds    | 项目源码 | 文件源码
def __call__(self, y_true_proba, y_proba):
        """
        See Murphy (1973) A vector partition of the probability score
        """
        np.seterr(divide="ignore")
        pos_obs_freq = np.histogram(
            y_proba[y_true_proba == 1], bins=self.bins)[0]
        fore_freq = np.histogram(y_proba, bins=self.bins)[0]
        climo = y_true_proba.mean()
        unc = climo * (1 - climo)
        pos_obs_rel_freq = np.zeros(pos_obs_freq.size)
        for p in range(pos_obs_rel_freq.size):
            if fore_freq[p] > 0:
                pos_obs_rel_freq[p] = pos_obs_freq[p] / fore_freq[p]
            else:
                pos_obs_rel_freq[p] = np.nan
        score = np.nansum(fore_freq * (pos_obs_rel_freq - climo) ** 2)
        score /= float(y_proba.size)
        return score / unc
项目:qmflows-namd    作者:SCM-NV    | 项目源码 | 文件源码
def dephasing(f):
    """
    Computes the dephasing time of a given function using optical response
    formalisms:
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1995
    About the implementation we use the 2nd order cumulant expansion.
    See also eq. (2) in : Kilina et al. Phys. Rev. Lett., 110, 180404, (2013)
    To calculate the dephasing time tau we fit the dephasing function to a
    gaussian of the type : exp(-0.5 * (-x / tau) ** 2)
    """
    ts = np.arange(f.shape[0])
    cumu_ii = np.stack(np.sum(f[0:i]) for i in range(ts.size)) / hbar
    cumu_i = np.stack(np.sum(cumu_ii[0:i]) for i in range(ts.size)) / hbar
    deph = np.exp(-cumu_i)
    np.seterr(over='ignore')
    popt = curve_fit(gauss_function, ts, deph)[0]
    xs = np.exp(-0.5 * (-ts / popt[0]) ** 2)
    deph = np.column_stack((deph, xs))
    rate = popt[0]
    return deph, rate
项目:pulseviz    作者:pckbls    | 项目源码 | 文件源码
def run(self):
        numpy.seterr(all='raise')

        try:
            with self._pulseaudio_client:
                while not self._stop_event.is_set():
                    with self.lock:
                        self._sample()
                        for callback in self._on_sample_callbacks:
                            callback()

        except Exception as e:
            self.exit_success = False
            raise e
        else:
            self.exit_success = True
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def get_vlb(self):
        # return avg energy plus entropy, our contribution to the mean field
        # variational lower bound
        errs = np.seterr(invalid='ignore',divide='ignore')
        prod = self.r*np.log(self.r)
        prod[np.isnan(prod)] = 0. # 0 * -inf = 0.
        np.seterr(**errs)

        logpitilde = self.weights.expected_log_likelihood(np.arange(len(self.components)))

        q_entropy = -prod.sum()
        p_avgengy = (self.r*logpitilde).sum()

        return p_avgengy + q_entropy

    ### EM
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def _expected_durations(self,
            dur_potentials,cumulative_obs_potentials,
            alphastarl,betal,normalizer):
        logpmfs = -np.inf*np.ones((self.Tfull,alphastarl.shape[1]))
        errs = np.seterr(invalid='ignore') # logaddexp(-inf,-inf)
        # TODO censoring not handled correctly here
        for tblock in xrange(self.Tblock):
            possible_durations = self.segmentlens[tblock:].cumsum()[:self.trunc]
            cB, offset = cumulative_obs_potentials(tblock)
            logpmfs[possible_durations -1] = np.logaddexp(
                    dur_potentials(tblock) + alphastarl[tblock]
                    + betal[tblock:tblock+self.trunc if self.trunc is not None else None]
                    + cB - (offset + normalizer),
                    logpmfs[possible_durations -1])
        np.seterr(**errs)
        return np.exp(logpmfs.T)


###################
#  sparate trans  #
###################
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def max_likelihood(self,stateseqs=None,expected_transcounts=None):
        trans_counts = sum(expected_transcounts) if stateseqs is None \
                else self._count_transitions(stateseqs)

        # NOTE: could just call max_likelihood on each trans row, but this way
        # it handles a few lazy-initialization cases (e.g. if _row_distns aren't
        # initialized)
        errs = np.seterr(invalid='ignore',divide='ignore')
        trans_matrix = np.nan_to_num(trans_counts / trans_counts.sum(1)[:,na])
        np.seterr(**errs)

        # all-zero rows get set to uniform
        trans_matrix[trans_matrix.sum(1) == 0] = 1./trans_matrix.shape[0]
        assert np.allclose(trans_matrix.sum(1),1.)

        self.trans_matrix = trans_matrix

        return self
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def max_likelihood(self,stateseqs=None,expected_transcounts=None):
        trans_counts = sum(expected_transcounts) if stateseqs is None \
                else self._count_transitions(stateseqs)
        # NOTE: we could just call max_likelihood on each trans row, but this
        # way it's a bit nicer
        errs = np.seterr(invalid='ignore',divide='ignore')
        trans_matrix = np.nan_to_num(trans_counts / trans_counts.sum(1)[:,na])
        np.seterr(**errs)

        # all-zero rows get set to uniform
        trans_matrix[trans_matrix.sum(1) == 0] = 1./(trans_matrix.shape[0]-1)
        trans_matrix.flat[::trans_matrix.shape[0]+1] = 0.

        self.trans_matrix = trans_matrix
        assert np.allclose(0.,np.diag(self.trans_matrix))
        assert np.allclose(1.,self.trans_matrix.sum(1))

        return self
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def _messages_backwards_log_slow(trans_potential, init_potential, likelihood_log_potential,
                                     feature_weights, window_data):
        errs = np.seterr(over='ignore')
        Al = np.log(trans_potential)
        pil = np.log(init_potential)
        aBl = likelihood_log_potential
        nhs = trans_potential.shape[0]
        sequence_length = aBl.shape[0]
        betal = np.zeros((sequence_length, nhs * 2))
        giant_Al_pil = np.tile(np.vstack((np.tile(pil, (nhs,1)), Al )), (1,2))
        for t in xrange(betal.shape[0]-2,-1,-1):
            temp_constant = np.sum(feature_weights[:-nhs-1] * window_data[t+1,:]) + feature_weights[-1]
            temp_exp = temp_constant + feature_weights[-nhs-1:-1]
            temp_logaddexp = np.logaddexp(0, temp_exp)
            temp_log_linear = np.tile(temp_exp, 2) * np.repeat([0,1], nhs) - np.tile(temp_logaddexp, 2)

            np.logaddexp.reduce( giant_Al_pil + betal[t+1] +
                                 np.hstack((aBl[t+1], aBl[t+1])) +
                                 temp_log_linear
                                ,axis=1 ,out=(betal[t]))


        np.seterr(**errs)
        return betal
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def _messages_backwards_log_fast(trans_potential, init_potential, likelihood_log_potential_llt):
        errs = np.seterr(over='ignore')
        Al = np.log(trans_potential)
        pil = np.log(init_potential)
        aBl = likelihood_log_potential_llt
        nhs = trans_potential.shape[0]
        sequence_length = aBl.shape[0]
        betal = np.zeros((sequence_length, nhs * 2))
        giant_Al_pil = np.tile(np.vstack((np.tile(pil, (nhs,1)), Al )), (1,2))


        for t in xrange(betal.shape[0]-2,-1,-1):
            np.logaddexp.reduce( giant_Al_pil + betal[t+1] + aBl[t+1], axis=1, out=(betal[t]))

        np.seterr(**errs)
        return betal


    ### Gibbs sampling
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def _sample_forwards_log(self, betal, trans_matrix, init_state_distn, log_likelihoods_loglinear):
        errs = np.seterr(over='ignore')
        Al = trans_matrix
        aBl = log_likelihoods_loglinear
        T = aBl.shape[0]
        pil = init_state_distn
        nhs = trans_matrix.shape[0]
        giant_Al_pil = np.tile(np.vstack((np.tile(pil, (nhs,1)), Al )), (1,2))
        stateseq = np.empty(T,dtype=np.int32)
        true_segmentation = np.ones(T,dtype=np.int32)
        nextstate_unsmoothed = np.tile(init_state_distn, 2)

        for idx in xrange(T):
            logdomain = betal[idx] + aBl[idx] ###check this for the initial and last state and compare with the forward message
            logdomain[nextstate_unsmoothed == 0] = -np.inf

            if np.any(np.isfinite(logdomain)):
                stateseq[idx] = sample_discrete(nextstate_unsmoothed * np.exp(logdomain - np.amax(logdomain)))
            else:
                stateseq[idx] = sample_discrete(nextstate_unsmoothed)
            if stateseq[idx] < nhs: true_segmentation[idx] = 0
            nextstate_unsmoothed = giant_Al_pil[stateseq[idx]]

        return stateseq, true_segmentation
项目:few    作者:lacava    | 项目源码 | 文件源码
def evaluate(self,n, features, stack_float, stack_bool,labels=None):
        """evaluate node in program"""
        np.seterr(all='ignore')
        if len(stack_float) >= n.arity['f'] and len(stack_bool) >= n.arity['b']:
            if n.out_type == 'f':
                stack_float.append(
                    self.safe(self.eval_dict[n.name](n,features,stack_float,
                                                     stack_bool,labels)))
                if (np.isnan(stack_float[-1]).any() or
                    np.isinf(stack_float[-1]).any()):
                    print("problem operator:",n)
            else:
                stack_bool.append(self.safe(self.eval_dict[n.name](n,features,
                                                                   stack_float,
                                                                   stack_bool,
                                                                   labels)))
                if np.isnan(stack_bool[-1]).any() or np.isinf(stack_bool[-1]).any():
                    print("problem operator:",n)
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_zero_precision_recall():
    # Check that pathological cases do not bring NaNs

    old_error_settings = np.seterr(all='raise')

    try:
        y_true = np.array([0, 1, 2, 0, 1, 2])
        y_pred = np.array([2, 0, 1, 1, 2, 0])

        assert_almost_equal(precision_score(y_true, y_pred,
                                            average='weighted'), 0.0, 2)
        assert_almost_equal(recall_score(y_true, y_pred, average='weighted'),
                            0.0, 2)
        assert_almost_equal(f1_score(y_true, y_pred, average='weighted'),
                            0.0, 2)

    finally:
        np.seterr(**old_error_settings)
项目:GRIPy    作者:giruenf    | 项目源码 | 文件源码
def transform(value, left_scale, right_scale, scale=0):
    if left_scale is None or right_scale is None:
        raise Exception('Left or Right scales cannot be None.')
    if scale not in [0, 1]:
        raise Exception('Scale must be 0 or 1.')
    invalid_err = np.geterr().get('invalid')
    invalid_err = np.geterr().get('invalid')
    np.seterr(invalid='ignore')    
    if scale == 0:
        range_ = np.absolute(right_scale - left_scale)
        translated_value = np.abs(value - left_scale)    
        ret_val =  (translated_value / range_)
    else:
        if left_scale <= 0.0:
            raise Exception()
        ls = np.log10(left_scale)    
        rs = np.log10(right_scale)
        range_ = rs - ls
        translated_value = np.log10(value) - ls
        ret_val =  (translated_value / range_)
    np.seterr(invalid=invalid_err)
    return ret_val
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:treecat    作者:posterior    | 项目源码 | 文件源码
def numpy_seterr():
    np.seterr(divide='raise', invalid='raise')
项目:uchroma    作者:cyanogen    | 项目源码 | 文件源码
def _compose_alpha(img_in, img_layer, opacity: float=1.0):
    """
    Calculate alpha composition ratio between two images.
    """
    comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity
    new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha
    np.seterr(divide='ignore', invalid='ignore')
    ratio = comp_alpha / new_alpha
    ratio[ratio == np.NAN] = 0.0
    return ratio
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _marginal_densities(self, samples):
            '''
            Evaluate marginal densities and cumulative distribution functions.

            Parameters
            ----------
            samples : array_like
                n-by-d matrix of samples where n is the number of samples and d
                is the number of marginals.

            Returns
            -------
            dout : dictionary
                The densities and cumulative distribution functions.  Keys:
                `logpdf`: Equal to first element of `logp`.
                'logp': Log of the probability density function.
                'cdfp': Upper cumulative distribution functions.
                'cdfm': Lower cumulative distribution functions.
                'is_continuous': List of booleans where element i is `True` if
                output element i is continuous.
            '''
            logp = np.zeros(samples.shape)
            cdfp = np.zeros(samples.shape)
            cdfm = np.zeros(samples.shape)
            is_continuous = np.zeros(len(self.marginals), dtype=bool)
            for k, marginal in enumerate(self.marginals):
                is_continuous[k] = marginal.is_continuous
                cdfp[:, k] = marginal.cdf(samples[:, k])
                if marginal.is_continuous:
                    logp[:, k] = marginal.logpdf(samples[:, k])
                else:
                    cdfm[:, k] = marginal.cdf(samples[:, k] - 1)
                    old_settings = np.seterr(divide='ignore')
                    logp[:, k] = np.log(np.maximum(0, cdfp[:, k] - cdfm[:, k]))
                    np.seterr(**old_settings)
            logpdf = logp[:, self.output_layer.input_indices[0][0]]
            dout = {'logpdf': logpdf, 'logp': logp, 'cdfp': cdfp, 'cdfm': cdfm,
                    'is_continuous': is_continuous}
            return dout
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def logcdf(self, samples):
        '''
        Calculates the log of the cumulative distribution function.

        Parameters
        ----------
        samples : array_like
            n-by-2 matrix of samples where n is the number of samples.

        Returns
        -------
        vals : ndarray
            Log of the cumulative distribution function evaluated at `samples`.
        '''
        samples = np.copy(np.asarray(samples))
        samples = self.__crop_input(samples)
        samples = self.__rotate_input(samples)
        vals = self._logcdf(samples)
        # Transform according to rotation, but take `__rotate_input` into
        # account.
        if self.rotation == '90°':
            old_settings = np.seterr(divide='ignore')
            vals = np.log(np.maximum(0, samples[:, 0] - np.exp(vals)))
            np.seterr(**old_settings)
        elif self.rotation == '180°':
            old_settings = np.seterr(divide='ignore')
            vals = np.log(np.maximum(0,
                                     (1 - samples[:, 0]) + (1 - samples[:, 1])
                                     - 1.0 + np.exp(vals)))
            np.seterr(**old_settings)
        elif self.rotation == '270°':
            old_settings = np.seterr(divide='ignore')
            vals = np.log(np.maximum(0, samples[:, 1] - np.exp(vals)))
            np.seterr(**old_settings)
        return vals
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _logcdf(self, samples):
        old_settings = np.seterr(divide='ignore')
        vals = np.sum(np.log(samples), axis=1)
        np.seterr(**old_settings)
        return vals
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _logcdf(self, samples):
        if self.theta == 0:
            vals = np.sum(np.log(samples), axis=1)
        else:
            old_settings = np.seterr(divide='ignore')
            vals = (-1 / self.theta) \
                * np.log(np.maximum(samples[:, 0]**(-self.theta)
                                    + samples[:, 1]**(-self.theta) - 1, 0))
            np.seterr(**old_settings)
        return vals
项目:Poccala    作者:Byshx    | 项目源码 | 文件源码
def viterbi(self, data, data_time, unit_train_time=unit_time):
        """
        viterbi???
        :param data: ????(??)
        :param data_time: ????????
        :param unit_train_time: ????????
        :return: 
        """

        def info(p):
            """???????"""
            point_ = p.max()
            mark_ = np.where(p == point_)
            mark_state = mark_[0][0]
            return point_, mark_state

        self.__cal_data(data, data_time, unit_train_time)
        complex_states, complex_observation, complex_A, complex_B, complex_? = self.__embedded_list
        '''????'''
        np.seterr(divide='ignore')
        if self.__p_list is None:
            self.__p_list = np.log(complex_?) + complex_B[:, 0]
            point, mark = info(self.__p_list)
            self.score += point
            self.mark = mark
            if mark == len(complex_states) - 1:
                return True
        else:
            p_ = np.zeros_like(self.__p_list)
            for j in range(len(complex_states)):
                tmp = self.__p_list + np.log(complex_A[:, j])
                max_p = tmp.max()
                p_[j] = max_p
            self.__p_list = p_ + complex_B[:, 0]
            point, mark = info(self.__p_list)
            self.score += point
            self.mark = mark
            if len(complex_states) - mark <= 1:
                return True
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_set(self):
        with np.errstate():
            err = np.seterr()
            old = np.seterr(divide='print')
            self.assertTrue(err == old)
            new = np.seterr()
            self.assertTrue(new['divide'] == 'print')
            np.seterr(over='raise')
            self.assertTrue(np.geterr()['over'] == 'raise')
            self.assertTrue(new['divide'] == 'print')
            np.seterr(**old)
            self.assertTrue(np.geterr() == old)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_divide_err(self):
        with np.errstate(divide='raise'):
            try:
                np.array([1.]) / np.array([0.])
            except FloatingPointError:
                pass
            else:
                self.fail()
            np.seterr(divide='ignore')
            np.array([1.]) / np.array([0.])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        self.olderr = np.seterr(invalid='ignore')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def tearDown(self):
        np.seterr(**self.olderr)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        self.olderr = np.seterr(invalid='ignore')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        self.olderr = np.seterr(invalid='ignore')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def tearDown(self):
        np.seterr(**self.olderr)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        self.olderr = np.seterr(invalid='ignore')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def tearDown(self):
        np.seterr(**self.olderr)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setUp(self):
        # Base data definition.
        self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
                  array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def tearDown(self):
        np.seterr(**self.err_status)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def set_fp_err():
    #np.seterr(all='raise')
    np.seterr(all='warn')