我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.trace()。
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): """Returns the sum along the diagonals of an array. It computes the sum along the diagonals at ``axis1`` and ``axis2``. Args: a (cupy.ndarray): Array to take trace. offset (int): Index of diagonals. Zero indicates the main diagonal, a positive value an upper diagonal, and a negative value a lower diagonal. axis1 (int): The first axis along which the trace is taken. axis2 (int): The second axis along which the trace is taken. dtype: Data type specifier of the output. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The trace of ``a`` along axes ``(axis1, axis2)``. .. seealso:: :func:`numpy.trace` """ # TODO(okuta): check type return a.trace(offset, axis1, axis2, dtype, out)
def reflection_matrix(point, normal): """Return matrix to mirror at plane defined by point and normal vector. >>> v0 = numpy.random.random(4) - 0.5 >>> v0[3] = 1. >>> v1 = numpy.random.random(3) - 0.5 >>> R = reflection_matrix(v0, v1) >>> numpy.allclose(2, numpy.trace(R)) True >>> numpy.allclose(v0, numpy.dot(R, v0)) True >>> v2 = v0.copy() >>> v2[:3] += v1 >>> v3 = v0.copy() >>> v2[:3] -= v1 >>> numpy.allclose(v2, numpy.dot(R, v3)) True """ normal = unit_vector(normal[:3]) M = numpy.identity(4) M[:3, :3] -= 2.0 * numpy.outer(normal, normal) M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal return M
def reflection_matrix(point, normal): """Return matrix to mirror at plane defined by point and normal vector. >>> v0 = numpy.random.random(4) - 0.5 >>> v0[3] = 1.0 >>> v1 = numpy.random.random(3) - 0.5 >>> R = reflection_matrix(v0, v1) >>> numpy.allclose(2., numpy.trace(R)) True >>> numpy.allclose(v0, numpy.dot(R, v0)) True >>> v2 = v0.copy() >>> v2[:3] += v1 >>> v3 = v0.copy() >>> v2[:3] -= v1 >>> numpy.allclose(v2, numpy.dot(R, v3)) True """ normal = unit_vector(normal[:3]) M = numpy.identity(4) M[:3, :3] -= 2.0 * numpy.outer(normal, normal) M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal return M
def trace(mpa, axes=(0, 1)): """Compute the trace of the given MPA. If you specify axes (see partialtrace() for details), you must ensure that the result has no physical legs anywhere. :param mpa: MParray :param axes: Axes for trace, ``(axis1, axis2)`` or ``(axes1, axes2, ...)`` with ``axesN=(axisN_1, axisN_2)`` or ``axesN=None``. (default: ``(0, 1)``) :returns: A single scalar of type ``mpa.dtype`` """ out = partialtrace(mpa, axes) out = out.to_array() assert out.size == 1, 'trace must return a single scalar' return out[None][0]
def test_sandwich(nr_sites, local_dim, rank, rgen, dtype): mps = factory.random_mpa(nr_sites, local_dim, rank, randstate=rgen, dtype=dtype, normalized=True) mps2 = factory.random_mpa(nr_sites, local_dim, rank, randstate=rgen, dtype=dtype, normalized=True) mpo = factory.random_mpa(nr_sites, [local_dim] * 2, rank, randstate=rgen, dtype=dtype) mpo.canonicalize() mpo /= mp.trace(mpo) vec = mps.to_array().ravel() op = mpo.to_array_global().reshape([local_dim**nr_sites] * 2) res_arr = np.vdot(vec, np.dot(op, vec)) res_mpo = mp.inner(mps, mp.dot(mpo, mps)) res_sandwich = mp.sandwich(mpo, mps) assert_almost_equal(res_mpo, res_arr) assert_almost_equal(res_sandwich, res_arr) vec2 = mps2.to_array().ravel() res_arr = np.vdot(vec2, np.dot(op, vec)) res_mpo = mp.inner(mps2, mp.dot(mpo, mps)) res_sandwich = mp.sandwich(mpo, mps, mps2) assert_almost_equal(res_mpo, res_arr) assert_almost_equal(res_sandwich, res_arr)
def test_dipolar_tensor(self): # initial stupid test... ###### TODO : do a reasonable test!!! ###### p = np.array([[0.,0.,0.]]) fc = np.array([[0.,0.,1.]],dtype=np.complex) k = np.array([0.,0.,0.0]) phi= np.array([0.,]) mu = np.array([0.5,0.5,0.5]) sc = np.array([10,10,10],dtype=np.int32) latpar = np.diag([2.,2.,2.]) r = 10. res = lfcext.DipolarTensor(p,mu,sc,latpar,r) np.testing.assert_array_almost_equal(res, np.zeros([3,3])) mu = np.array([0.25,0.25,0.25]) res = lfcext.DipolarTensor(p,mu,sc,latpar,r) np.testing.assert_array_almost_equal(np.trace(res), np.zeros([3])) np.testing.assert_array_almost_equal(res, res.copy().T)
def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E, GL, nu, V, prior_on = False): eps = 1E-13 p = Phi.shape[0] n_ROI = len(sigma_J_list) Qu = Phi.dot(Phi.T) G_Sigma_G = np.zeros(MMT.shape) for i in range(n_ROI): G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T) cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) inv_cov = np.linalg.inv(cov) eigs = np.real(np.linalg.eigvals(cov)) + eps log_det_cov = np.sum(np.log(eigs)) result = q*log_det_cov + np.trace(MMT.dot(inv_cov)) if prior_on: inv_Q = np.linalg.inv(Qu) #det_Q = np.linalg.det(Qu) log_det_Q = np.sum(np.log(np.diag(Phi)**2)) result = result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q)) return result #============================================================================== # update both Qu and Sigma_J, gradient of Qu and Sigma J
def calc_mean_var_loss(epochsInds,loss_train): #Loss train is in dimension # epochs X #batchs num_of_epochs = loss_train.shape[0] #Average over the batchs loss_train_mean = np.mean(loss_train,1) #The diff divided by the sampled indexes d_mean_loss_to_dt = np.sqrt(np.abs(np.diff(loss_train_mean) / np.diff(epochsInds[:]))) var_loss = [] #Go over the epochs for epoch_index in range(num_of_epochs): #The loss for the specpic epoch current_loss = loss_train[epoch_index, :] #The derivative between the batchs current_loss_dt = np.diff(current_loss) #The mean of his derivative average_loss = np.mean(current_loss_dt) current_loss_minus_mean = current_loss_dt- average_loss #The covarince between the batchs cov_mat = np.dot(current_loss_minus_mean[:, None], current_loss_minus_mean[None, :]) # The trace of the cov matrix trac_cov = np.trace(cov_mat) var_loss.append(trac_cov) return np.array(var_loss), d_mean_loss_to_dt
def process_fidelity(self, reference_unitary): """ Compute the quantum process fidelity of the estimated state with respect to a unitary process. For non-sparse reference_unitary, this implementation this will be expensive in higher dimensions. :param (qutip.Qobj|matrix-like) reference_unitary: A unitary operator that induces a process as ``rho -> other*rho*other.dag()``, can also be a superoperator or Pauli-transfer matrix. :return: The process fidelity, a real number between 0 and 1. :rtype: float """ if isinstance(reference_unitary, qt.Qobj): if not reference_unitary.issuper or reference_unitary.superrep != "super": sother = qt.to_super(reference_unitary) else: sother = reference_unitary tm_other = self.pauli_basis.transfer_matrix(sother) else: tm_other = csr_matrix(reference_unitary) dimension = self.pauli_basis.ops[0].shape[0] return np.trace(tm_other.T * self.r_est).real / dimension ** 2
def one_time_from_two_time(two_time_corr): """ This will provide the one-time correlation data from two-time correlation data. Parameters ---------- two_time_corr : array matrix of two time correlation shape (number of labels(ROI's), number of frames, number of frames) Returns ------- one_time_corr : array matrix of one time correlation shape (number of labels(ROI's), number of frames) """ one_time_corr = np.zeros((two_time_corr.shape[0], two_time_corr.shape[2])) for g in two_time_corr: for j in range(two_time_corr.shape[2]): one_time_corr[:, j] = np.trace(g, offset=j)/two_time_corr.shape[2] return one_time_corr
def __trace_middle_dims(sys, dims, reverse=True): """ Get system dimensions for __trace_middle. Args: j (int): system to trace over. dims(list[int]): dimensions of all subsystems. reverse (bool): if true system-0 is right-most system tensor product. Returns: Tuple (dim1, dims2, dims3) """ dpre = dims[:sys] dpost = dims[sys + 1:] if reverse: dpre, dpost = (dpost, dpre) dim1 = int(np.prod(dpre)) dim2 = int(dims[sys]) dim3 = int(np.prod(dpost)) return (dim1, dim2, dim3)
def quadratic_loss(covariance, precision): """Computes ... Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the model to be tested Returns ------- Quadratic loss """ assert covariance.shape == precision.shape dim, _ = precision.shape return np.trace((np.dot(covariance, precision) - np.eye(dim))**2)
def multivariate_prior_KL(meanA, covA, meanB, covB): # KL[ qA | qB ] = E_{qA} \log [qA / qB] where qA and aB are # K dimensional multivariate normal distributions. # Analytically tractable and equal to... # 0.5 * (Tr(covB^{-1} covA) + (meanB - meanA)^T covB^{-1} (meanB - meanA) # - K + log(det(covB)) - log (det(covA))) K = covA.shape[0] traceTerm = 0.5 * np.trace(np.linalg.solve(covB, covA)) delta = meanB - meanA mahalanobisTerm = 0.5 * np.dot(delta.T, np.linalg.solve(covB, delta)) constantTerm = -0.5 * K priorLogDeterminantTerm = 0.5*np.linalg.slogdet(covB)[1] variationalLogDeterminantTerm = -0.5 * np.linalg.slogdet(covA)[1] return (traceTerm + mahalanobisTerm + constantTerm + priorLogDeterminantTerm + variationalLogDeterminantTerm)
def contract_internal(self, label1, label2, index1=0, index2=0): """By default will contract the first index with label1 with the first index with label2. index1 and index2 can be specified to contract indices that are not the first with the specified label.""" label1_indices = [i for i, x in enumerate(self.labels) if x == label1] label2_indices = [i for i, x in enumerate(self.labels) if x == label2] index_to_contract1 = label1_indices[index1] index_to_contract2 = label2_indices[index2] self.data = np.trace(self.data, axis1=index_to_contract1, axis2= index_to_contract2) # The following removes the contracted indices from the list of labels self.labels = [label for j, label in enumerate(self.labels) if j not in [index_to_contract1, index_to_contract2]] # aliases for contract_internal
def estimate_cov(self, samples, mean): """ Estimate the empirical covariance of the weight vectors, possibly with regularization. """ d = mean.shape[0] # Accumulate statistics Sigma = np.zeros((d, d)) for t in range(len(samples)): zm = samples[t] - mean Sigma = Sigma + zm.dot(zm.T) # Normalize factor of estimate if self._norm_style == 'ML': norm = 1.0/(len(samples)-1) elif self._norm_style == 'Trace': norm = 1.0/np.trace(Sigma) else: raise ValueError('Norm style {} not known'.format(self._norm_style)) Sigma = norm*Sigma # Add diagonal loading term self.diag_eps = 0.1*np.mean(np.abs(np.linalg.eig(Sigma)[0])) # TODO return Sigma + self.diag_eps*self._id
def compute_gradient_totalcverr_wrt_lambda(self,matrix_results,lambda_val,sigmasq_z): # 0: K_tst_tr; 1: K_tr_tr; 2: D_tst_tr; 3: D_tr_tr num_sample_cv = self.num_samples ttl_num_folds = np.shape(matrix_results)[1] gradient_cverr_per_fold = np.zeros(ttl_num_folds) for jj in range(ttl_num_folds): uu = np.shape(matrix_results[3][jj])[0] # number of training samples M_tst_tr = exp(matrix_results[2][jj]*float(-1/2)*sigmasq_z**(-1)) M_tr_tr = exp(matrix_results[3][jj]*float(-1/2)*sigmasq_z**(-1)) lower_ZZ = cholesky(M_tr_tr+ lambda_val*eye(uu), lower=True) ZZ = cho_solve((lower_ZZ,True),eye(uu)) first_term = matrix_results[0][jj].dot(ZZ.dot(ZZ.dot(M_tst_tr.T))) second_term = M_tst_tr.dot(ZZ.dot(ZZ.dot( matrix_results[1][jj].dot(ZZ.dot(M_tst_tr.T))))) gradient_cverr_per_fold[jj] = trace(first_term-second_term) return 2*sum(gradient_cverr_per_fold)/float(num_sample_cv) # lambda = exp(eta)
def compute_gradient_totalcverr_wrt_sqsigma(self,matrix_results,lambda_val,sigmasq_z): # 0: K_tst_tr; 1: K_tr_tr; 2: D_tst_tr; 3: D_tr_tr num_sample_cv = self.num_samples ttl_num_folds = np.shape(matrix_results)[1] gradient_cverr_per_fold = np.zeros(ttl_num_folds) for jj in range(ttl_num_folds): uu = np.shape(matrix_results[3][jj])[0] log_M_tr_tst = matrix_results[2][jj].T*float(-1/2)*sigmasq_z**(-1) M_tr_tst = exp(log_M_tr_tst) log_M_tr_tr = matrix_results[3][jj]*float(-1/2)*sigmasq_z**(-1) M_tr_tr = exp(log_M_tr_tr) lower_ZZ = cholesky(M_tr_tr+ lambda_val*eye(uu), lower=True) ZZ = cho_solve((lower_ZZ,True),eye(uu)) term_1 = matrix_results[0][jj].dot(ZZ.dot((M_tr_tr*sigmasq_z**(-1)*(-log_M_tr_tr)).dot(ZZ.dot(M_tr_tst)))) term_2 = -matrix_results[0][jj].dot(ZZ.dot(M_tr_tst*(-log_M_tr_tst*sigmasq_z**(-1)))) term_3 = (sigmasq_z**(-1)*(M_tr_tst.T)*(-log_M_tr_tst.T)).dot(ZZ.dot(matrix_results[1][jj].dot(ZZ.dot(M_tr_tst)))) term_4 = -(M_tr_tst.T).dot(ZZ.dot((M_tr_tr*sigmasq_z**(-1)*(-log_M_tr_tr)).dot(ZZ.dot(matrix_results[1][jj].dot( ZZ.dot(M_tr_tst)))))) term_5 = -(M_tr_tst.T).dot(ZZ.dot(matrix_results[1][jj].dot(ZZ.dot((M_tr_tr*sigmasq_z**(-1)*(-log_M_tr_tr)).dot( ZZ.dot(M_tr_tst)))))) term_6 = (M_tr_tst.T).dot(ZZ.dot(matrix_results[1][jj].dot(ZZ.dot(M_tr_tst*sigmasq_z**(-1)*(-log_M_tr_tst))))) gradient_cverr_per_fold[jj] = trace(2*term_1 + 2*term_2 + term_3 + term_4 + term_5 + term_6) return sum(gradient_cverr_per_fold)/float(num_sample_cv)
def compute_totalcverr(self,matrix_results,lambda_val,sigmasq_z): # 0: K_tst_tr; 1: K_tr_tr; 2: K_tst_tst; 3: D_tst_tr; 4: D_tr_tr num_sample_cv = self.num_samples ttl_num_folds = np.shape(matrix_results)[1] cverr_per_fold = np.zeros(ttl_num_folds) for jj in range(ttl_num_folds): uu = np.shape(matrix_results[4][jj])[0] # number of training samples M_tst_tr = exp(matrix_results[3][jj]*float(-1/2)*sigmasq_z**(-1)) M_tr_tr = exp(matrix_results[4][jj]*float(-1/2)*sigmasq_z**(-1)) lower_ZZ = cholesky(M_tr_tr+ lambda_val*eye(uu), lower=True) ZZ = cho_solve((lower_ZZ,True),eye(uu)) first_term = matrix_results[2][jj] second_term = - matrix_results[0][jj].dot(ZZ.dot(M_tst_tr.T)) third_term = np.transpose(second_term) fourth_term = M_tst_tr.dot(ZZ.dot( matrix_results[1][jj].dot(ZZ.dot(M_tst_tr.T)))) cverr_per_fold[jj] = trace(first_term + second_term + third_term + fourth_term) return sum(cverr_per_fold)/float(num_sample_cv)
def covariance_distance_from_matrices(m1, m2, mul_factor=1): """ Covariance distance between matrices m1 and m2, defined as d = factor * (1 - (trace(m1 * m2)) / (norm_fro(m1) + norm_fro(m2))) :param m1: matrix :param m2: matrix :param mul_factor: multiplicative factor for the formula, it equals to the maximal value the distance can reach :return: mul_factor * (1 - (np.trace(m1.dot(m2))) / (np.linalg.norm(m1) + np.linalg.norm(m2))) """ if np.nan not in m1 and np.nan not in m2: return \ mul_factor * (1 - (np.trace(m1.dot(m2)) / (np.linalg.norm(m1, ord='fro') * np.linalg.norm(m2, ord='fro')))) else: return np.nan # --- global distances: (segm, segm) |-> real
def test_sum_bit0(self): n = 32 x = np.random.random(n) # x = np.arange(n).astype(np.float64) x_gpu = drv.to_device(x) trace( x_gpu, np.int32(0), block=( n, 1, 1), grid=( 1, 1, 1), shared=8 * 128) x2 = drv.from_device_like(x_gpu, x) print(x) print(x2) assert np.allclose(x2[1], np.sum(x[::2])) assert np.allclose(x2[0], np.sum(x[1::2]))
def test_sum_bit1(self): n = 32 x = np.random.random(n) # x = np.arange(n).astype(np.float64) x_gpu = drv.to_device(x) trace( x_gpu, np.int32(1), block=( n, 1, 1), grid=( 1, 1, 1), shared=8 * 128) x2 = drv.from_device_like(x_gpu, x) print(x) print(x2) assert np.allclose(x2[1], np.sum(x[::4]) + np.sum(x[1::4])) assert np.allclose(x2[0], np.sum(x[2::4]) + np.sum(x[3::4]))
def test_preserve_trace_ground_state(self, dm): dm.hadamard(2) assert np.allclose(dm.trace(), 1) dm.hadamard(4) assert np.allclose(dm.trace(), 1) dm.hadamard(0) assert np.allclose(dm.trace(), 1) # @pytest.mark.skip # def test_squares_to_one(self, dm_random): # dm = dm_random # a0 = dm.to_array() # dm.hadamard(4) # dm.hadamard(4) # # dm.hadamard(2) # # dm.hadamard(2) # # dm.hadamard(0) # # dm.hadamard(0) # a1 = dm.to_array() # assert np.allclose(np.triu(a0), np.triu(a1))
def norm_fro_err(X, W, H, norm_X): """ Compute the approximation error in Frobeinus norm norm(X - W.dot(H.T)) is efficiently computed based on trace() expansion when W and H are thin. Parameters ---------- X : numpy.array or scipy.sparse matrix, shape (m,n) W : numpy.array, shape (m,k) H : numpy.array, shape (n,k) norm_X : precomputed norm of X Returns ------- float """ sum_squared = norm_X * norm_X - 2 * np.trace(H.T.dot(X.T.dot(W))) \ + np.trace((W.T.dot(W)).dot(H.T.dot(H))) return math.sqrt(np.maximum(sum_squared, 0))
def sdp_km(D, n_clusters): ones = np.ones((D.shape[0], 1)) Z = cp.Semidef(D.shape[0]) objective = cp.Maximize(cp.trace(D * Z)) constraints = [Z >= 0, Z * ones == ones, cp.trace(Z) == n_clusters] prob = cp.Problem(objective, constraints) prob.solve(solver=cp.SCS, verbose=False) Q = np.asarray(Z.value) rs = Q.sum(axis=1) print('Q', Q.min(), Q.max(), '|', rs.min(), rs.max(), '|', np.trace(Q), np.trace(D.dot(Q))) print('Final objective', np.trace(D.dot(Q))) return np.asarray(Z.value)
def neg_log_likelihood(self, Lam, Theta, fixed, vary): "compute the negative log-likelihood of the GCRF" return -log(np.linalg.det(Lam)) + \ np.trace(np.dot(fixed.Syy, Lam) + \ 2*np.dot(fixed.Sxy.T, Theta) + \ np.dot(vary.Psi, Lam))
def neg_log_likelihood_wrt_Lam(self, Lam, fixed, vary): # compute the negative log-likelihood of the GCRF when Theta is fixed return -log(np.linalg.det(Lam)) + \ np.trace(np.dot(fixed.Syy, Lam) + \ np.dot(vary.Psi, Lam))
def check_descent(self, newton_lambda, alpha, fixed, vary): # check if we have made suffcient descent DLam = np.trace(np.dot(self.grad_wrt_Lam(fixed, vary), newton_lambda)) + \ self.lamL * np.linalg.norm(self.Lam + newton_lambda, ord=1) - \ self.lamL * np.linalg.norm(self.Lam, ord=1) nll_a = self.l1_neg_log_likelihood_wrt_Lam(self.Lam + alpha * newton_lambda, fixed, vary) nll_b = self.l1_neg_log_likelihood_wrt_Lam(self.Lam, fixed, vary) + alpha * self.slack * DLam return nll_a <= nll_b
def check_descent2(self, newton_lambda, alpha, fixed, vary): lhs = self.l1_neg_log_likelihood(self.Lam + alpha*newton_lambda, self.Theta, fixed, vary) mu = np.trace(np.dot(self.grad_wrt_Lam(fixed, vary), newton_lambda)) + \ self.lamL*self.l1_norm_off_diag(self.Lam + newton_lambda) +\ self.lamT*np.linalg.norm(self.Theta, ord=1) rhs = self.neg_log_likelihood(self.Lam, self.Theta, fixed, vary) +\ alpha * self.slack * mu return lhs <= rhs
def updateTransform(self): muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np) muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np) self.XX = self.X - np.tile(muX, (self.N, 1)) YY = self.Y - np.tile(muY, (self.M, 1)) self.A = np.dot(np.transpose(self.XX), np.transpose(self.P)) self.A = np.dot(self.A, YY) U, _, V = np.linalg.svd(self.A, full_matrices=True) C = np.ones((self.D, )) C[self.D-1] = np.linalg.det(np.dot(U, V)) self.R = np.dot(np.dot(U, np.diag(C)), V) self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY), axis=1)) self.s = np.trace(np.dot(np.transpose(self.A), self.R)) / self.YPY self.t = np.transpose(muX) - self.s * np.dot(self.R, np.transpose(muY))
def updateVariance(self): qprev = self.q trAR = np.trace(np.dot(self.A, np.transpose(self.R))) xPx = np.dot(np.transpose(self.Pt1), np.sum(np.multiply(self.XX, self.XX), axis =1)) self.q = (xPx - 2 * self.s * trAR + self.s * self.s * self.YPY) / (2 * self.sigma2) + self.D * self.Np/2 * np.log(self.sigma2) self.err = np.abs(self.q - qprev) self.sigma2 = (xPx - self.s * trAR) / (self.Np * self.D) if self.sigma2 <= 0: self.sigma2 = self.tolerance / 10
def updateVariance(self): qprev = self.q trAB = np.trace(np.dot(self.A, np.transpose(self.B))) xPx = np.dot(np.transpose(self.Pt1), np.sum(np.multiply(self.XX, self.XX), axis =1)) trBYPYP = np.trace(np.dot(np.dot(self.B, self.YPY), np.transpose(self.B))) self.q = (xPx - 2 * trAB + trBYPYP) / (2 * self.sigma2) + self.D * self.Np/2 * np.log(self.sigma2) self.err = np.abs(self.q - qprev) self.sigma2 = (xPx - trAB) / (self.Np * self.D) if self.sigma2 <= 0: self.sigma2 = self.tolerance / 10
def identity_matrix(): """Return 4x4 identity/unit matrix. >>> I = identity_matrix() >>> numpy.allclose(I, numpy.dot(I, I)) True >>> numpy.sum(I), numpy.trace(I) (4.0, 4.0) >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64)) True """ return numpy.identity(4, dtype=numpy.float64)
def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 l, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 l, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point
def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] factor = numpy.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor l, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0] direction = numpy.real(V[:, i]).squeeze() direction /= vector_norm(direction) except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 l, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") origin = numpy.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction
def identity_matrix(): """Return 4x4 identity/unit matrix. >>> I = identity_matrix() >>> numpy.allclose(I, numpy.dot(I, I)) True >>> numpy.sum(I), numpy.trace(I) (4.0, 4.0) >>> numpy.allclose(I, numpy.identity(4)) True """ return numpy.identity(4)
def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 w, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point
def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] factor = numpy.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor w, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] direction = numpy.real(V[:, i]).squeeze() direction /= vector_norm(direction) except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 w, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") origin = numpy.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction
def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 w, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point # Function to translate handshape coding to degrees of rotation, adduction, flexion