Python numpy 模块,equal() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.equal()

项目:STA141C    作者:clarkfitzg    | 项目源码 | 文件源码
def go_nn_kdtree(eps=0, parallel=True):
    """
    Using a specialized data structure, the KDTree

    This is not as performant because we're in a high dimensional space

    0.777 accuracy? Should be 0.794
    """
    n_jobs = 1
    if parallel:
        n_jobs = -1

    neighbors = tree.query(Xtest, eps=eps, n_jobs=n_jobs)
    predictions = ytrain[neighbors[1]]

    acc = np.equal(predictions, ytest).mean()
    return acc
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def updateSpots(self, dataSet=None):
        if dataSet is None:
            dataSet = self.data

        invalidate = False
        if self.opts['pxMode']:
            mask = np.equal(dataSet['sourceRect'], None)
            if np.any(mask):
                invalidate = True
                opts = self.getSpotOpts(dataSet[mask])
                sourceRect = self.fragmentAtlas.getSymbolCoords(opts)
                dataSet['sourceRect'][mask] = sourceRect

            self.fragmentAtlas.getAtlas() # generate atlas so source widths are available.

            dataSet['width'] = np.array(list(imap(QtCore.QRectF.width, dataSet['sourceRect'])))/2
            dataSet['targetRect'] = None
            self._maxSpotPxWidth = self.fragmentAtlas.max_width
        else:
            self._maxSpotWidth = 0
            self._maxSpotPxWidth = 0
            self.measureSpotSizes(dataSet)

        if invalidate:
            self.invalidate()
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def getSpotOpts(self, recs, scale=1.0):
        if recs.ndim == 0:
            rec = recs
            symbol = rec['symbol']
            if symbol is None:
                symbol = self.opts['symbol']
            size = rec['size']
            if size < 0:
                size = self.opts['size']
            pen = rec['pen']
            if pen is None:
                pen = self.opts['pen']
            brush = rec['brush']
            if brush is None:
                brush = self.opts['brush']
            return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush))
        else:
            recs = recs.copy()
            recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol']
            recs['size'][np.equal(recs['size'], -1)] = self.opts['size']
            recs['size'] *= scale
            recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen'])
            recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush'])
            return recs
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def updateSpots(self, dataSet=None):
        if dataSet is None:
            dataSet = self.data

        invalidate = False
        if self.opts['pxMode']:
            mask = np.equal(dataSet['sourceRect'], None)
            if np.any(mask):
                invalidate = True
                opts = self.getSpotOpts(dataSet[mask])
                sourceRect = self.fragmentAtlas.getSymbolCoords(opts)
                dataSet['sourceRect'][mask] = sourceRect

            self.fragmentAtlas.getAtlas() # generate atlas so source widths are available.

            dataSet['width'] = np.array(list(imap(QtCore.QRectF.width, dataSet['sourceRect'])))/2
            dataSet['targetRect'] = None
            self._maxSpotPxWidth = self.fragmentAtlas.max_width
        else:
            self._maxSpotWidth = 0
            self._maxSpotPxWidth = 0
            self.measureSpotSizes(dataSet)

        if invalidate:
            self.invalidate()
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def getSpotOpts(self, recs, scale=1.0):
        if recs.ndim == 0:
            rec = recs
            symbol = rec['symbol']
            if symbol is None:
                symbol = self.opts['symbol']
            size = rec['size']
            if size < 0:
                size = self.opts['size']
            pen = rec['pen']
            if pen is None:
                pen = self.opts['pen']
            brush = rec['brush']
            if brush is None:
                brush = self.opts['brush']
            return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush))
        else:
            recs = recs.copy()
            recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol']
            recs['size'][np.equal(recs['size'], -1)] = self.opts['size']
            recs['size'] *= scale
            recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen'])
            recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush'])
            return recs
项目:mimic3-benchmarks    作者:YerevaNN    | 项目源码 | 文件源码
def calc_metrics(self, data_gen, history, dataset, logs):
        y_true = []
        predictions = []
        for i in range(data_gen.steps):
            if self.verbose == 1:
                print "\r\tdone {}/{}".format(i, data_gen.steps),
            (x,y) = next(data_gen)
            pred = self.model.predict(x, batch_size=self.batch_size)
            if isinstance(x, list) and len(x) == 2: # deep supervision
                for m, t, p in zip(x[1].flatten(), y.flatten(), pred.flatten()):
                    if np.equal(m, 1):
                        y_true.append(t)
                        predictions.append(p)
            else:
                y_true += list(y.flatten())
                predictions += list(pred.flatten())
        print "\n"
        predictions = np.array(predictions)
        predictions = np.stack([1-predictions, predictions], axis=1)
        ret = metrics.print_metrics_binary(y_true, predictions)
        for k, v in ret.iteritems():
            logs[dataset + '_' + k] = v
        history.append(ret)
项目:tnt    作者:pytorch    | 项目源码 | 文件源码
def add(self, output, target):
        if torch.is_tensor(output):
            output = output.cpu().squeeze().numpy()
        if torch.is_tensor(target):
            target = target.cpu().squeeze().numpy()
        elif isinstance(target, numbers.Number):
            target = np.asarray([target])
        assert np.ndim(output) == 1, \
            'wrong output size (1D expected)'
        assert np.ndim(target) == 1, \
            'wrong target size (1D expected)'
        assert output.shape[0] == target.shape[0], \
            'number of outputs and targets does not match'
        assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \
            'targets should be binary (0, 1)'

        self.scores = np.append(self.scores, output)
        self.targets = np.append(self.targets, target)
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def validate_transitions_cpu_old(transitions, **kwargs):
    pre = np.array(transitions[0])
    suc = np.array(transitions[1])
    base = setting['base']
    width  = pre.shape[1] // base
    height = pre.shape[1] // base
    load(width,height)

    pre_validation = validate_states(pre, **kwargs)
    suc_validation = validate_states(suc, **kwargs)

    results = []
    for pre, suc, pre_validation, suc_validation in zip(pre, suc, pre_validation, suc_validation):

        if pre_validation and suc_validation:
            c = to_configs(np.array([pre, suc]), verbose=False)
            succs = successors(c[0], width, height)
            results.append(np.any(np.all(np.equal(succs, c[1]), axis=1)))
        else:
            results.append(False)

    return results
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def setup():
    setting['base'] = 14

    def loader(width,height):
        from ..util.mnist import mnist
        base = setting['base']
        x_train, y_train, _, _ = mnist()
        filters = [ np.equal(i,y_train) for i in range(9) ]
        imgs    = [ x_train[f] for f in filters ]
        panels  = [ imgs[0].reshape((28,28)) for imgs in imgs ]
        panels[8] = imgs[8][3].reshape((28,28))
        panels[1] = imgs[8][3].reshape((28,28))
        panels = np.array(panels)
        stepy = panels.shape[1]//base
        stepx = panels.shape[2]//base
        # unfortunately the method below generates "bolder" fonts
        # panels = panels[:,:stepy*base,:stepx*base,]
        # panels = panels.reshape((panels.shape[0],base,stepy,base,stepx))
        # panels = panels.mean(axis=(2,4))
        # panels = panels.round()
        panels = panels[:,::stepy,::stepx][:,:base,:base].round()
        panels = preprocess(panels)
        return panels

    setting['loader'] = loader
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def validate_transitions(transitions, check_states=True, **kwargs):
    pre = np.array(transitions[0])
    suc = np.array(transitions[1])

    if check_states:
        pre_validation = validate_states(pre, verbose=False, **kwargs)
        suc_validation = validate_states(suc, verbose=False, **kwargs)

    pre_configs = to_configs(pre, verbose=False, **kwargs)
    suc_configs = to_configs(suc, verbose=False, **kwargs)

    results = []
    if check_states:
        for pre_c, suc_c, pre_validation, suc_validation in zip(pre_configs, suc_configs, pre_validation, suc_validation):

            if pre_validation and suc_validation:
                succs = successors(pre_c)
                results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
            else:
                results.append(False)
    else:
        for pre_c, suc_c in zip(pre_configs, suc_configs):
            succs = successors(pre_c)
            results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
    return results
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def validate_transitions(transitions, check_states=True, **kwargs):
    pre = np.array(transitions[0])
    suc = np.array(transitions[1])

    if check_states:
        pre_validation = validate_states(pre, verbose=False, **kwargs)
        suc_validation = validate_states(suc, verbose=False, **kwargs)

    pre_configs = to_configs(pre, verbose=False, **kwargs)
    suc_configs = to_configs(suc, verbose=False, **kwargs)

    results = []
    if check_states:
        for pre_c, suc_c, pre_validation, suc_validation in zip(pre_configs, suc_configs, pre_validation, suc_validation):

            if pre_validation and suc_validation:
                succs = successors(pre_c)
                results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
            else:
                results.append(False)
    else:
        for pre_c, suc_c in zip(pre_configs, suc_configs):
            succs = successors(pre_c)
            results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
    return results
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def equal(x1, x2):
    """
    Return (x1 == x2) element-wise.

    Unlike `numpy.equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '==', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def not_equal(x1, x2):
    """
    Return (x1 != x2) element-wise.

    Unlike `numpy.not_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '!=', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def less_equal(x1, x2):
    """
    Return (x1 <= x2) element-wise.

    Unlike `numpy.less_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, greater, less
    """
    return compare_chararrays(x1, x2, '<=', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def greater(x1, x2):
    """
    Return (x1 > x2) element-wise.

    Unlike `numpy.greater`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, less_equal, less
    """
    return compare_chararrays(x1, x2, '>', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def almost(a, b, decimal=6, fill_value=True):
    """
    Returns True if a and b are equal up to decimal places.

    If fill_value is True, masked values considered equal. Otherwise,
    masked values are considered unequal.

    """
    m = mask_or(getmask(a), getmask(b))
    d1 = filled(a)
    d2 = filled(b)
    if d1.dtype.char == "O" or d2.dtype.char == "O":
        return np.equal(d1, d2).ravel()
    x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
    y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
    d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
    return d.ravel()
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def fail_if_equal(actual, desired, err_msg='',):
    """
    Raises an assertion error if two items are equal.

    """
    if isinstance(desired, dict):
        if not isinstance(actual, dict):
            raise AssertionError(repr(type(actual)))
        fail_if_equal(len(actual), len(desired), err_msg)
        for k, i in desired.items():
            if k not in actual:
                raise AssertionError(repr(k))
            fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg))
        return
    if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
        fail_if_equal(len(actual), len(desired), err_msg)
        for k in range(len(desired)):
            fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg))
        return
    if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray):
        return fail_if_array_equal(actual, desired, err_msg)
    msg = build_err_msg([actual, desired], err_msg)
    if not desired != actual:
        raise AssertionError(msg)
项目:TF_MemN2N-tableQA    作者:vendi12    | 项目源码 | 文件源码
def categorical_accuracy(y_true, y_pred, mask=True):
    '''
    categorical_accuracy adjusted for padding mask
    '''
    # if mask is not None:
    print y_true
    print y_pred
    eval_shape = (reduce(mul, y_true.shape[:-1]), y_true.shape[-1])
    print eval_shape
    y_true_ = np.reshape(y_true, eval_shape)
    y_pred_ = np.reshape(y_pred, eval_shape)
    flat_mask = np.flatten(mask)
    comped = np.equal(np.argmax(y_true_, axis=-1),
                      np.argmax(y_pred_, axis=-1))
    ## not sure how to do this in tensor flow
    good_entries = flat_mask.nonzero()[0]
    return np.mean(np.gather(comped, good_entries))

    # else:
    #     return K.mean(K.equal(K.argmax(y_true, axis=-1),
    #                           K.argmax(y_pred, axis=-1)))
项目:aurora    作者:carnby    | 项目源码 | 文件源码
def __estimate_entropy__(self):
        counts = self.feature_vector_counts #Counter(self.timeline_feature_vectors)
        #print counts
        #N = float(sum(counts.values()))
        N = float(len(self.timeline) + 1)
        max_H = np.log(float(len(list(filter(lambda x: x, counts)))))

        if np.equal(max_H, 0.0):
            return 0.0

        entropy = 0.0

        for key in counts.keys():
            if counts[key] > 0:
                key_probability = counts[key] / N
                entropy += -(key_probability * np.log(key_probability))

        entropy /= max_H

        #print u'N={0}, |counts|={3}, max_H={1}, entropy={2}, counter={4}'.format(N, max_H, entropy, len(counts), counts)
        return entropy
项目:rec-attend-public    作者:renmengye    | 项目源码 | 文件源码
def _f_dice(a, b):
    """DICE between two segmentations.

    Args:
        a: [..., H, W], binary mask
        b: [..., H, W], binary mask

    Returns:
        dice: [...]
    """
    card_a = a.sum(axis=-1).sum(axis=-1)
    card_b = b.sum(axis=-1).sum(axis=-1)
    card_ab = (a * b).sum(axis=-1).sum(axis=-1)
    card_sum = card_a + card_b
    dice = 2 * card_ab / (card_sum + np.equal(card_sum, 0).astype('float32'))
    return dice
项目:keraflow    作者:ipod825    | 项目源码 | 文件源码
def test_accuracy():
    def cat_acc(y_pred, y_true):
        return np.expand_dims(np.equal(np.argmax(y_pred, axis=-1), np.argmax(y_true, axis=-1)), -1),

    objectives_test(objectives.accuracy,
                    cat_acc,
                    np_pred=[[0,0,.9], [0,.9,0], [.9,0,0]],
                    np_true=[[0,0,1], [0,0,1], [0,0,1]])

    def bi_acc(y_pred, y_true):
        return np.equal(np.round(y_pred), y_true)

    objectives_test(objectives.accuracy,
                    bi_acc,
                    np_pred=[[0], [0.6], [0.7]],
                    np_true=[[0], [1], [1]])
项目:sockeye    作者:awslabs    | 项目源码 | 文件源码
def test_convolutional_embedding_encoder(config, out_data_shape, out_data_length, out_seq_len):
    conv_embed = sockeye.encoder.ConvolutionalEmbeddingEncoder(config)

    data_nd = mx.nd.random_normal(shape=(_BATCH_SIZE, _SEQ_LEN, _NUM_EMBED))

    data = mx.sym.Variable("data", shape=data_nd.shape)
    data_length = mx.sym.Variable("data_length", shape=_DATA_LENGTH_ND.shape)

    (encoded_data,
     encoded_data_length,
     encoded_seq_len) = conv_embed.encode(data=data, data_length=data_length, seq_len=_SEQ_LEN)

    exe = encoded_data.simple_bind(mx.cpu(), data=data_nd.shape)
    exe.forward(data=data_nd)
    assert exe.outputs[0].shape == out_data_shape

    exe = encoded_data_length.simple_bind(mx.cpu(), data_length=_DATA_LENGTH_ND.shape)
    exe.forward(data_length=_DATA_LENGTH_ND)
    assert np.equal(exe.outputs[0].asnumpy(), np.asarray(out_data_length)).all()

    assert encoded_seq_len == out_seq_len
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def equal(x1, x2):
    """
    Return (x1 == x2) element-wise.

    Unlike `numpy.equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '==', True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def not_equal(x1, x2):
    """
    Return (x1 != x2) element-wise.

    Unlike `numpy.not_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '!=', True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def less_equal(x1, x2):
    """
    Return (x1 <= x2) element-wise.

    Unlike `numpy.less_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, greater, less
    """
    return compare_chararrays(x1, x2, '<=', True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def greater(x1, x2):
    """
    Return (x1 > x2) element-wise.

    Unlike `numpy.greater`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, less_equal, less
    """
    return compare_chararrays(x1, x2, '>', True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def almost(a, b, decimal=6, fill_value=True):
    """
    Returns True if a and b are equal up to decimal places.

    If fill_value is True, masked values considered equal. Otherwise,
    masked values are considered unequal.

    """
    m = mask_or(getmask(a), getmask(b))
    d1 = filled(a)
    d2 = filled(b)
    if d1.dtype.char == "O" or d2.dtype.char == "O":
        return np.equal(d1, d2).ravel()
    x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
    y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
    d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
    return d.ravel()
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def fail_if_equal(actual, desired, err_msg='',):
    """
    Raises an assertion error if two items are equal.

    """
    if isinstance(desired, dict):
        if not isinstance(actual, dict):
            raise AssertionError(repr(type(actual)))
        fail_if_equal(len(actual), len(desired), err_msg)
        for k, i in desired.items():
            if k not in actual:
                raise AssertionError(repr(k))
            fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg))
        return
    if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
        fail_if_equal(len(actual), len(desired), err_msg)
        for k in range(len(desired)):
            fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg))
        return
    if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray):
        return fail_if_array_equal(actual, desired, err_msg)
    msg = build_err_msg([actual, desired], err_msg)
    if not desired != actual:
        raise AssertionError(msg)
项目:CRIkit2    作者:CoherentRamanNIST    | 项目源码 | 文件源码
def grayscaleimage(self, value):
        try:
            if value.ndim == 2:
                self._grayscaleimage = value
                if (_np.equal(self._x,None).any() or
                    _np.equal(self._y,None).any() or
                    self._x.size != value.shape[1] or
                    self._y.size != value.shape[0]):

                    self._x = _np.linspace(1, value.shape[1], value.shape[1])
                    self._y = _np.linspace(1, value.shape[0], value.shape[0])
                    self.xunits = self.XUNITS
                    self.yunits = self.YUNITS

                else:
                    pass
        except:
            pass
项目:GORU-tensorflow    作者:jingli9111    | 项目源码 | 文件源码
def paren_data(T, n_data):
    MAX_COUNT = 10
    n_paren = 10
    n_noise = 10

    inputs = (np.random.rand(T, n_data)* (n_paren * 2 + n_noise)).astype(np.int32)
    counts = np.zeros((n_data, n_paren), dtype=np.int32)
    targets = np.zeros((T, n_data, n_paren), dtype = np.int32)
    opening_parens = (np.arange(0, n_paren)*2)[None, :]
    closing_parens = opening_parens + 1
    for i in range(T):
        opened = np.equal(inputs[i, :, None], opening_parens)
        counts = np.minimum(MAX_COUNT, counts + opened)
        closed = np.equal(inputs[i, :, None], closing_parens)
        counts = np.maximum(0, counts - closed)
        targets[i, :, :] = counts


    x = np.transpose(inputs, [1,0])
    y = np.transpose(targets, [1,0,2])

    return x, y
项目:NEAT    作者:suckgeun    | 项目源码 | 文件源码
def is_connect_exist_nn(node_in, node_out, nn):
        """
        check if the connection between node_in and node_out exists

        :param node_in:
        :param node_out:
        :param nn: Neural network instance
        :return: True if exists, False if DNE
        """

        assert type(nn) == NeuralNetwork, "nn must be an instance of Neural Network"

        if nn.connect_genes is None:
            return False

        connect = [node_in, node_out]
        history = nn.connect_genes[:, :2]

        return any(np.equal(connect, history).all(1))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def equal(x1, x2):
    """
    Return (x1 == x2) element-wise.

    Unlike `numpy.equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '==', True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def not_equal(x1, x2):
    """
    Return (x1 != x2) element-wise.

    Unlike `numpy.not_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '!=', True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def less_equal(x1, x2):
    """
    Return (x1 <= x2) element-wise.

    Unlike `numpy.less_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, greater, less
    """
    return compare_chararrays(x1, x2, '<=', True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def greater(x1, x2):
    """
    Return (x1 > x2) element-wise.

    Unlike `numpy.greater`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, less_equal, less
    """
    return compare_chararrays(x1, x2, '>', True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return false and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentaiton purpose, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations is done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8):
    """
    Returns true if all components of a and b are equal to given tolerances.

    If fill_value is True, masked values considered equal. Otherwise,
    masked values are considered unequal.  The relative error rtol should
    be positive and << 1.0 The absolute error atol comes into play for
    those elements of b that are very small or zero; it says how small a
    must be also.

    """
    m = mask_or(getmask(a), getmask(b))
    d1 = filled(a)
    d2 = filled(b)
    if d1.dtype.char == "O" or d2.dtype.char == "O":
        return np.equal(d1, d2).ravel()
    x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
    y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
    d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y))
    return d.ravel()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def almost(a, b, decimal=6, fill_value=True):
    """
    Returns True if a and b are equal up to decimal places.

    If fill_value is True, masked values considered equal. Otherwise,
    masked values are considered unequal.

    """
    m = mask_or(getmask(a), getmask(b))
    d1 = filled(a)
    d2 = filled(b)
    if d1.dtype.char == "O" or d2.dtype.char == "O":
        return np.equal(d1, d2).ravel()
    x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
    y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
    d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
    return d.ravel()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def fail_if_equal(actual, desired, err_msg='',):
    """
    Raises an assertion error if two items are equal.

    """
    if isinstance(desired, dict):
        if not isinstance(actual, dict):
            raise AssertionError(repr(type(actual)))
        fail_if_equal(len(actual), len(desired), err_msg)
        for k, i in desired.items():
            if k not in actual:
                raise AssertionError(repr(k))
            fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg))
        return
    if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
        fail_if_equal(len(actual), len(desired), err_msg)
        for k in range(len(desired)):
            fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg))
        return
    if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray):
        return fail_if_array_equal(actual, desired, err_msg)
    msg = build_err_msg([actual, desired], err_msg)
    if not desired != actual:
        raise AssertionError(msg)
项目:KAGGLE_AVITO_2016    作者:ZFTurbo    | 项目源码 | 文件源码
def get_same_status(pairs, items, target):
    text_compare = pairs
    item1 = items[['itemID', target]]
    item1 = item1.rename(
        columns={
            'itemID': 'itemID_1',
            target: target + '_1',
        }
    )
    text_compare = pd.merge(text_compare, item1, how='left', on='itemID_1', left_index=True)
    item2 = items[['itemID', target]]
    item2 = item2.rename(
        columns={
            'itemID': 'itemID_2',
            target: target + '_2',
        }
    )
    text_compare = pd.merge(text_compare, item2, how='left', on='itemID_2', left_index=True)
    text_compare[target + '_same'] = np.equal(text_compare[target + '_1'], text_compare[target + '_2']).astype(np.int32)
    # print(text_compare[target + '_same'].describe())
    return text_compare[['id', target + '_same']]
项目:deeptravel    作者:keon    | 项目源码 | 文件源码
def gen_hull(p, p_mask, f_encode, f_probi, options):
    # p: n_sizes * n_samples * data_dim
    n_sizes = p.shape[0]
    n_samples = p.shape[1] if p.ndim == 3 else 1
    hprev = f_encode(p_mask, p)  # n_sizes * n_samples * data_dim
    points = numpy.zeros((n_samples, n_sizes), dtype='int64')
    h = hprev[-1]
    c = numpy.zeros((n_samples, options['dim_proj']), dtype=config.floatX)
    xi = numpy.zeros((n_samples,), dtype='int64')
    xi_mask = numpy.ones((n_samples,), dtype=config.floatX)
    for i in range(n_sizes):
        h, c, probi = f_probi(p_mask[i], xi, h, c, hprev, p_mask, p)
        xi = probi.argmax(axis=0)
        xi *= xi_mask.astype(numpy.int64)  # Avoid compatibility problem in numpy 1.10
        xi_mask = (numpy.not_equal(xi, 0)).astype(config.floatX)
        if numpy.equal(xi_mask, 0).all():
            break
        points[:, i] = xi
    return points
项目:poseval    作者:leonid-pishchulin    | 项目源码 | 文件源码
def VOCap(rec,prec):

    mpre = np.zeros([1,2+len(prec)])
    mpre[0,1:len(prec)+1] = prec
    mrec = np.zeros([1,2+len(rec)])
    mrec[0,1:len(rec)+1] = rec
    mrec[0,len(rec)+1] = 1.0

    for i in range(mpre.size-2,-1,-1):
        mpre[0,i] = max(mpre[0,i],mpre[0,i+1])

    i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1
    i = i.flatten()

    # compute area under the curve
    ap = np.sum( np.multiply( np.subtract( mrec[0,i], mrec[0,i-1]), mpre[0,i] ) )

    return ap
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def equal(x1, x2):
    """
    Return (x1 == x2) element-wise.

    Unlike `numpy.equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '==', True)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def not_equal(x1, x2):
    """
    Return (x1 != x2) element-wise.

    Unlike `numpy.not_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '!=', True)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)