我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.resize()。
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) if hasattr(self, 'param') and self.param: # not self.param is None tmp = self.param else: tmp = self.condition self.scales = tmp ** linspace(0, 1, dim) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialisation if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape) self.arrscales = resize(self.scales, curshape) self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.xopt[:min(dim, self.maxindex):2] = abs(self.xopt[:min(dim, self.maxindex):2]) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape) self.arrscales = resize(self.scales, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = self.condition ** linspace(0, 1, dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(((self.condition / 10.)**.5) ** linspace(0, 1, dim))) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) scale = max(1, dim ** .5 / 8.) # nota: different from scales in F8 self.linearTF = scale * compute_rotation(self.rseed, dim) self.xopt = np.hstack(dot(.5 * np.ones((1, dim)), self.linearTF.T)) / scale ** 2 # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) self.linearTF = dot(self.linearTF, self.rotation) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # decouple scaling from function definition self.linearTF = dot(self.linearTF, self.rotation) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape) self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (1. / self.condition ** .5) ** linspace(0, 1, dim) # CAVE? self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # decouple scaling from function definition self.linearTF = dot(self.linearTF, self.rotation) K = np.arange(0, 12) self.aK = np.reshape(0.5 ** K, (1, 12)) self.bK = np.reshape(3. ** K, (1, 12)) self.f0 = np.sum(self.aK * np.cos(2 * np.pi * self.bK * 0.5)) # optimal value # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (self.condition ** .5) ** linspace(0, 1 , dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape) self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = 0.5 * sign(unif(dim, self.rseed) - 0.5) * 4.2096874633 self.scales = (self.condition ** .5) ** np.linspace(0, 1, dim) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(2 * np.abs(self.xopt), curshape) self.arrscales = resize(self.scales, curshape) self.arrsigns = resize(sign(self.xopt), curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # decouple scaling from function definition self.linearTF = dot(self.linearTF, self.rotation) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = .5 * self._mu1 * sign(gauss(dim, self.rseed)) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (self.condition ** .5) ** linspace(0, 1, dim) self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # decouple scaling from function definition self.linearTF = dot(self.linearTF, self.rotation) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape # self.arrxopt = resize(self.xopt, curshape) self.arrscales = resize(2. * sign(self.xopt), curshape) # makes up for xopt
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape) self.linearTf = None self.rotation = None
def __call__(self, ts=None, constrains=False): if ts is None: if constrains: if self.J.constrains.size: A = np.resize(self, (self.shape[0] + self.J.constrains.shape[0], self.shape[1])) A[-self.J.constrains.shape[0] - 1:-1,self.L.params:self.L.params + self.J.params] = self.J.constrains return A else: return self else: return self else: Al = self.L.GetDesignTs(ts) Aj = self.J.GetDesignTs(ts) Ap = self.P.GetDesignTs(ts) As = np.column_stack((Al, Aj)) if Aj.size else Al As = np.column_stack((As, Ap)) if Ap.size else As return As
def apply_motion_blur(image, kernel_size, strength = 1.0): """Applies motion blur on image """ # generating the kernel kernel_motion_blur = np.zeros((kernel_size, kernel_size)) kernel_motion_blur[int((kernel_size - 1) / 2), :] = np.ones(kernel_size) kernel_motion_blur = kernel_motion_blur / kernel_size rotation_kernel = np.random.uniform(0, 360) kernel_motion_blur = rotate(kernel_motion_blur, rotation_kernel) #cv2.imshow("kernel", cv2.resize(kernel_motion_blur, (100, 100))) kernel_motion_blur *= strength # applying the kernel to the input image output = cv2.filter2D(image, -1, kernel_motion_blur) return output
def train(self, tran, selected): self.targetNet.blobs['frames'].data[...] \ = tran.frames[selected + 1].copy() netOut = self.targetNet.forward() target = np.tile(tran.reward[selected] + pms.discount * tran.n_last[selected] * np.resize(netOut['value_q'].max(1), (pms.batchSize, 1)), (pms.actionSize,) ) * tran.action[selected] self.solver.net.blobs['target'].data[...] = target self.solver.net.blobs['frames'].data[...] = tran.frames[selected].copy() self.solver.net.blobs['filter'].data[...] = tran.action[selected].copy() self.solver.step(1)
def read_data(dataFile,size,Transpose=False,resize=False): f = h5py.File(dataFile,'r') result_data = np.zeros(size) result_label = np.zeros(size) if Transpose == True: data = np.transpose(np.array(f['data']),(3,2,1,0)) label = np.transpose(np.array(f['label']),(3,2,1,0)) else: data = np.array(f['data']) label = np.array(f['label']) [d1,d2,d3,d4] = data.shape if resize == True: for p in range(d1): for d in range(d2): result_data[p,d,:,:] = np.resize(data[p,d,:,:],(size[2],size[3])) result_label[p,d,:,:] = np.resize(label[p,d,:,:],(size[2],size[3])) data = result_data label = result_label return data, label
def run_test_r2c_dtype(self, shape, axes, dtype=np.float32, scale=1., misalign=0): known_data = np.random.normal(size=shape).astype(np.float32) known_data = (known_data * scale).astype(dtype) # Force misaligned data padded_shape = shape[:-1] + (shape[-1] + misalign,) known_data = np.resize(known_data, padded_shape) idata = bf.ndarray(known_data, space='cuda') known_data = known_data[..., misalign:] idata = idata[..., misalign:] oshape = list(shape) oshape[axes[-1]] = shape[axes[-1]] // 2 + 1 odata = bf.ndarray(shape=oshape, dtype='cf32', space='cuda') fft = Fft() fft.init(idata, odata, axes=axes) fft.execute(idata, odata) known_result = gold_rfftn(known_data.astype(np.float32) / scale, axes=axes) compare(odata.copy('system'), known_result)
def resize(vec, size): """ Resizes a vector such that it has the right size. This is done by repeating the vector in each dimension until the required size is reached. Note an error is thrown if 'size' is not a multiple of the size of vec. vec A 1D or 2D numpy array size A list of dimension sizes (e.g. [2,3]) """ if not isinstance(vec, (np.ndarray)): vec_resized = vec * np.ones(size) elif vec.shape[0] == size[0] and len(vec.shape) == 1: vec_resized = np.reshape(np.repeat(vec, size[1]), size) elif vec.shape[0] == 1 and len(vec.shape) == 1: vec_resized = vec*np.ones(size) else: # Check that the output dims are multiples of input dims assert(size[0] % vec.shape[0] == 0) assert(size[1] % vec.shape[1] == 0) vec_resized = np.tile(vec, (size[0] // vec.shape[0], size[1] // vec.shape[1])) return vec_resized
def _read_particle_coords(self, chunks, ptf): # This will read chunks and yield the results. chunks = list(chunks) data_files = set([]) for chunk in chunks: for obj in chunk.objs: data_files.update(obj.data_files) for data_file in sorted(data_files): with h5py.File(data_file.filename, "r") as f: for ptype, field_list in sorted(ptf.items()): pcount = data_file.total_particles[ptype] coords = f[ptype]["%sPos" % ptype].value.astype("float64") coords = np.resize(coords, (pcount, 3)) x = coords[:, 0] y = coords[:, 1] z = coords[:, 2] yield ptype, (x, y, z)
def _read_particle_coords(self, chunks, ptf): # This will read chunks and yield the results. chunks = list(chunks) data_files = set([]) for chunk in chunks: for obj in chunk.objs: data_files.update(obj.data_files) for data_file in sorted(data_files, key=lambda f: f.filename): with h5py.File(data_file.filename, "r") as f: for ptype, field_list in sorted(ptf.items()): pcount = data_file.total_particles[ptype] coords = f[ptype]["CenterOfMass"].value.astype("float64") coords = np.resize(coords, (pcount, 3)) x = coords[:, 0] y = coords[:, 1] z = coords[:, 2] yield ptype, (x, y, z)
def get_cloud_colors(data): """ Get colors from the cloud """ dtype = np.dtype('float32') dtype = dtype.newbyteorder('<') buf = np.frombuffer(data.data, dtype) buf = np.resize(buf, (data.width * data.height, 8)) buf = np.compress([True, True, True, False, True, False, False, False], buf, axis=1) cond = np.isnan(buf).any(1) buf[cond] = [0.0, 0.0, 0.0, 0.0] buf = np.compress([False, False, False, True], buf, axis=1) nstr = buf.tostring() rgb = np.fromstring(nstr, dtype='uint8') rgb.resize((data.height * data.width), 4) rgb = np.compress([True, True, True, False], rgb, axis=1) return np.array([rgb])
def plot_RF(rf, sample_shape): norm = matplotlib.colors.Normalize() norm.autoscale(rf) rf = np.resize(rf, np.prod(sample_shape)).reshape(sample_shape) norm_zero = min(max(norm(0.0), 0.0+1e-6), 1.0-1e-6) cdict = { 'red' : ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)), 'green': ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)), 'blue' : ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)) } #generate the colormap with 1024 interpolated values my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 1024) plt.imshow(rf, interpolation='nearest', origin='upper', cmap=my_cmap) ax = plt.gca() ax.xaxis.set_visible(False) ax.yaxis.set_visible(False)
def plot_examples(nade, dataset, shape, name, rows=5, cols=10): #Show some samples images = list() for row in xrange(rows): for i in xrange(cols): nade.setup_n_orderings(n=1) sample = dataset.sample_data(1)[0].T dens = nade.logdensity(sample) images.append((sample, dens)) images.sort(key=lambda x: -x[1]) plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100) plt.gray() for row in xrange(rows): for col in xrange(cols): i = row*cols+col sample, dens = images[i] plt.subplot(rows, cols, i+1) plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper") plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04) type_1_font() plt.savefig(os.path.join(DESTINATION_PATH, name))
def plot_samples(nade, shape, name, rows=5, cols=10): #Show some samples images = list() for row in xrange(rows): for i in xrange(cols): nade.setup_n_orderings(n=1) sample = nade.sample(1)[:,0] dens = nade.logdensity(sample[:, np.newaxis]) images.append((sample, dens)) images.sort(key=lambda x: -x[1]) plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100) plt.gray() for row in xrange(rows): for col in xrange(cols): i = row*cols+col sample, dens = images[i] plt.subplot(rows, cols, i+1) plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper") plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04) type_1_font() plt.savefig(os.path.join(DESTINATION_PATH, name)) #plt.show()
def _create_batches(self, X, batch_size, shuffle_data=False): """ Create batches out of a sequence of data. This function will append zeros to the end of your data to ensure that all batches are even-sized. These are masked out during training. """ if shuffle_data: X = shuffle(X) if batch_size > X.shape[0]: batch_size = X.shape[0] max_x = int(np.ceil(X.shape[0] / batch_size)) # This line first resizes the data to X = np.resize(X, (batch_size, max_x, X.shape[1])) # Transposes it to (len(X) / batch_size, batch_size, data_dim) return X.transpose((1, 0, 2))
def _create_batches(self, X, batch_size, shuffle_data=True): """ Create batches out of a sequence of data. This function will append zeros to the end of your data to ensure that all batches are even-sized. These are masked out during training. """ if shuffle_data: X = shuffle(X) if batch_size > X.shape[0]: batch_size = X.shape[0] max_x = int(np.ceil(X.shape[0] / batch_size)) X = np.resize(X, (max_x, batch_size, X.shape[-1])) return X
def predict(): logger.info('/predict, hostname: ' + str(socket.gethostname())) if 'image' not in request.files: logger.info('Missing image parameter') return Response('Missing image parameter', 400) # Write image to disk with open('request.png', 'wb') as f: f.write(request.files['image'].read()) img = cv2.imread('request.png', 0) img = np.resize(img, (28, 28, 1)) ''' Return value will be None if model not running on host ''' prediction = mnist_client.predict(np.array([img])) logger.info('Prediction of length: ' + str(len(prediction))) ''' Convert the dict to json and return response ''' return jsonify( prediction=prediction, prediction_length=len(prediction), hostname=str(socket.gethostname()) )
def predict(): logger.info('/predict, hostname: ' + str(socket.gethostname())) if 'image' not in request.files: logger.info('Missing image parameter') return Response('Missing image parameter', 400) # Write image to disk with open('request.png', 'wb') as f: f.write(request.files['image'].read()) img = cv2.imread('request.png', 0) img = np.resize(img, (28, 28, 1)) prediction = mnist_client.predict(np.array([img])) logger.info('Prediction of length:' + str(len(prediction))) ''' Convert the dict to json and return response ''' return jsonify( prediction=prediction, prediction_length=len(prediction), hostname=str(socket.gethostname()) )
def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print 'Magic number incorrect. Invalid .flo file' return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) #print 'Reading %d x %d flo file' % (w, h) data = np.fromfile(f, np.float32, count=2*w*h) # Reshape data into 3D array (columns, rows, bands) return np.resize(data, (h, w, 2))
def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print 'Magic number incorrect. Invalid .flo file' return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) #print 'Reading %d x %d flo file' % (w, h) data = np.fromfile(f, np.float32, count=2*w*h) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (h, w, 2))
def read_flow(filename): """ read optical flow from Middlebury .flo file :param filename: name of the flow file :return: optical flow data in matrix """ f = open(filename, 'rb') magic = np.fromfile(f, np.float32, count=1) data2d = None if 202021.25 != magic: print 'Magic number incorrect. Invalid .flo file' else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) print "Reading %d x %d flo file" % (h, w) data2d = np.fromfile(f, np.float32, count=2 * w * h) # reshape data into 3D array (columns, rows, channels) data2d = np.resize(data2d, (h[0], w[0], 2)) f.close() return data2d
def label_preproc(label_string): """ This function is supposed to prepare the label so that it fits the standard of the rnn_ctc network. It computes following steps: 1. make list of integers out of string e.g. [hallo] --> [8,1,12,12,15] :param label_string: a string of the label :return: label_int: the string represented in integers """ chars = char_alpha.chars label_int = [] for letter in label_string: label_int.append(chars.index(letter)) label_int_arr = np.resize(np.asarray(label_int), (1, len(label_int))) # print(label_int_arr.shape) return label_int_arr
def squeeze(image, width_max, border): """ This function squeezes images in the width. :param image: Numpy array of image :param width_max: max image width :param border: border left and right of squeezed image :return: Squeezed Image """ image_wd = image.shape[1] image_ht = image.shape[0] basewidth = width_max - border wpercent = basewidth / image_wd dim = (int(wpercent*image_wd), image_ht) img_squeeze = cv.resize(image, dim, interpolation=cv.INTER_NEAREST) return img_squeeze
def string_to_array(label_string): """ This function converts string into integers. e.g. [hallo] --> [8,1,12,12,15] :param label_string: a string of the label :return: label_int: the string represented in integers """ chars = char_alpha.chars label_int = [] for letter in label_string: label_int.append(chars.index(letter)) label_int_arr = np.resize(np.asarray(label_int), (1, len(label_int))) # print(label_int_arr.shape) return label_int_arr
def plot_Reynolds_number(Fr, ReyNum, edge): # figr = Fr.plot_fracture("complete", "footPrint") # ax = figr.axes[0] figr = plt.figure() ax = figr.add_subplot(111) ReMesh = np.resize(ReyNum[edge, :], (Fr.mesh.ny, Fr.mesh.nx)) x = np.linspace(-Fr.mesh.Lx, Fr.mesh.Lx, Fr.mesh.nx) y = np.linspace(-Fr.mesh.Ly, Fr.mesh.Ly, Fr.mesh.ny) xv, yv = np.meshgrid(x, y) # cax = ax.contourf(xv, yv, ReMesh, levels=[0, 100, 2100, 10000]) cax = ax.matshow(ReMesh) figr.colorbar(cax) plt.title("Reynolds number") plt.show() return figr #-----------------------------------------------------------------------------------------------------------------------
def MakeVisual( X_src, X_tar): #LAB pair #pdb.set_trace() #X_rst = np.zeros( X_src.shape, np.float32) #for i in range( X_src.shape[0]): # X_rst[i,:,:,:] = np.concatenate( # (np.resize( X_src[i,:,:,:], (1,nc,npx,npx/2)), # np.resize( X_tar[i,:,:,:], (1,nc,npx,npx/2))), axis =3 ) X_src = np.resize(X_src,(X_src.shape[0],nc,npx,npx/2)) X_tar = np.resize(X_tar,(X_tar.shape[0],nc,npx,npx/2)) return X_tar #return np.concatenate( (X_src,X_tar), axis = 2) # SET PARAMETERS.
def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected)
def resize(self, newshape, refcheck=True, order=False): """ .. warning:: This method does nothing, except raise a ValueError exception. A masked array does not own its data and therefore cannot safely be resized in place. Use the `numpy.ma.resize` function instead. This method is difficult to implement safely and may be deprecated in future releases of NumPy. """ # Note : the 'order' keyword looks broken, let's just drop it errmsg = "A masked array does not own its data "\ "and therefore cannot be resized.\n" \ "Use the numpy.ma.resize function instead." raise ValueError(errmsg)
def test_wahba(): lat = 45 Cnb = dcm.from_hpr(45, -30, 60) dt = 1e-1 n = 1000 gyro = np.array([0, 1 / np.sqrt(2), 1 / np.sqrt(2)]) * earth.RATE * dt gyro = Cnb.T.dot(gyro) gyro = np.resize(gyro, (n, 3)) accel = np.array([0, 0, earth.gravity(1 / np.sqrt(2))]) * dt accel = Cnb.T.dot(accel) accel = np.resize(accel, (n, 3)) np.random.seed(0) gyro += 1e-6 * np.random.randn(*gyro.shape) * dt accel += 1e-4 * np.random.randn(*accel.shape) * dt phi, dv = coning_sculling(gyro, accel) hpr, P = align.align_wahba(dt, phi, dv, lat) assert_allclose(hpr, [45, -30, 60], rtol=1e-3)
def _verify_param(param, name, only_positive=False): if param is None: return None param = np.asarray(param) if param.ndim == 0: param = np.resize(param, 3) if param.shape != (3,): raise ValueError("`{}` might be float or array with " "3 elements.".format(name)) if only_positive and np.any(param <= 0): raise ValueError("`{}` must contain positive values.".format(name)) elif np.any(param < 0): raise ValueError("`{}` must contain non-negative values." .format(name)) return param
def __init__(self, doc=None, lda=None, max_doc_len=None, num_topics=None, gamma=None, lhood=None): self.doc = doc self.lda = lda self.gamma = gamma self.lhood = lhood if self.gamma is None: self.gamma = np.zeros(num_topics) if self.lhood is None: self.lhood = np.zeros(num_topics + 1) if max_doc_len is not None and num_topics is not None: self.phi = np.resize(np.zeros(max_doc_len * num_topics), (max_doc_len, num_topics)) self.log_phi = np.resize(np.zeros(max_doc_len * num_topics), (max_doc_len, num_topics)) # the following are class variables which are to be integrated during Document Influence Model self.doc_weight = None self.renormalized_doc_weight = None
def PostprocessImage(img): """ Postprocess target style image 1. add the images dataset mean to optimized image 2. swap axis (b,g,r) to (r,g,b) and save it Parameters -------- img: ndarray (1x3xMxN), optimized image Returns out : ndarray (3xMxN), Postprocessed image """ img = np.resize(img, (3, img.shape[2], img.shape[3])) img[0, :] += 123.68 img[1, :] += 116.779 img[2, :] += 103.939 img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 0, 1) img = np.clip(img, 0, 255) return img.astype('uint8')
def read_lines(self, track_id, offset, count): lines = [] max_num_values = 0 for i in range(0, count - 1): num_values = self.RA.get_values_count(track_id, i) #????? ????? ????? ? ?????? if num_values > max_num_values: max_num_values = num_values buffer_output = (c_float * num_values)() #??????????? ????? ? ?????? num_values = self.RA.get_values(track_id, offset + i, byref(buffer_output), num_values) #?????? ?????? ?? ?? lines.append(buffer_output) retval = np.zeros((count, max_num_values), dtype=np.uint16) for i in range(count-1): nparr = np.asarray(lines[i], dtype=np.float16) nparr = np.multiply(nparr, 65535) nparr = np.asarray(nparr, dtype=np.uint16) a = np.resize(nparr, retval[i].shape) retval[i] += a return retval #< gidroGraf_DBreader.c_float_Array_6252 object at 0x7fcb40a2df28 > #< gidroGraf_DBreader.c_float_Array_20837 object at 0x7f142f2eef28 >
def add_col_mult(self, vec, mult, target = None): """ Add a multiple of vector vec to every column of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (b_ == 1 and a_ == a): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = self.numpy_array + vec.numpy_array * mult return target
def add_row_vec(self, vec, target = None): """ Add vector vec to every row of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (a_ == 1 and b_ == b): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = vec.numpy_array + self.numpy_array return target