Python numpy 模块,take() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.take()

项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

        self._open()

        t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)

        if self.time_axis == 0:
            local_chunk  = self.data[t_start:t_stop, :]
        elif self.time_axis == 1:
            local_chunk  = self.data[:, t_start:t_stop].T
        self._close()

        if nodes is not None:
            if not numpy.all(nodes == numpy.arange(self.nb_channels)):
                local_chunk = numpy.take(local_chunk, nodes, axis=1)

        return self._scale_data_to_float32(local_chunk)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

        t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)
        local_shape     = t_stop - t_start

        local_chunk = numpy.zeros((self.nb_channels, local_shape), dtype=self.data_dtype)
        data_slice  = self._get_slice_(t_start, t_stop) 

        self._open()
        count = 0

        for s in data_slice:
            t_slice = len(s)//self.nb_channels
            local_chunk[:, count:count + t_slice] = self.data[s].reshape(self.nb_channels, len(s)//self.nb_channels)
            count += t_slice

        local_chunk = local_chunk.T
        self._close()

        if nodes is not None:
            if not numpy.all(nodes == numpy.arange(self.nb_channels)):
                local_chunk = numpy.take(local_chunk, nodes, axis=1)

        return self._scale_data_to_float32(local_chunk)
项目:j3dview    作者:blank63    | 项目源码 | 文件源码
def load(shape,vertex_array):
        destination = vertex_array[gx.VA_PTNMTXIDX.name]
        vertex_index = 0
        matrix_table = numpy.zeros(10,numpy.uint32)

        for batch in shape.batches:
            source = numpy.concatenate([primitive.vertices[gx.VA_PTNMTXIDX.name] for primitive in batch.primitives])
            source //= 3

            for i,index in enumerate(batch.matrix_table):
                if index == 0xFFFF: continue
                matrix_table[i] = index

            length = sum(len(primitive.vertices) for primitive in batch.primitives)
            numpy.take(matrix_table,source,0,destination[vertex_index:vertex_index + length])
            vertex_index += length

        glEnableVertexAttribArray(MATRIX_INDEX_ATTRIBUTE_LOCATION)
        vertex_type = vertex_array.dtype
        stride = vertex_type.itemsize
        offset = vertex_type.fields[gx.VA_PTNMTXIDX.name][1]
        glVertexAttribIPointer(MATRIX_INDEX_ATTRIBUTE_LOCATION,1,GL_UNSIGNED_INT,stride,GLvoidp(offset))
项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def get_caption_batch(loaded_data, data_dir, dataset='flowers', batch_size=64):

    captions = np.zeros((batch_size, loaded_data['max_caps_len']))
    batch_idx = np.random.randint(0, loaded_data['data_length'],
                                  size=batch_size)
    image_ids = np.take(loaded_data['image_list'], batch_idx)
    image_files = []
    image_caps = []
    image_caps_ids = []
    for idx, image_id in enumerate(image_ids):
        image_file = join(data_dir, dataset, 'jpg' + image_id)
        random_caption = random.randint(0, 4)
        image_caps_ids.append(random_caption)
        captions[idx, :] = \
            loaded_data['captions'][image_id][random_caption][
            0:loaded_data['max_caps_len']]

        image_caps.append(loaded_data['captions']
                          [image_id][random_caption])
        image_files.append(image_file)

    return captions, image_files, image_caps, image_ids, image_caps_ids
项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def get_val_caps_batch(batch_size, loaded_data, data_set, data_dir):

    if data_set == 'flowers':
        captions = np.zeros((batch_size, loaded_data['max_caps_len']))

        batch_idx = np.random.randint(0, loaded_data['val_data_len'],
                                      size = batch_size)
        image_ids = np.take(loaded_data['val_img_list'], batch_idx)
        image_files = []
        image_caps = []
        for idx, image_id in enumerate(image_ids) :
            image_file = join(data_dir,
                              'flowers/jpg/' + image_id)
            random_caption = random.randint(0, 4)
            captions[idx, :] = \
                loaded_data['val_captions'][image_id][random_caption][
                0 :loaded_data['max_caps_len']]

            image_caps.append(loaded_data['str_captions']
                              [image_id][random_caption])
            image_files.append(image_file)

        return captions, image_files, image_caps, image_ids
    else:
        raise Exception('Dataset not found')
项目:answer-triggering    作者:jiez-osu    | 项目源码 | 文件源码
def label_ranking_reciprocal_rank(label,  # [sent_num]
                                  preds): # [sent_num]
  """ Calcualting the reciprocal rank according to definition,
  """
  rank = np.argsort(preds)[::-1]

  #pos_rank = np.take(rank, np.where(label == 1)[0])
  #return np.mean(1.0 / pos_rank)

  if_find = False 
  pos = 0
  for r in rank:
      pos += 1
      if label[r] == 1:
          first_pos_r = pos
          if_find = True
          break

  assert(if_find)

  return 1.0 / first_pos_r
项目:rlflow    作者:tpbarron    | 项目源码 | 文件源码
def sample(self, n):
        """
        Sample n elements uniformly from the memory
        """
        indices = np.random.choice(self.cur_size, n, replace=False)

        s1 = np.take(self.S1, indices, axis=0)
        a = np.take(self.A, indices)
        r = np.take(self.R, indices)
        s2 = np.take(self.S2, indices, axis=0)
        t = np.take(self.T, indices)

        return s1, a, r, s2, t
        # sample_elements = []
        # for _ in range(n):
        #     sample_elements.append(self.memory[random.randint(0, len(self.memory)-1)])
        #
        # return sample_elements
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        self.assertTrue(eq(a.any(), a._data.any()))
        self.assertTrue(eq(a.all(), a._data.all()))
        self.assertTrue(eq(a.argmax(), a._data.argmax()))
        self.assertTrue(eq(a.argmin(), a._data.argmin()))
        self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        self.assertTrue(eq(a.conj(), a._data.conj()))
        self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
        self.assertTrue(eq(a.sum(), a._data.sum()))
        self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
        self.assertTrue(eq(m.transpose(), m._data.transpose()))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods
项目:luminoth    作者:tryolabs    | 项目源码 | 文件源码
def recalculate_objects(pred_dict, image):
    proposals = pred_dict['rpn_prediction']['proposals']
    proposals_prob = pred_dict['classification_prediction']['rcnn']['cls_prob']
    proposals_target = proposals_prob.argmax(axis=1) - 1
    bbox_offsets = pred_dict[
        'classification_prediction']['rcnn']['bbox_offsets']

    bbox_offsets = bbox_offsets[proposals_target >= 0]
    proposals = proposals[proposals_target >= 0]
    proposals_target = proposals_target[proposals_target >= 0]

    bbox_offsets_idx_pairs = np.stack(
        np.array([
            proposals_target * 4, proposals_target * 4 + 1,
            proposals_target * 4 + 2, proposals_target * 4 + 3]), axis=1)
    bbox_offsets = np.take(bbox_offsets, bbox_offsets_idx_pairs.astype(np.int))

    bboxes = decode(proposals, bbox_offsets)

    return bboxes, proposals_target
项目:tensorflow-yolo    作者:hjimce    | 项目源码 | 文件源码
def recollect(self, w):
        if w is None:
            self.w = w
            return
        k = w['kernel']
        b = w['biases']
        k = np.take(k, self.inp, 2)
        k = np.take(k, self.out, 3)
        b = np.take(b, self.out)
        assert1 = k.shape == tuple(self.wshape['kernel'])
        assert2 = b.shape == tuple(self.wshape['biases'])
        assert assert1 and assert2, \
        'Dimension not matching in {} recollect'.format(
            self._signature)
        self.w['kernel'] = k
        self.w['biases'] = b
项目:tensorflow-yolo    作者:hjimce    | 项目源码 | 文件源码
def recollect(self, w):
        if w is None:
            self.w = w
            return
        idx = self.keep_idx
        k = w['kernel']
        b = w['biases']
        self.w['kernel'] = np.take(k, idx, 3) 
        self.w['biases'] = np.take(b, idx)
        if self.batch_norm:
            m = w['moving_mean']
            v = w['moving_variance']
            g = w['gamma']
            self.w['moving_mean'] = np.take(m, idx)
            self.w['moving_variance'] = np.take(v, idx)
            self.w['gamma'] = np.take(g, idx)
项目:CSB    作者:csb-toolbox    | 项目源码 | 文件源码
def sample_from_histogram(p, n_samples=1):
    """
    returns the indice of bin according to the histogram p

    @param p: histogram
    @type p: numpy.array
    @param n_samples: number of samples to generate
    @type n_samples: integer
    """

    from numpy import add, less, argsort, take, arange
    from numpy.random import random

    indices = argsort(p)
    indices = take(indices, arange(len(p) - 1, -1, -1))

    c = add.accumulate(take(p, indices)) / add.reduce(p)

    return indices[add.reduce(less.outer(c, random(n_samples)), 0)]
项目:real_time_face_detection    作者:Snowapril    | 项目源码 | 文件源码
def load_dataset():
    if(not os.path.exists("./dataset/training.csv")):
        print("dataset does not exist")
        raise Exception

    #load dataset
    labeled_image = pd.read_csv("./dataset/training.csv")

    #preprocessing dataframe
    image = np.array(labeled_image["Image"].values).reshape(-1,1)
    image = np.apply_along_axis(lambda img: (img[0].split()),1,image)
    image = image.astype(np.int32) #because train_img elements are string before preprocessing
    image = image.reshape(-1,96*96) # data 96 * 96 size image

    label = labeled_image.values[:,:-1]
    label = label.astype(np.float32)

    #nan value to mean value
    col_mean = np.nanmean(label, axis=0)
    indices = np.where(np.isnan(label))
    label[indices] = np.take(col_mean, indices[1])

    return image, label
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        self.assertTrue(eq(a.any(), a._data.any()))
        self.assertTrue(eq(a.all(), a._data.all()))
        self.assertTrue(eq(a.argmax(), a._data.argmax()))
        self.assertTrue(eq(a.argmin(), a._data.argmin()))
        self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        self.assertTrue(eq(a.conj(), a._data.conj()))
        self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
        self.assertTrue(eq(a.sum(), a._data.sum()))
        self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
        self.assertTrue(eq(m.transpose(), m._data.transpose()))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods
项目:open-database    作者:mitaffinity    | 项目源码 | 文件源码
def process_data(coords, nbr_idx, elements):
    num_atoms = len(nbr_idx)

    # truncates off zero padding at the end and maps atomic numbers to atom types
    coords = coords[:num_atoms, :]
    elements = np.array([atom_dictionary[elements[i]] for i in range(num_atoms)], dtype=np.int32)

    # pad the neighbor indices with zeros if not enough neighbors
    elements = np.append(elements, 0)
    for i in range(num_atoms):
        if len(nbr_idx[i]) < 12:
            nbr_idx[i].extend(np.ones([12-len(nbr_idx[i])], dtype=np.int32) * num_atoms)
    nbr_idx = np.array([nbr_idx[i] for i in range(num_atoms)], dtype=np.int32)

    # creates neighboring atom type matrix - 0 = nonexistent atom
    nbr_atoms = np.take(elements, nbr_idx)
    np.place(nbr_idx, nbr_idx >= num_atoms, 0)
    elements = elements[:-1]

    return (coords.astype(np.float32), nbr_idx.astype(np.int32), 
           elements.astype(np.int32), nbr_atoms.astype(np.int32))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_take(self):
        def assert_take_ok(mgr, axis, indexer):
            mat = mgr.as_matrix()
            taken = mgr.take(indexer, axis)
            assert_almost_equal(np.take(mat, indexer, axis), taken.as_matrix())
            assert_almost_equal(mgr.axes[axis].take(indexer), taken.axes[axis])

        for mgr in self.MANAGERS:
            for ax in range(mgr.ndim):
                # take/fancy indexer
                yield assert_take_ok, mgr, ax, []
                yield assert_take_ok, mgr, ax, [0, 0, 0]
                yield assert_take_ok, mgr, ax, lrange(mgr.shape[ax])

                if mgr.shape[ax] >= 3:
                    yield assert_take_ok, mgr, ax, [0, 1, 2]
                    yield assert_take_ok, mgr, ax, [-1, -2, -3]
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def check_bool(self, func, value, correct, *args, **kwargs):
        while getattr(value, 'ndim', True):
            try:
                res0 = func(value, *args, **kwargs)
                if correct:
                    self.assertTrue(res0)
                else:
                    self.assertFalse(res0)
            except BaseException as exc:
                exc.args += ('dim: %s' % getattr(value, 'ndim', value), )
                raise
            if not hasattr(value, 'ndim'):
                break
            try:
                value = np.take(value, 0, axis=-1)
            except ValueError:
                break
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _left_join_on_index(left_ax, right_ax, join_keys, sort=False):
    if len(join_keys) > 1:
        if not ((isinstance(right_ax, MultiIndex) and
                 len(join_keys) == right_ax.nlevels)):
            raise AssertionError("If more than one join key is given then "
                                 "'right_ax' must be a MultiIndex and the "
                                 "number of join keys must be the number of "
                                 "levels in right_ax")

        left_indexer, right_indexer = \
            _get_multiindex_indexer(join_keys, right_ax, sort=sort)
    else:
        jkey = join_keys[0]

        left_indexer, right_indexer = \
            _get_single_indexer(jkey, right_ax, sort=sort)

    if sort or len(left_ax) != len(left_indexer):
        # if asked to sort or there are 1-to-many matches
        join_index = left_ax.take(left_indexer)
        return join_index, left_indexer, right_indexer

    # left frame preserves order & length of its index
    return left_ax, None, right_indexer
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _sort_labels(uniques, left, right):
    if not isinstance(uniques, np.ndarray):
        # tuplesafe
        uniques = Index(uniques).values

    sorter = uniques.argsort()

    reverse_indexer = np.empty(len(sorter), dtype=np.int64)
    reverse_indexer.put(sorter, np.arange(len(sorter)))

    new_left = reverse_indexer.take(com._ensure_platform_int(left))
    np.putmask(new_left, left == -1, -1)

    new_right = reverse_indexer.take(com._ensure_platform_int(right))
    np.putmask(new_right, right == -1, -1)

    return new_left, new_right
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
项目:LabelsManager    作者:SebastianoF    | 项目源码 | 文件源码
def get_patch_values(point, target_image, radius=5, shape='circle', morfo_mask=None):
    """
    To obtain the list of the values below a maks.
    :param point:
    :param target_image:
    :param radius:
    :param shape:
    :param morfo_mask: To avoid computing the morphological mask at each iteration if this method is called in a loop, this can be provided as input.
    :return:
    """
    if morfo_mask is None:
        morfo_mask = get_morphological_mask(point, target_image.shape, radius=radius, shape=shape)
    coord = np.nonzero(morfo_mask.flatten())[0]
    return np.take(target_image.flatten(), coord)


# def midpoint_circle_algorithm(center=(0, 0, 0), radius=4):
#     x, y, z = center
#     # TODO generalise the midpoint circle algorithm and use it for get_shell_for_given_radius
#     pass
项目:LearnGraphDiscovery    作者:eugenium    | 项目源码 | 文件源码
def glassoBonaFidePartial(gl,X,TrueCov):
    #take a 
    ep=EmpiricalCovariance().fit(X)
    emp_cov=ep.covariance_
    _,precs=graph_lasso_path(X, gl.cv_alphas_)
    best_score = -np.inf
    best_ind=0
    for i in xrange(len(gl.cv_alphas_)):
        try:
            this_score = log_likelihood(TrueCov, precs[i])
            if this_score >= .1 / np.finfo(np.float64).eps:
                this_score = np.nan
            if(this_score>best_score):
                best_score=this_score
                best_ind=i
        except:
            print 'exited:',best_score
            continue
    covariance_, precision_, n_iter_ = graph_lasso(
            emp_cov, alpha=gl.cv_alphas_[best_ind], mode=gl.mode, tol=gl.tol*5., max_iter=gl.max_iter, return_n_iter=True)
    return np.abs(toPartialCorr(precision_))
项目:mimclib    作者:StochasticNumerics    | 项目源码 | 文件源码
def __init__(self, x, y, ival=0., sorted=False, side='left'):

        if side.lower() not in ['right', 'left']:
            msg = "side can take the values 'right' or 'left'"
            raise ValueError(msg)
        self.side = side

        _x = np.asarray(x)
        _y = np.asarray(y)

        if _x.shape != _y.shape:
            msg = "x and y do not have the same shape"
            raise ValueError(msg)
        if len(_x.shape) != 1:
            msg = 'x and y must be 1-dimensional'
            raise ValueError(msg)

        self.x = np.r_[-np.inf, _x]
        self.y = np.r_[ival, _y]

        if not sorted:
            asort = np.argsort(self.x)
            self.x = np.take(self.x, asort, 0)
            self.y = np.take(self.y, asort, 0)
        self.n = self.x.shape[0]
项目:aRMSD    作者:armsd    | 项目源码 | 文件源码
def project_radii(radii, spacing, r_min, r_max):
    """ Projects given radii to values between r_min and r_max; good spacing ~ 1000 """

    radii_norm = radii / np.max(radii)  # Normalize radii

    # Determine min and max of array and generate spacing
    radii_to_proj = np.around(np.linspace(np.min(radii_norm), np.max(radii_norm), spacing), 3)
    values_to_proj = np.around(np.linspace(r_min, r_max, spacing), 3)

    # Determine respective array positions
    pos = np.array([np.argmin(np.abs(radii_to_proj -
                                     radii_norm[entry])) for entry in range(len(radii_norm))], dtype=np.int)

    # Determine new radii
    return np.take(values_to_proj, pos)


###############################################################################
# HUNGARIAN (MUNKRES) ALGORITHM - TAKEN FROM SCIPY
###############################################################################
项目:aRMSD    作者:armsd    | 项目源码 | 文件源码
def get_wigner_seitz_radii(self, calc_for='mol1'):
        """ Calculate Wigner-Seitz radii from nuclear charges """

        if calc_for == 'mol1':

            chg = self.chg_mol1

        else:

            chg = self.chg_mol2

        # Wigner-Seitz Radius in A
        w_s_r = (((3.0 * chg) /
                  (4.0 * np.pi * np.take(pse_mass_dens, chg - 1) * NA)) ** (1.0 / 3.0) * 0.01) / 1.0E-10

        # Return result(s)
        return w_s_r
项目:aRMSD    作者:armsd    | 项目源码 | 文件源码
def get_xsf_stored(self, logger, charge, xsf_type='MoKa'):

        # Set up dictionary of the prestored scattering factors
        xsf_dict = {'MoKa': (pse_mo_xsf_1, pse_mo_xsf_2), 'CuKa': (pse_cu_xsf_1, pse_cu_xsf_2),
                    'CoKa': (pse_co_xsf_1, pse_co_xsf_2), 'FeKa': (pse_fe_xsf_1, pse_fe_xsf_2),
                    'CrKa': (pse_cr_xsf_1, pse_cr_xsf_2)}

        if not xsf_type in ['MoKa', 'CuKa', 'CoKa', 'FeKa', 'CrKa']:  # Check for valid user input

            logger.pt_xsf_wrong_source()
            xsf_type = 'MoKa'

        # Get scattering factors from nuclear charge
        chosen_xsf_1, chosen_xsf_2 = xsf_dict[xsf_type]
        xsf1, xsf2 = np.take(chosen_xsf_1, charge - 1), np.take(chosen_xsf_2, charge - 1)

        # Return value(s)
        return xsf1, xsf2
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        self.assertTrue(eq(a.any(), a._data.any()))
        self.assertTrue(eq(a.all(), a._data.all()))
        self.assertTrue(eq(a.argmax(), a._data.argmax()))
        self.assertTrue(eq(a.argmin(), a._data.argmin()))
        self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        self.assertTrue(eq(a.conj(), a._data.conj()))
        self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
        self.assertTrue(eq(a.sum(), a._data.sum()))
        self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
        self.assertTrue(eq(m.transpose(), m._data.transpose()))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods
项目:core50    作者:vlomonaco    | 项目源码 | 文件源码
def get_test_set(self):
        """ Return the test set (the same for each inc. batch). """

        scen = self.scenario
        run = self.run

        test_idx_list = self.LUP[scen][run][-1]

        if self.preload:
            test_x = np.take(self.x, test_idx_list, axis=0).astype(np.float32)
        else:
            # test paths
            test_paths = []
            for idx in test_idx_list:
                test_paths.append(os.path.join(self.root, self.paths[idx]))

            # test imgs
            test_x = self.get_batch_from_paths(test_paths).astype(np.float32)

        test_y = self.labels[scen][run][-1]
        test_y = np.asarray(test_y, dtype=np.float32)

        return test_x, test_y
项目:gm-cml    作者:wangyida    | 项目源码 | 文件源码
def imcrop_tosquare(img):
    """Make any image a square image.

    Parameters
    ----------
    img : np.ndarray
        Input image to crop, assumed at least 2d.

    Returns
    -------
    crop : np.ndarray
        Cropped image.
    """
    size = np.min(img.shape[:2])
    extra = img.shape[:2] - size
    crop = img
    for i in np.flatnonzero(extra):
        crop = np.take(crop, extra[i] // 2 + np.r_[:size], axis=i)
    return crop
项目:TF-FaceLandmarkDetection    作者:mariolew    | 项目源码 | 文件源码
def imcrop_tosquare(img):
    """Make any image a square image.

    Parameters
    ----------
    img : np.ndarray
        Input image to crop, assumed at least 2d.

    Returns
    -------
    crop : np.ndarray
        Cropped image.
    """
    size = np.min(img.shape[:2])
    extra = img.shape[:2] - size
    crop = img
    for i in np.flatnonzero(extra):
        crop = np.take(crop, extra[i] // 2 + np.r_[:size], axis=i)
    return crop
项目:sldc    作者:waliens    | 项目源码 | 文件源码
def _get_labels(self, mask):
        """Transform a mask of class index into a mask containing actual classification labels.
        Parameters
        ----------
        mask: ndarray (shape: [width, height])
            An NumPy representation of a segmentation mask. Each pixel should be a class index (see 
            `SemanticSegmenter.segment` function docstring). 

        Returns
        -------
        mask: ndarray (shape: [width, height])
            A NumPy representation of the mask containing the true labels of the image

        Raises
        ------
        ValueError: if the true labels were not defined
        """
        if self.classes is None:
            raise ValueError("Class labels are not defined.")
        return np.take(self.classes, mask)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())