Python numpy 模块,e() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.e()

项目:Black-Swan    作者:12190143    | 项目源码 | 文件源码
def rf(train_sample, validation_sample, features, seed):
    log_base = np.e
    rf_est = RandomForestRegressor(n_estimators=500,
                                   criterion='mse',
                                   max_features=4,
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                   ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    rf_prob = np.power(log_base, rf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], rf_prob, 'RF')
    return rf_prob
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
项目:relaax    作者:deeplearninc    | 项目源码 | 文件源码
def build_graph(self, actor, critic, cfg):
        self.ph_action = graph.Placeholder(np.float32, shape=(None, actor.action_size), name="ph_action")
        self.ph_advantage = graph.Placeholder(np.float32, shape=(None,), name="ph_adv")
        self.ph_discounted_reward = graph.Placeholder(np.float32, shape=(None,), name="ph_edr")

        mu, sigma2 = actor.node
        sigma2 += tf.constant(1e-8)

        log_std_dev = tf.log(sigma2)
        self.entropy = tf.reduce_mean(log_std_dev + tf.constant(0.5 * np.log(2. * np.pi * np.e), tf.float32))

        l2_dist = tf.square(self.ph_action.node - mu)
        sqr_std_dev = tf.constant(2.) * tf.square(sigma2) + tf.constant(1e-6)
        log_std_dev = tf.log(sigma2)
        log_prob = -l2_dist / sqr_std_dev - tf.constant(.5) * tf.log(tf.constant(2 * np.pi)) - log_std_dev

        self.policy_loss = -(tf.reduce_mean(tf.reduce_sum(log_prob, axis=1) * self.ph_advantage.node)
                             + cfg.entropy_beta * self.entropy)

        # Learning rate for the Critic is sized by critic_scale parameter
        self.value_loss = cfg.critic_scale * tf.reduce_mean(tf.square(self.ph_discounted_reward.node - critic.node))
项目:cma    作者:hardmaru    | 项目源码 | 文件源码
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in self.stop().items():
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def Entropy(self, tau, mean, std, sigman=1.0):
        """
        Predictive entropy acquisition function

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.
        sigman: float
            Noise variance

        Returns
        -------
        float:
            Predictive entropy.
        """
        sp2 = std **2 + sigman
        return 0.5 * np.log(2 * np.pi * np.e * sp2)
项目:gullikson-scripts    作者:kgullikson88    | 项目源码 | 文件源码
def load_flux(self, parameters):
        '''
        Load just the flux from the grid, with possibly an index truncation.

        :param parameters: the stellar parameters
        :type parameters: dict

        :raises KeyError: if spectrum is not found in the HDF5 file.

        :returns: flux array
        '''

        key = self.flux_name.format(**parameters)
        with h5py.File(self.filename, "r") as hdf5:
            try:
                if self.ind is not None:
                    fl = hdf5['flux'][key][self.ind[0]:self.ind[1]]
                else:
                    fl = hdf5['flux'][key][:]
            except KeyError as e:
                raise GridError(e)

        # Note: will raise a KeyError if the file is not found.

        return fl
项目:gullikson-scripts    作者:kgullikson88    | 项目源码 | 文件源码
def __call__(self, value):
        '''
        Evaluate the interpolator at a parameter.

        :param value:
        :type value: float
        :raises C.InterpolationError: if *value* is out of bounds.

        :returns: ((low_val, high_val), (frac_low, frac_high)), the lower and higher bounding points in the grid
        and the fractional distance (0 - 1) between them and the value.
        '''
        try:
            index = self.index_interpolator(value)
        except ValueError as e:
            raise InterpolationError("Requested value {} is out of bounds. {}".format(value, e))
        high = np.ceil(index)
        low = np.floor(index)
        frac_index = index - low
        return ((self.parameter_list[low], self.parameter_list[high]), ((1 - frac_index), frac_index))
项目:gullikson-scripts    作者:kgullikson88    | 项目源码 | 文件源码
def HelCorr(header, observatory="CTIO", idlpath="/Applications/exelis/idl83/bin/idl", debug=False):
    """
    Similar to HelCorr_IRAF, but attempts to use an IDL library.
    See HelCorr_IRAF docstring for details.
    """
    ra = 15.0 * convert(header['RA'])
    dec = convert(header['DEC'])
    jd = float(header['jd'])

    cmd_list = [idlpath,
                '-e',
                ("print, barycorr({:.8f}, {:.8f}, {:.8f}, 0,"
                 " obsname='{}')".format(jd, ra, dec, observatory)),
    ]
    if debug:
        print("RA: ", ra)
        print("DEC: ", dec)
        print("JD: ", jd)
    output = subprocess.check_output(cmd_list).split("\n")
    if debug:
        for line in output:
            print(line)
    return float(output[-2])
项目:PyFrac    作者:GeoEnergyLab-EPFL    | 项目源码 | 文件源码
def FF_Yang_Dou_residual(vbyu, *args):
    """
    The Yang_Dou residual function; to be used by numerical root finder
    """
    (Re, rough) = args

    Rstar = Re / (2 * vbyu * rough)
    theta = np.pi * np.log( Rstar / 1.25) / np.log(100 / 1.25)
    alpha = (1 - np.cos(theta)) / 2
    beta = 1 - (1 - 0.107) * (alpha + theta/np.pi) / 2
    R = Re / (2 * vbyu)

    rt = 1.
    for i in range(1,5):
        rt = rt - 1. / np.e * ( i / factorial(i) * (67.8 / R) ** (2 * i))

    return vbyu - (1 - rt) * R / 4. - rt * (2.5 * np.log(R) - 66.69 * R**-0.72 + 1.8 - (2.5 * np.log(
        (1 + alpha * Rstar / 5) / (1 + alpha * beta * Rstar / 5)) + (5.8 + 1.25) * (alpha * Rstar / (
        5 + alpha * Rstar)) ** 2 + 2.5 * (alpha * Rstar / (5 + alpha * Rstar)) - (5.8 + 1.25)
        * (alpha * beta * Rstar / (5 + alpha * beta * Rstar)) ** 2 - 2.5 * (alpha * beta * Rstar / (
        5 + alpha * beta * Rstar))))
项目:ai-ama-exercises    作者:JKCooper2    | 项目源码 | 文件源码
def take_step(self):
        curr_best = self.current_best

        nn = self.random_move(self.node)

        score = self.utility_function(nn)

        if np.random.uniform() < np.e ** ((self.current_best - score) / self.temperature):
            self.node = nn
            self.current_best = score

        self.temperature *= self.alpha

        # If no improvement return false
        if self.current_best == curr_best:
            return False

        return True
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:TurbPlasma    作者:tulasinandan    | 项目源码 | 文件源码
def lccor(rc,bs=0,fs=1,step=1,kind='int'):
   import numpy as np
   from AnalysisFunctions import fcorr 
   ie=1/np.e
   rc.vars2load(['bx','by','bz'])
   tt  = np.zeros((fs-bs)/step)
   lxc = np.zeros((fs-bs)/step)
   lyc = np.zeros((fs-bs)/step)
   lc  = np.zeros((fs-bs)/step)
   for i in range(bs,fs,step):
      print i; idx = (i-bs)/step
      rc.loadslice(i); 
      tt[idx] = rc.time
      rx,bxcor=fcorr(rc.bx,rc.bx,ax=0,dx=rc.dx)
      ry,bycor=fcorr(rc.by,rc.by,ax=1,dx=rc.dy)
      if kind == "ie":
         lxc[idx]=rx[abs(bxcor-ie).argmin()]
         lyc[idx]=ry[abs(bycor-ie).argmin()]
      elif kind == "int":
         lxc[idx]=np.sum(bxcor)*rc.dx
         lyc[idx]=np.sum(bycor)*rc.dy
      lc[idx] = 0.5*(lxc[idx]+lyc[idx])
      print tt[idx],lxc[idx],lyc[idx],lc[idx]
   return tt,lxc,lyc,lc
项目:quantum-computing    作者:QuantumSystems    | 项目源码 | 文件源码
def QFT(self,nqbits):
        N = 2**nqbits # number of rows and cols
        theta = 2.0 * np.pi / N
        opmat = [None]*N
        for i in range(N):
            # print "row",i,"--------------------"
            row = []
            for j in range(N):
                pow = i * j
                pow = pow % N
                # print "w^",pow
                row.append(np.e**(1.j*theta*pow))
            opmat[i] = row
        # print opmat
        opmat = np.matrix(opmat,dtype=complex) / np.sqrt(N)
        oper = ["QFT({:d})".format(nqbits),opmat]
        return oper
项目:satpy    作者:pytroll    | 项目源码 | 文件源码
def gain_factor(theta):
        gain = np.empty_like(theta)

        mask = theta <= 87.541
        gain[mask] = (58 + 4 / np.cos(np.deg2rad(theta[mask]))) / 5

        mask = np.logical_and(theta <= 96, 87.541 < theta)
        gain[mask] = (123 * np.exp(1.06 * (theta[mask] - 89.589)) *
                      ((theta[mask] - 93)**2 / 18 + 0.5))

        mask = np.logical_and(96 < theta, theta <= 101)
        gain[mask] = 123 * np.exp(1.06 * (theta[mask] - 89.589))

        mask = np.logical_and(101 < theta, theta <= 103.49)
        gain[mask] = (123 * np.exp(1.06 * (101 - 89.589)) *
                      np.log(theta[mask] - (101 - np.e)) ** 2)

        gain[theta > 103.49] = 6.0e7

        return gain
项目:nway    作者:JohannesBuchner    | 项目源码 | 文件源码
def log_bf(p, s):
    """
    log10 of the multi-way Bayes factor, see eq.(18)

    p: separations matrix (NxN matrix of arrays)
    s: errors (list of N arrays)
    """
    n = len(s)
    # precision parameter w = 1/sigma^2
    w = [numpy.asarray(si, dtype=numpy.float)**-2. for si in s]
    norm = (n - 1) * log(2) + 2 * (n - 1) * log_arcsec2rad

    wsum = numpy.sum(w, axis=0)
    s = numpy.sum(log(w), axis=0) - log(wsum)
    q = 0
    for i, wi in enumerate(w):
        for j, wj in enumerate(w):
            if i < j:
                q += wi * wj * p[i][j]**2
    exponent = - q / 2 / wsum
    return (norm + s + exponent) * log10(e)
项目:OilLibrary    作者:NOAA-ORR-ERD    | 项目源码 | 文件源码
def aggregate_kvis(self):
        kvis_list = [(k.ref_temp_k, (k.m_2_s, False))
                     for k in self.culled_kvis()]

        if hasattr(self.record, 'dvis'):
            dvis_list = [(d.ref_temp_k,
                          (est.dvis_to_kvis(d.kg_ms,
                                            self.density_at_temp(d.ref_temp_k)
                                            ),
                           True)
                          )
                         for d in list(self.non_redundant_dvis())]

            agg = dict(dvis_list)
            agg.update(kvis_list)
        else:
            agg = dict(kvis_list)

        out_items = sorted([(i[0], i[1][0], i[1][1])
                            for i in agg.iteritems()])

        kvis_out, estimated = zip(*[(KVis(m_2_s=k, ref_temp_k=t), e)
                                    for t, k, e in out_items])

        return kvis_out, estimated
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:nn4post    作者:shuiruge    | 项目源码 | 文件源码
def gaussian_entropy(sigma):
  """Get the entropy of a multivariate Gaussian distribution with
  ALL DIMENSIONS INDEPENDENT.

  C.f. eq.(8.7) of [here](http://www.biopsychology.org/norwich/isp/\
  chap8.pdf).

  NOTE:
    Gaussian entropy is independent of its center `mu`.

  Args:
    sigma:
      Tensor of shape `[None]`.

  Returns:
    Scalar.
  """
  n_dims = np.prod(sigma.get_shape().as_list())
  return 0.5 * n_dims * tf.log(2. * np.pi * np.e) \
         + tf.reduce_sum(tf.log(sigma))
项目:rllab    作者:rll    | 项目源码 | 文件源码
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
项目:Black-Swan    作者:12190143    | 项目源码 | 文件源码
def xgboost(train_sample, validation_sample, features, model_param):
    def evalmape(preds, dtrain):
        labels = dtrain.get_label()
        preds = np.power(log_base, preds) - 1
        # return a pair metric_name, result
        # since preds are margin(before logistic transformation, cutoff at 0)
        return 'mape', np.abs((labels - preds) / labels).sum() / len(labels)

    param = {'max_depth': model_param['depth'], 'eta': model_param['lr'], 'silent': 1, 'objective': 'reg:linear', 'booster': 'gbtree',
             'subsample': model_param['sample'],
             'seed':model_param['seed'],
             'colsample_bytree':1, 'min_child_weight':1, 'gamma':0}
    param['eval_metric'] = 'mae'
    num_round = model_param['tree']
    log_base = np.e
    plst = param.items()
    dtrain = xgb.DMatrix(train_sample[features], np.log1p(train_sample['volume'])/np.log(log_base))
    dtest = xgb.DMatrix(validation_sample[features], validation_sample['volume'])
    watchlist = [(dtest, 'eval'), (dtrain, 'train')]
    bst = xgb.train(plst, dtrain, num_round, watchlist, feval=evalmape)
    xgboost_prob = np.power(log_base, bst.predict(dtest)) - 1
    # MAPE
    print_mape(validation_sample['volume'], xgboost_prob, 'XGBOOST')
    return xgboost_prob
项目:Black-Swan    作者:12190143    | 项目源码 | 文件源码
def exrf(train_sample, validation_sample, features, seed):
    log_base = np.e
    exrf_est = ExtraTreesRegressor(n_estimators=1000,
                                   criterion='mse',
                                   max_features='auto',
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                       ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    exrf_prob = np.power(log_base, exrf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], exrf_prob, 'EXTRA-RF')
    return exrf_prob
项目:maml_rl    作者:cbfinn    | 项目源码 | 文件源码
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
项目:typped    作者:abarker    | 项目源码 | 文件源码
def define_assignment_operator(parser):
    """Define assignment and reading of simple variables."""

    parser.calculator_symbol_dict = {} # Store symbol dict as a new parser attribute.
    symbol_dict = parser.calculator_symbol_dict

    symbol_dict["pi"] = np.pi # Predefine pi.
    symbol_dict["e"] = np.e # Predefine e.

    # Note that on_ties for identifiers is set to -1, so that when string
    # lengths are equal defined function names will take precedence over generic
    # identifiers (which are only defined as a group regex).
    parser.def_token("k_identifier", r"[a-zA-Z_](?:\w*)", on_ties=-1)
    parser.def_literal("k_identifier", eval_fun=lambda t: symbol_dict.get(t.value, 0.0))

    def eval_assign(t):
        """Evaluate the identifier token `t` and save the value in `symbol_dict`."""
        rhs = t[1].eval_subtree()
        symbol_dict[t[0].value] = rhs
        return rhs

    parser.def_infix_op("k_equals", 5, "right",
                precond_fun=lambda tok, lex: lex.peek(-1).token_label == "k_identifier",
                eval_fun=eval_assign)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
项目:ngspicepy    作者:ashwith    | 项目源码 | 文件源码
def test_real(self):
        val = ng.get_data('const.e')
        assert type(val) == np.ndarray
        assert len(val) == 1
        assert val.dtype == 'float64'
        assert val[0] == pytest.approx(np.e)
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def entropy(self):
        return U.sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), -1)
项目:ConfigSpace    作者:automl    | 项目源码 | 文件源码
def test_uniformfloat_to_integer(self):
        f1 = UniformFloatHyperparameter("param", 1, 10, q=0.1, log=True)
        with warnings.catch_warnings():
            f2 = f1.to_integer()
            warnings.simplefilter("ignore")
            # TODO is this a useful rounding?
            # TODO should there be any rounding, if e.g. lower=0.1
            self.assertEqual("param, Type: UniformInteger, Range: [1, 10], "
                             "Default: 3, on log-scale", str(f2))
项目:Feon    作者:YaoyaoBae    | 项目源码 | 文件源码
def gl_quad3d(fun,n,x_lim = None,y_lim = None,z_lim = None,args=()):
    if x_lim is None:
        a,b = -1, 1
    else:
        a,b= x_lim[0],x_lim[1]

    if y_lim is None:
        c ,d = -1,1
    else:
        c ,d = y_lim[0],y_lim[1]
    if z_lim is None:
        e,f= -1,1
    else:
        e ,f = z_lim[0],z_lim[1]

    if not callable(fun):
        return (b-a)*(d-c)*(f-e)*fun
    else:
        loc,w = np.polynomial.legendre.leggauss(n)
        s = (1/8.*(b-a)*(d-c)*(f-e)*fun(((b-a)*v1/2.+(a+b)/2.,
                                     (d-c)*v2/2.+(c+d)/2.,
                                     (f-e)*v3/2.+(e+f)/2.),*args)*w[i]*w[j]*w[k]
             for i,v1 in enumerate(loc)
             for j,v2 in enumerate(loc)
             for k,v3 in enumerate(loc))
        return sum(s)
项目:Feon    作者:YaoyaoBae    | 项目源码 | 文件源码
def fun2(x,a,b):
    return a*x[0]*x[1]*np.e**(b*x[2])
项目:monogreedy    作者:jinjunqi    | 项目源码 | 文件源码
def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self
项目:monogreedy    作者:jinjunqi    | 项目源码 | 文件源码
def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self
项目:keras-image-captioning    作者:danieljl    | 项目源码 | 文件源码
def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_complex_arrays(self):
        ncols = 2
        nrows = 2
        a = np.zeros((ncols, nrows), dtype=np.complex128)
        re = np.pi
        im = np.e
        a[:] = re + 1.0j * im

        # One format only
        c = BytesIO()
        np.savetxt(c, a, fmt=' %+.3e')
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b' ( +3.142e+00+ +2.718e+00j)  ( +3.142e+00+ +2.718e+00j)\n',
             b' ( +3.142e+00+ +2.718e+00j)  ( +3.142e+00+ +2.718e+00j)\n'])

        # One format for each real and imaginary part
        c = BytesIO()
        np.savetxt(c, a, fmt='  %+.3e' * 2 * ncols)
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b'  +3.142e+00  +2.718e+00  +3.142e+00  +2.718e+00\n',
             b'  +3.142e+00  +2.718e+00  +3.142e+00  +2.718e+00\n'])

        # One format for each complex number
        c = BytesIO()
        np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols)
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n',
             b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n'])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_invalid_raise_with_usecols(self):
        # Test invalid_raise with usecols
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        kwargs = dict(delimiter=",", dtype=None, names=True,
                      invalid_raise=False)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae']))
        #
        mdata.seek(0)
        mtest = np.ndfromtxt(mdata, usecols=(0, 1), **kwargs)
        assert_equal(len(mtest), 50)
        control = np.ones(50, dtype=[(_, int) for _ in 'ab'])
        control[[10 * _ for _ in range(5)]] = (2, 2)
        assert_equal(mtest, control)
项目:Sverchok    作者:Sverchok    | 项目源码 | 文件源码
def e() -> Float:
    return np.e
项目:cortex    作者:rdevon    | 项目源码 | 文件源码
def __call__(self, samples, x):
        z = T.log(self.sigma * T.sqrt(2 * pi)).sum()
        d_s = (samples[:, None, :] - x[None, :, :]) / self.sigma[None, None, :]
        e = log_mean_exp((-.5 * d_s ** 2).sum(axis=2), axis=0)
        return (e - z).mean()
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def entropy(self, dist_info):
        log_stds = dist_info["log_std"]
        return np.sum(log_stds + np.log(np.sqrt(2 * np.pi * np.e)), axis=-1)
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def entropy_sym(self, dist_info_var):
        log_std_var = dist_info_var["log_std"]
        return TT.sum(log_std_var + TT.log(np.sqrt(2 * np.pi * np.e)), axis=-1)
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def shift_or_mirror_into_invertible_domain(self, solution_genotype):
        """return the reference solution that has the same ``box_constraints_transformation(solution)``
        value, i.e. ``tf.shift_or_mirror_into_invertible_domain(x) = tf.inverse(tf.transform(x))``.
        This is an idempotent mapping (leading to the same result independent how often it is
        repeatedly applied).

        """
        return self.inverse(self(solution_genotype))
        raise NotImplementedError('this is an abstract method that should be implemented in the derived class')
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def repair_genotype(self, x, copy_if_changed=False):
        """make sure that solutions fit to the sample distribution, this interface will probably change.

        In particular the frequency of x - self.mean being long is limited.

        """
        x = array(x, copy=False)
        mold = array(self.mean, copy=False)
        if 1 < 3:  # hard clip at upper_length
            upper_length = self.N**0.5 + 2 * self.N / (self.N + 2)  # should become an Option, but how? e.g. [0, 2, 2]
            fac = self.mahalanobis_norm(x - mold) / upper_length

            if fac > 1:
                if copy_if_changed:
                    x = (x - mold) / fac + mold
                else:  # should be 25% faster:
                    x -= mold
                    x /= fac
                    x += mold
                # print self.countiter, k, fac, self.mahalanobis_norm(pop[k] - mold)
                # adapt also sigma: which are the trust-worthy/injected solutions?
        else:
            if 'checktail' not in self.__dict__:  # hasattr(self, 'checktail')
                raise NotImplementedError
                # from check_tail_smooth import CheckTail  # for the time being
                # self.checktail = CheckTail()
                # print('untested feature checktail is on')
            fac = self.checktail.addchin(self.mahalanobis_norm(x - mold))

            if fac < 1:
                x = fac * (x - mold) + mold

        return x
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def __init__(self, fitness_function, *args, **kwargs):
            """`fitness_function` must be callable (e.g. a function
            or a callable class instance)"""
            # the original fitness to be called
            self.inner_fitness = fitness_function
            # self.condition_number = ...