Python numpy 模块,less() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.less()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
    delay    = 2.0e-9 # Wait a few TCs for the rising edge
    duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
    pulse_points = int(duration*sample_rate)

    if pulse_points < 320:
        duration = 319/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, 320)
    else:
        pulse_points = 64*np.ceil(pulse_points/64.0)
        duration = (pulse_points-1)/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, pulse_points)

    rise_mask = np.less(times, delay)
    hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
    fall_mask = np.greater_equal(times, delay + hold_time)

    wf  = rise_mask*np.exp((times-delay)/rise_time)
    wf += hold_mask
    wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)

    return amplitude*wf
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
    delay    = 2.0e-9 # Wait a few TCs for the rising edge
    duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
    pulse_points = int(duration*sample_rate)

    if pulse_points < 320:
        duration = 319/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, 320)
    else:
        pulse_points = 64*np.ceil(pulse_points/64.0)
        duration = (pulse_points-1)/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, pulse_points)

    rise_mask = np.less(times, delay)
    hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
    fall_mask = np.greater_equal(times, delay + hold_time)

    wf  = rise_mask*np.exp((times-delay)/rise_time)
    wf += hold_mask
    wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)

    return amplitude*wf
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def get_local_minima(x, y):

    """
    This function ...
    :param x:
    :param y:
    :return:
    """

    m = argrelextrema(y, np.less)[0].tolist()

    # Find the indx of the absolute minimum (should also be included, is not for example when it is at the edge)
    index = np.argmin(y)
    if index not in m: m.append(index)

    x_minima = [x[i] for i in m]
    y_minima = [y[i] for i in m]

    return x_minima, y_minima

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def get_local_minima(x, y):

    """
    This function ...
    :param x:
    :param y:
    :return:
    """

    m = argrelextrema(y, np.less)[0].tolist()

    # Find the indx of the absolute minimum (should also be included, is not for example when it is at the edge)
    index = np.argmin(y)
    if index not in m: m.append(index)

    x_minima = [x[i] for i in m]
    y_minima = [y[i] for i in m]

    return x_minima, y_minima

# -----------------------------------------------------------------
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
          logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode))
          self.mode = 'auto'
        if (self.mode == 'min' or
            (self.mode == 'auto' and 'acc' not in self.monitor)):
          self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
          self.best = np.Inf
        else:
          self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
          self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
项目:pyssp    作者:shunsukeaihara    | 项目源码 | 文件源码
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = (self._gamma15 * np.sqrt(nu) / gamma) * np.exp(-nu / 2.0) *\
                  ((1.0 + nu) * spc.i0(nu / 2.0) + nu * spc.i1(nu / 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
项目:pyssp    作者:shunsukeaihara    | 项目源码 | 文件源码
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = xi / (1.0 + xi) * np.exp(0.5 * spc.exp1(nu))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
项目:pyssp    作者:shunsukeaihara    | 项目源码 | 文件源码
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        u = 0.5 - self._mu / (4.0 * np.sqrt(gamma * xi))
        self._G = u + np.sqrt(u ** 2.0 + self._tau / (gamma * 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
项目:pool    作者:max-kov    | 项目源码 | 文件源码
def iterate_until_button_press(buttons, game_state, text_ending_place, text_starting_place):
    # while a button was not clicked this method checks if mouse is in the button and if it is
    # changes its colour
    button_clicked = 0
    while button_clicked == 0:
        pygame.display.update()
        user_events = event.events()
        # the first button is the title which is unclickable, thus iterating from 1 to len(buttons)
        for num in range(1, len(buttons)):
            if np.all((np.less(text_starting_place[num] - config.menu_spacing, user_events["mouse_pos"]),
                       np.greater(text_ending_place[num] + config.menu_spacing, user_events["mouse_pos"]))):
                if user_events["clicked"]:
                    button_clicked = num
                else:
                    game_state.canvas.surface.blit(
                        buttons[num][1], text_starting_place[num])
            else:
                game_state.canvas.surface.blit(
                    buttons[num][0], text_starting_place[num])
        if user_events["closed"] or user_events["quit_to_main_menu"]:
            button_clicked = len(buttons)-1
    return button_clicked
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:kaggle_airbnb    作者:svegapons    | 项目源码 | 文件源码
def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
        super(Callback, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.wait = 0
        self.best_epoch = 0

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
项目:traffic-prediction    作者:JonnoFTW    | 项目源码 | 文件源码
def __init__(self, monitor='val_loss', mode='auto', verbose=0):
        super(BestWeight, self).__init__()
        self.monitor = monitor
        self.mode = mode
        self.best_weights = None
        self.verbose = verbose
        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
项目:keras_superpixel_pooling    作者:parag2489    | 项目源码 | 文件源码
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def plot_kde(data):
    bw = 1.06 * st.stdev(data) / (len(data) ** .2)
    kde = KernelDensity(kernel='gaussian', bandwidth=bw).fit(
        np.array(data).reshape(-1, 1))
    s = np.linspace(0, 1)
    e = kde.score_samples(s.reshape(-1, 1))
    plt.plot(s, e)

    mi, ma = argrelextrema(e, np.less)[0], argrelextrema(e, np.greater)[0]
    logger.info("Minima: %s" % s[mi])
    logger.info("Maxima: %s" % s[ma])

    plt.plot(s[:mi[0] + 1], e[:mi[0] + 1], 'r',
             s[mi[0]:mi[1] + 1], e[mi[0]:mi[1] + 1], 'g',
             s[mi[1]:], e[mi[1]:], 'b',
             s[ma], e[ma], 'go',
             s[mi], e[mi], 'ro')

    plt.xlabel('Probability')
项目:ActiveBoundary    作者:MiriamHu    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        current = self.monitor(self.previous_weights, self.model.get_weights())
        self.previous_weights = self.model.get_weights()
        if current is None:
            warnings.warn('Early stopping requires %s available!' %
                          (self.monitor), RuntimeWarning)

        if np.less(current, self.threshold_value):
            if current == 0:
                self.model.stop_training = True
                if self.verbose > 0:
                    print('Epoch %05d: early stopping: ratio weights = 0' % (epoch))
            elif self.wait >= self.patience:
                if self.verbose > 0:
                    print('Epoch %05d: early stopping: ratio weights below %.4f' % (epoch, self.threshold_value))
                self.model.stop_training = True
            self.wait += 1
        else:
            self.wait = 0
项目:BigBrotherBot-For-UrT43    作者:ptitbigorneau    | 项目源码 | 文件源码
def atmin(a,lowerlimit=None,dimension=None,inclusive=1):
    """
   Returns the minimum value of a, along dimension, including only values less
   than (or equal to, if inclusive=1) lowerlimit.  If the limit is set to None,
   all values in the array are used.

   Usage:   atmin(a,lowerlimit=None,dimension=None,inclusive=1)
   """
    if inclusive:         lowerfcn = N.greater
    else:               lowerfcn = N.greater_equal
    if dimension == None:
        a = N.ravel(a)
        dimension = 0
    if lowerlimit == None:
        lowerlimit = N.minimum.reduce(N.ravel(a))-11
    biggest = N.maximum.reduce(N.ravel(a))
    ta = N.where(lowerfcn(a,lowerlimit),a,biggest)
    return N.minimum.reduce(ta,dimension)
项目:BigBrotherBot-For-UrT43    作者:ptitbigorneau    | 项目源码 | 文件源码
def atmax(a,upperlimit,dimension=None,inclusive=1):
    """
   Returns the maximum value of a, along dimension, including only values greater
   than (or equal to, if inclusive=1) upperlimit.  If the limit is set to None,
   a limit larger than the max value in the array is used.

   Usage:   atmax(a,upperlimit,dimension=None,inclusive=1)
   """
    if inclusive:         upperfcn = N.less
    else:               upperfcn = N.less_equal
    if dimension == None:
        a = N.ravel(a)
        dimension = 0
    if upperlimit == None:
        upperlimit = N.maximum.reduce(N.ravel(a))+1
    smallest = N.minimum.reduce(N.ravel(a))
    ta = N.where(upperfcn(a,upperlimit),a,smallest)
    return N.maximum.reduce(ta,dimension)
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _evoked_from_epoch_data(self, data, info, picks, n_events, kind):
        """Helper to create an evoked object from epoch data"""
        info = deepcopy(info)
        evoked = EvokedArray(data, info, tmin=self.times[0],
                             comment=self.name, nave=n_events, kind=kind,
                             verbose=self.verbose)
        # XXX: above constructor doesn't recreate the times object precisely
        evoked.times = self.times.copy()

        # pick channels
        if picks is None:
            picks = _pick_data_channels(evoked.info, exclude=[])

        ch_names = [evoked.ch_names[p] for p in picks]
        evoked.pick_channels(ch_names)

        if len(evoked.info['ch_names']) == 0:
            raise ValueError('No data channel found when averaging.')

        if evoked.nave < 1:
            warn('evoked object is empty (based on less than 1 epoch)')

        return evoked
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def calculate_accuracy(threshold, dist, actual_issame):
    predict_issame = np.less(dist, threshold)
    tp = np.sum(np.logical_and(predict_issame, actual_issame))
    fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
    tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
    fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))

    tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn)
    fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn)
    acc = float(tp+tn)/dist.size
    return tpr, fpr, acc
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def calculate_val_far(threshold, dist, actual_issame):
    predict_issame = np.less(dist, threshold)
    true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
    false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
    n_same = np.sum(actual_issame)
    n_diff = np.sum(np.logical_not(actual_issame))
    val = float(true_accept) / float(n_same)
    far = float(false_accept) / float(n_diff)
    return val, far
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def build_feature_files(base_directory,
                        new_directory,
                        data_loader,
                        n=None,
                        negative_example_keep_prob=1.0):
    os.makedirs(new_directory, exist_ok=False)
    episode_paths = frame.episode_paths(base_directory)
    label_counts = [0, 0]
    if n is not None:
        np.random.shuffle(episode_paths)
        episode_paths = episode_paths[:n]
    for episode_path in tqdm.tqdm(episode_paths):
        try:
            features, labels = data_loader.load_features_and_labels([episode_path])
        except:
            traceback.print_exc()
        else:
            keep = np.logical_or(labels, (np.less(
                np.random.rand(len(labels)), negative_example_keep_prob)))
            labels = labels[keep]

            for i in range(len(label_counts)):
                label_counts[i] += np.count_nonzero(labels == i)
            features = {k: v[keep] for k, v in features.items()}
            new_path = path_relative_to_new_directory(base_directory, new_directory, episode_path,
                                                      ".features")
            os.makedirs(os.path.dirname(new_path), exist_ok=True)
            with open(new_path, 'wb') as f:
                pickle.dump((features, labels), f)
    return label_counts
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
    if config['voc_size'] == -1:
        return copy.copy(data)
    else:
        mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
        data = copy.copy(data * mask + (1 - mask))
        return data
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
        if config['voc_size'] == -1:
            return copy.copy(data)
        else:
            mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
            data = copy.copy(data * mask + (1 - mask))
            return data

    # training
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
        if config['voc_size'] == -1:
            return copy.copy(data)
        else:
            mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
            data = copy.copy(data * mask + (1 - mask))
            return data

    # training
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
        if config['voc_size'] == -1:
            return copy.copy(data)
        else:
            mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
            data = copy.copy(data * mask + (1 - mask))
            return data

    # training
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
    if config['voc_size'] == -1:
        return copy.copy(data)
    else:
        mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
        data = copy.copy(data * mask + (1 - mask))
        return data
项目:CopyNet    作者:MultiPath    | 项目源码 | 文件源码
def unk_filter(data):
        if config['voc_size'] == -1:
            return copy.copy(data)
        else:
            mask = (np.less(data, config['voc_size'])).astype(dtype='int32')
            data = copy.copy(data * mask + (1 - mask))
            return data

    # training
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def __init__(self, custom_model, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(CustomModelCheckpoint, self).__init__()
        self.custom_model = custom_model
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('CustomModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def clip(self, a, m, M, out=None):
        # use slow-clip
        selector = np.less(a, m) + 2*np.greater(a, M)
        return selector.choose((a, m, M), out=out)

    # Handy functions
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_roundtrip_str(self):
        x = self.x.real.ravel()
        s = "@".join(map(str, x))
        y = np.fromstring(s, sep="@")
        # NB. str imbues less precision
        nan_mask = ~np.isfinite(x)
        assert_array_equal(x[nan_mask], y[nan_mask])
        assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_datetime_compare(self):
        # Test all the comparison operators
        a = np.datetime64('2000-03-12T18:00:00.000000')
        b = np.array(['2000-03-12T18:00:00.000000',
                      '2000-03-12T17:59:59.999999',
                      '2000-03-12T18:00:00.000001',
                      '1970-01-11T12:00:00.909090',
                      '2016-01-11T12:00:00.909090'],
                      dtype='datetime64[us]')
        assert_equal(np.equal(a, b), [1, 0, 0, 0, 0])
        assert_equal(np.not_equal(a, b), [0, 1, 1, 1, 1])
        assert_equal(np.less(a, b), [0, 0, 1, 0, 1])
        assert_equal(np.less_equal(a, b), [1, 0, 1, 0, 1])
        assert_equal(np.greater(a, b), [0, 1, 0, 1, 0])
        assert_equal(np.greater_equal(a, b), [1, 1, 0, 1, 0])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_datetime_compare_nat(self):
        dt_nat = np.datetime64('NaT', 'D')
        dt_other = np.datetime64('2000-01-01')
        td_nat = np.timedelta64('NaT', 'h')
        td_other = np.timedelta64(1, 'h')

        for op in [np.equal, np.less, np.less_equal,
                   np.greater, np.greater_equal]:
            if op(dt_nat, dt_nat):
                assert_warns(FutureWarning, op, dt_nat, dt_nat)
            if op(dt_nat, dt_other):
                assert_warns(FutureWarning, op, dt_nat, dt_other)
            if op(dt_other, dt_nat):
                assert_warns(FutureWarning, op, dt_other, dt_nat)
            if op(td_nat, td_nat):
                assert_warns(FutureWarning, op, td_nat, td_nat)
            if op(td_nat, td_other):
                assert_warns(FutureWarning, op, td_nat, td_other)
            if op(td_other, td_nat):
                assert_warns(FutureWarning, op, td_other, td_nat)

        assert_warns(FutureWarning, np.not_equal, dt_nat, dt_nat)
        assert_(np.not_equal(dt_nat, dt_other))
        assert_(np.not_equal(dt_other, dt_nat))
        assert_warns(FutureWarning, np.not_equal, td_nat, td_nat)
        assert_(np.not_equal(td_nat, td_other))
        assert_(np.not_equal(td_other, td_nat))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_result_values(self):
        for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
            for row in _ndat:
                with warnings.catch_warnings(record=True):
                    warnings.simplefilter('always')
                    ind = f(row)
                    val = row[ind]
                    # comparing with NaN is tricky as the result
                    # is always false except for NaN != NaN
                    assert_(not np.isnan(val))
                    assert_(not fcmp(val, row).any())
                    assert_(not np.equal(val, row[:ind]).any())
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic_ufuncs(self):
        # Test various functions such as sin, cos.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.cos(x), cos(xm))
        assert_equal(np.cosh(x), cosh(xm))
        assert_equal(np.sin(x), sin(xm))
        assert_equal(np.sinh(x), sinh(xm))
        assert_equal(np.tan(x), tan(xm))
        assert_equal(np.tanh(x), tanh(xm))
        assert_equal(np.sqrt(abs(x)), sqrt(xm))
        assert_equal(np.log(abs(x)), log(xm))
        assert_equal(np.log10(abs(x)), log10(xm))
        assert_equal(np.exp(x), exp(xm))
        assert_equal(np.arcsin(z), arcsin(zm))
        assert_equal(np.arccos(z), arccos(zm))
        assert_equal(np.arctan(z), arctan(zm))
        assert_equal(np.arctan2(x, y), arctan2(xm, ym))
        assert_equal(np.absolute(x), absolute(xm))
        assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
        assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
        assert_equal(np.equal(x, y), equal(xm, ym))
        assert_equal(np.not_equal(x, y), not_equal(xm, ym))
        assert_equal(np.less(x, y), less(xm, ym))
        assert_equal(np.greater(x, y), greater(xm, ym))
        assert_equal(np.less_equal(x, y), less_equal(xm, ym))
        assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
        assert_equal(np.conjugate(x), conjugate(xm))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_masked_where_condition(self):
        # Tests masking functions.
        x = array([1., 2., 3., 4., 5.])
        x[2] = masked
        assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2))
        assert_equal(masked_where(greater_equal(x, 2), x),
                     masked_greater_equal(x, 2))
        assert_equal(masked_where(less(x, 2), x), masked_less(x, 2))
        assert_equal(masked_where(less_equal(x, 2), x),
                     masked_less_equal(x, 2))
        assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
        assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2))
        assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
        assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
                     [99, 99, 3, 4, 5])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testUfuncs1(self):
        # Test various functions such as sin, cos.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
        self.assertTrue(eq(np.cos(x), cos(xm)))
        self.assertTrue(eq(np.cosh(x), cosh(xm)))
        self.assertTrue(eq(np.sin(x), sin(xm)))
        self.assertTrue(eq(np.sinh(x), sinh(xm)))
        self.assertTrue(eq(np.tan(x), tan(xm)))
        self.assertTrue(eq(np.tanh(x), tanh(xm)))
        with np.errstate(divide='ignore', invalid='ignore'):
            self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
            self.assertTrue(eq(np.log(abs(x)), log(xm)))
            self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
        self.assertTrue(eq(np.exp(x), exp(xm)))
        self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
        self.assertTrue(eq(np.arccos(z), arccos(zm)))
        self.assertTrue(eq(np.arctan(z), arctan(zm)))
        self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
        self.assertTrue(eq(np.absolute(x), absolute(xm)))
        self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
        self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
        self.assertTrue(eq(np.less(x, y), less(xm, ym)))
        self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
        self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
        self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
        self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
        self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
        self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
        self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
        self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testMinMax2(self):
        # Test of minumum, maximum.
        assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]))
        assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]))
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_(eq(minimum(x, y), where(less(x, y), x, y)))
        assert_(eq(maximum(x, y), where(greater(x, y), x, y)))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)