Python numpy 模块,asmatrix() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.asmatrix()

项目:mpnum    作者:dseuss    | 项目源码 | 文件源码
def test_approximate_range_finder(rows, cols, rank, dtype, piter_normalizer, rgen):
    # only guaranteed to work for low-rank matrices
    if rank is 'fullrank':
        return

    rf_size = rank + 10
    assert min(rows, cols) > rf_size

    A = mptest.random_lowrank(rows, cols, rank, randstate=rgen, dtype=dtype)
    A /= np.linalg.norm(A, ord='fro')
    Q = em.approx_range_finder(A, rf_size, 7, randstate=rgen,
                               piter_normalizer=piter_normalizer)

    Q = np.asmatrix(Q)
    assert Q.shape == (rows, rf_size)
    normdist = np.linalg.norm(A - Q * (Q.H * A), ord='fro')
    assert normdist < 1e-7
项目:AND4NMF    作者:PrincetonML    | 项目源码 | 文件源码
def train(self):
        eps = 1e-10
        for i in range(self.epo):
            if i % 1 == 0:
                self.show_error()

            A = np.asarray(self.A.copy())
            Z = np.asarray(self.Z.copy())
            start = time.time()
            Z1 = np.multiply(Z, np.asarray(self.A.transpose() * self.Y))
            Z = np.divide(Z1, eps + np.asarray(self.A.transpose() * self.A * self.Z)) # + eps to avoid divided by 0
            self.Z = np.asmatrix(Z)
            A1 = np.multiply(A, np.asarray( self.Y * self.Z.transpose()))
            A = np.divide(A1, eps + np.asarray( self.A * self.Z * self.Z.transpose()))
            end = time.time()
            self.A = np.asmatrix(A)
            self.time = self.time + end - start
项目:Word2Vec    作者:hashbangCoder    | 项目源码 | 文件源码
def extractVecs():
## Pandas read_csv breaks while reading text file. Very buggy. Manually read each line.
    t0 = time.clock()
    with open(options.pretrained,'r') as f:
            content = [item.rstrip().lower().split(' ') for item in f.readlines()]

    globalWordFile = np.asmatrix(content,dtype = str)
    globalWordTokens = globalWordFile[:,0].astype('str')
    globalWordVectors = globalWordFile[:,1:].astype(np.float)
    globalWordFile = None

    ### Pandas read_csv implementation - Broken
    #globalWordFile = pd.read_csv(options.pretrained,delimiter = ' ', header = None)
    #globalWordVectors = globalWordFile.ix[:,1:]
    #globalWordTokens = globalWordFile.ix[:,0]
    #globalWordFile = None
    print time.clock() - t0, " seconds taken for loading and slicing gLoVe Word Vectors"
    return globalWordTokens,globalWordVectors
项目:crypto    作者:daljeetv    | 项目源码 | 文件源码
def random_portfolio(returns):
    def rand_weights(n):
        # Produces n random weights that sum to 1
        k = np.random.rand(n)
        return k / sum(k)

    '''
    Returns the mean and standard deviation of returns for a random portfolio
    '''
    p = np.asmatrix(np.mean(returns, axis=1))
    w = np.asmatrix(rand_weights(returns.shape[0]))
    C = np.asmatrix(np.cov(returns))

    mu = w * p.T
    sigma = np.sqrt(w * C * w.T)

    # This recursion reduces outliers to keep plots pretty
    if sigma > 2:
        return random_portfolio(returns)
    return mu, sigma
项目:adversarial-variational-autoencoders    作者:lipiji    | 项目源码 | 文件源码
def shared_mnist():
    def shared_dataset(data_xy):
        data_x, data_y = data_xy
        np_y = np.zeros((len(data_y), 10), dtype=theano.config.floatX)
        for i in xrange(len(data_y)):
            np_y[i, data_y[i]] = 1

        shared_x = theano.shared(np.asmatrix(data_x, dtype=theano.config.floatX))
        shared_y = theano.shared(np.asmatrix(np_y, dtype=theano.config.floatX))
        return shared_x, shared_y
    f = gzip.open(curr_path + "/data/mnist.pkl.gz", "rb")
    train_set, valid_set, test_set = cPickle.load(f)
    f.close()

    test_set_x, test_set_y = shared_dataset(test_set)
    valid_set_x, valid_set_y = shared_dataset(valid_set)
    train_set_x, train_set_y = shared_dataset(train_set)

    return [train_set_x, train_set_y], [valid_set_x, valid_set_y], [test_set_x, test_set_y]
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;'
                            '-0.9 -2.0;'
                            '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    horz_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = tf.initialize_all_variables()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;'
                            ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    vert_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = tf.initialize_all_variables()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;'
                            '-0.9 -2.0;'
                            '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    horz_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = tf.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;'
                            ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    vert_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = tf.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def fkine(self, stance, unit='rad', apply_stance=False, actor_list=None, timer=None):
        """
        Calculates forward kinematics for a list of joint angles.
        :param stance: stance is list of joint angles.
        :param unit: unit of input angles.
        :param apply_stance: If True, then applied tp actor_list.
        :param actor_list: Passed to apply transformations computed by fkine.
        :param timer: internal use only (for animation).
        :return: homogeneous transformation matrix.
        """
        if type(stance) is np.ndarray:
            stance = np.asmatrix(stance)
        if unit == 'deg':
            stance = stance * pi / 180
        if timer is None:
            timer = 0
        t = self.base
        for i in range(self.length):
            if apply_stance:
                actor_list[i].SetUserMatrix(transforms.np2vtk(t))
            t = t * self.links[i].A(stance[timer, i])
        t = t * self.tool
        if apply_stance:
            actor_list[self.length].SetUserMatrix(transforms.np2vtk(t))
        return t
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def rotx(theta, unit="rad"):
    """
    ROTX gives rotation about X axis

    :param theta: angle for rotation matrix
    :param unit: unit of input passed. 'rad' or 'deg'
    :return: rotation matrix

    rotx(THETA) is an SO(3) rotation matrix (3x3) representing a rotation
    of THETA radians about the x-axis
    rotx(THETA, "deg") as above but THETA is in degrees
    """
    check_args.unit_check(unit)
    if unit == "deg":
        theta = theta * math.pi / 180
    ct = math.cos(theta)
    st = math.sin(theta)
    mat = np.matrix([[1, 0, 0], [0, ct, -st], [0, st, ct]])
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def roty(theta, unit="rad"):
    """
    ROTY Rotation about Y axis

    :param theta: angle for rotation matrix
    :param unit: unit of input passed. 'rad' or 'deg'
    :return: rotation matrix

    roty(THETA) is an SO(3) rotation matrix (3x3) representing a rotation
    of THETA radians about the y-axis
    roty(THETA, "deg") as above but THETA is in degrees
    """
    check_args.unit_check(unit)
    if unit == "deg":
        theta = theta * math.pi / 180
    ct = math.cos(theta)
    st = math.sin(theta)
    mat = np.matrix([[ct, 0, st], [0, 1, 0], [-st, 0, ct]])
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def trotx(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTX Rotation about X axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotx(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the x-axis.
    trotx(THETA, 'deg') as above but THETA is in degrees
    trotx(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotx(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def troty(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTY Rotation about Y axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    troty(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the y-axis.
    troty(THETA, 'deg') as above but THETA is in degrees
    troty(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = roty(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
项目:robopy    作者:adityadua24    | 项目源码 | 文件源码
def trotz(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTZ Rotation about Z axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotz(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the z-axis.
    trotz(THETA, 'deg') as above but THETA is in degrees
    trotz(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotz(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
项目:Networks    作者:dencesun    | 项目源码 | 文件源码
def m8_motif(A):
    B, U, G = directional_breakup(A)
    W = np.zeros(G.shape)
    W = np.asmatrix(W)
    N = G.shape[0]
    # print('U\n', U)
    for i in range(N):
        J = np.nonzero(U[i, :])[1]
        # print(J)
        for j1 in range(len(J)):
            for j2 in range(j1 + 1, len(J)):
                k1 = J[j1]
                k2 = J[j2]
                # print(k1, k2)
                if A[k1, k2] == 0 and A[k2, k1] == 0:
                    W[i, k1] = W[i, k1] + 1
                    W[i, k2] = W[i, k2] + 1
                    W[k1, k2] = W[k1, k2] + 1

    W = W + W.T

    # matlab use W = sparse(W + W')
    # I think it is properly use W = W+W'T

    return W
项目:simple-linear-regression    作者:williamd4112    | 项目源码 | 文件源码
def __init__(self, shape, optimizer='seq', lr=0.01, clip_min=0, clip_max=1081, is_round=True):
        '''
        param shape: phi_x shape
        '''
        self.optimizer = optimizer
        self.lr = lr
        self.shape = shape
        self.learning_rate_decay = 0.99

        # w is Mx1 column vector
        self.w = np.asmatrix(self._init_weight(shape + (1,)))

        # Setup model
        self._setup_model()

        # Setup optimizer (vary from models)
        self._setup_optimizer()
项目:Python    作者:TheAlgorithms    | 项目源码 | 文件源码
def back_propagation(self,gradient):

        gradient_activation = self.cal_gradient() # i * i ?
        gradient = np.asmatrix(np.dot(gradient.T,gradient_activation))

        self._gradient_weight = np.asmatrix(self.xdata)
        self._gradient_bias = -1
        self._gradient_x = self.weight

        self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T)
        self.gradient_bias = gradient * self._gradient_bias
        self.gradient = np.dot(gradient,self._gradient_x).T
        # ----------------------upgrade
        # -----------the Negative gradient direction --------
        self.weight = self.weight - self.learn_rate * self.gradient_weight
        self.bias = self.bias - self.learn_rate * self.gradient_bias.T

        return self.gradient
项目:Python    作者:TheAlgorithms    | 项目源码 | 文件源码
def pooling(self,featuremaps,size_pooling,type='average_pool'):
        #pooling process
        size_map = len(featuremaps[0])
        size_pooled = int(size_map/size_pooling)
        featuremap_pooled = []
        for i_map in range(len(featuremaps)):
            map = featuremaps[i_map]
            map_pooled = []
            for i_focus in range(0,size_map,size_pooling):
                for j_focus in range(0, size_map, size_pooling):
                    focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
                    if type == 'average_pool':
                        #average pooling
                        map_pooled.append(np.average(focus))
                    elif type == 'max_pooling':
                        #max pooling
                        map_pooled.append(np.max(focus))
            map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
            featuremap_pooled.append(map_pooled)
        return featuremap_pooled
项目:kafe    作者:dsavoiu    | 项目源码 | 文件源码
def make_symmetric_lower(mat):
    '''
    Copies the matrix entries below the main diagonal to the upper triangle
    half of the matrix. Leaves the diagonal unchanged. Returns a `NumPy` matrix
    object.

    **mat** : `numpy.matrix`
        A lower diagonal matrix.

    returns : `numpy.matrix`
        The lower triangle matrix.
    '''

    # extract lower triangle from matrix (including diagonal)
    tmp_mat = np.tril(mat)

    # if the matrix given wasn't a lower triangle matrix, raise an error
    if (mat != tmp_mat).all():
        raise Exception('Matrix to symmetrize is not a lower diagonal matrix.')

    # add its transpose to itself, zeroing the diagonal to avoid doubling
    tmp_mat += np.triu(tmp_mat.transpose(), 1)

    return np.asmatrix(tmp_mat)
项目:kafe    作者:dsavoiu    | 项目源码 | 文件源码
def get_error_matrix(self, correlation=False):  # VIEWED TODO
        '''Retrieves the parameter error matrix from iminuit.

        correlation : boolean (optional, default ``False``)
            If ``True``, return correlation matrix, else return
            covariance matrix.

        return : `numpy.matrix`
        '''

        # get parameter covariance matrix from iminuit

        # FIX_UPSTREAM we need skip_fixed=False, but this is unsupported
        #_mat = self.__iminuit.matrix(correlation, skip_fixed=False)

        # ... so use skip_fixed=False instead and fill in the gaps
        _mat = self.__iminuit.matrix(correlation, skip_fixed=True)
        _mat = np.asmatrix(_mat)  # reshape into numpy matrix
        _mat = self._fill_in_zeroes_for_fixed(_mat)  # fill in fixed par 'gaps'

        return _mat
项目:MasterDegree    作者:Waszker    | 项目源码 | 文件源码
def _mvee(self, points, tolerance):
        # Taken from: http://stackoverflow.com/questions/14016898/port-matlab-bounding-ellipsoid-code-to-python
        points = np.asmatrix(points)
        n, d = points.shape
        q = np.column_stack((points, np.ones(n))).T
        err = tolerance + 1.0
        u = np.ones(n) / n
        while err > tolerance:
            # assert u.sum() == 1 # invariant
            x = q * np.diag(u) * q.T
            m = np.diag(q.T * la.inv(x) * q)
            jdx = np.argmax(m)
            step_size = (m[jdx] - d - 1.0) / ((d + 1) * (m[jdx] - 1.0))
            new_u = (1 - step_size) * u
            new_u[jdx] += step_size
            err = la.norm(new_u - u)
            u = new_u
        c = u * points
        a = la.inv(points.T * np.diag(u) * points - c.T * c) / d
        return np.asarray(a), np.squeeze(np.asarray(c))
项目:focus_of_attention-RNN    作者:luochuwei    | 项目源码 | 文件源码
def word_sequence(f_path, batch_size = 1, i2w, w2i):
    test_seqs = []
    lines = []
    tf = {}
    f = open(curr_path + "/" + f_path, "r")
    for line in f:
        line = line.strip('\n').lower()
        words = ['<soss>']+line_x.split()+["<eoss>"]
        lines.append(words)
    f.close()

    for i in range(0, len(lines)):
        words = lines[i]
        x = np.zeros((len(words), len(w2i)), dtype = theano.config.floatX)
        for j in range(0, len(words)):
            if words[j] in w2i:
                x[j, w2i[words[j]]] = 1
        test_seqs.append(np.asmatrix(x))

    test_data_x = batch_sequences(test_seqs, i2w, w2i, batch_size)

    return test_seqs, i2w, w2i, test_data_x
项目:toybox    作者:WesleyAC    | 项目源码 | 文件源码
def sim(A, B, time, x0, controller):
    x = np.asmatrix(x0)
    prev_y = np.dot(H, x)
    x_out = []
    x_hat_out = []
    u_out = []
    time_out = []

    for t in xrange(time):
        x_hat = x + ((np.random.random((2,1)) - 0.5) * 0.05)
        y = np.dot(H, x_hat)
        u = np.clip(controller(y, prev_y), -40, 40)
        x = np.dot(A, x) + np.dot(B, u)

        x_out.append(x)
        x_hat_out.append(x_hat)
        u_out.append(u)
        time_out.append(t*dt)

        prev_y = np.copy(y)

    return (np.asarray(time_out), np.asarray(x_out), np.asarray(x_hat_out), np.asarray(u_out))
项目:hidden_markov    作者:Red-devilz    | 项目源码 | 文件源码
def _beta_cal(self,observations,c_scale):
        # Calculate Beta maxtrix
        num_states = self.em_prob.shape[0]
        total_stages = len(observations)

        # Initialize values
        ob_ind = self.obs_map[ observations[total_stages-1] ]
        beta = np.asmatrix(np.zeros((num_states,total_stages)))

        # Handle beta base case
        beta[:,total_stages-1] = c_scale[total_stages-1]

        # Iteratively calculate beta(t) for all 't'
        for curr_t in range(total_stages-1,0,-1):
            ob_ind = self.obs_map[observations[curr_t]]
            beta[:,curr_t-1] = np.multiply( beta[:,curr_t] , self.em_prob[:,ob_ind] )
            beta[:,curr_t-1] = np.dot( self.trans_prob, beta[:,curr_t-1] )
            beta[:,curr_t-1] = np.multiply( beta[:,curr_t-1] , c_scale[curr_t -1 ] )

        # return the computed beta
        return beta
项目:hidden_markov    作者:Red-devilz    | 项目源码 | 文件源码
def _train_emission(self,observations):
        # Initialize matrix
        new_em_prob = np.asmatrix(np.zeros(self.em_prob.shape))

        # Indexing position of unique observations in the observation sequence    
        selectCols=[]
        for i in range(self.em_prob.shape[1]):
            selectCols.append([])
        for i in range(len(observations)):
            selectCols[ self.obs_map[observations[i]] ].append(i)

        # Calculate delta matrix
        delta = self._forward_backward(observations)

        # Sum the rowise of delta matrix, which gives probability of a particular state
        totalProb = np.sum(delta,axis=1)

        # Re-estimate emission matrix
        for i in range(self.em_prob.shape[0]):
            for j in range(self.em_prob.shape[1]):
                new_em_prob[i,j] = np.sum(delta[i,selectCols[j]])/totalProb[i]
        return new_em_prob
项目:hidden_markov    作者:Red-devilz    | 项目源码 | 文件源码
def _train_transition(self,observations):
        # Initialize transition matrix
        new_trans_prob = np.asmatrix(np.zeros(self.trans_prob.shape))

        # Find alpha and beta
        alpha,c = self._alpha_cal(observations)
        beta = self._beta_cal(observations,c)

        # calculate transition matrix values
        for t in range(len(observations)-1):
            temp1 = np.multiply(alpha[:,t],beta[:,t+1].transpose())
            temp1 = np.multiply(self.trans_prob,temp1)
            new_trans_prob = new_trans_prob + np.multiply(temp1,self.em_prob[:,self.obs_map[observations[t+1]]].transpose())

        # Normalize values so that sum of probabilities is 1
        for i in range(self.trans_prob.shape[0]):
            new_trans_prob[i,:] = new_trans_prob[i,:]/np.sum(new_trans_prob[i,:])

        return new_trans_prob
项目:DualFisheye    作者:ooterness    | 项目源码 | 文件源码
def add_pixels(self, uv_px, img1d, weight=None):
        # Lookup row & column for each in-bounds coordinate.
        mask = self.get_mask(uv_px)
        xx = uv_px[0,mask]
        yy = uv_px[1,mask]
        # Update matrix according to assigned weight.
        if weight is None:
            img1d[mask] = self.img[yy,xx]
        elif np.isscalar(weight):
            img1d[mask] += self.img[yy,xx] * weight
        else:
            w1 = np.asmatrix(weight, dtype='float32')
            w3 = w1.transpose() * np.ones((1,3))
            img1d[mask] += np.multiply(self.img[yy,xx], w3[mask])


# A panorama image made from several FisheyeImage sources.
# TODO: Add support for supersampled anti-aliasing filters.
项目:sfa-numpy    作者:spatialaudio    | 项目源码 | 文件源码
def coherence_of_columns(A):
    """Mutual coherence of columns of A.

    Parameters
    ----------
    A : array_like
        Input matrix.
    p : int, optional
        p-th norm.

    Returns
    -------
    array_like
        Mutual coherence of columns of A.
    """
    A = np.asmatrix(A)
    _, N = A.shape
    A = A * np.asmatrix(np.diag(1/norm_of_columns(A)))
    Gram_A = A.H*A
    for j in range(N):
        Gram_A[j, j] = 0
    return np.max(np.abs(Gram_A))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;' '-0.9 -2.0;' '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = constant_op.constant(
        image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
    horz_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;' ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = constant_op.constant(
        image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
    vert_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
项目:qcqp    作者:cvxgrp    | 项目源码 | 文件源码
def improve_admm(x0, prob, *args, **kwargs):
    num_iters = kwargs.get('num_iters', 1000)
    viol_lim = kwargs.get('viol_lim', 1e4)
    tol = kwargs.get('tol', 1e-2)
    rho = kwargs.get('rho', None)
    phase1 = kwargs.get('phase1', True)

    if rho is not None:
        lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
        lmb_min = np.min(lmb0)
        if lmb_min + prob.m*rho < 0:
            logging.error("rho parameter is too small, z-update not convex.")
            logging.error("Minimum possible value of rho: %.3f\n", -lmb_min/prob.m)
            logging.error("Given value of rho: %.3f\n", rho)
            raise Exception("rho parameter is too small, need at least %.3f." % rho)

    # TODO: find a reasonable auto parameter
    if rho is None:
        lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
        lmb_min = np.min(lmb0)
        lmb_max = np.max(lmb0)
        if lmb_min < 0: rho = 2.*(1.-lmb_min)/prob.m
        else: rho = 1./prob.m
        rho *= 50.
        logging.warning("Automatically setting rho to %.3f", rho)

    if phase1:
        x1 = prob.better(x0, admm_phase1(x0, prob, tol, num_iters))
    else:
        x1 = x0
    x2 = prob.better(x1, admm_phase2(x1, prob, rho, tol, num_iters, viol_lim))
    return x2
项目:hidi    作者:VEVO    | 项目源码 | 文件源码
def dot(X, Y):
    if sparse.isspmatrix(X) and sparse.isspmatrix(Y):
        return X * Y
    elif sparse.isspmatrix(X) or sparse.isspmatrix(Y):
        return sparse.csr_matrix(X) * sparse.csr_matrix(Y)

    return np.asmatrix(X) * np.asmatrix(Y)
项目:deep-prior    作者:moberweger    | 项目源码 | 文件源码
def transformPoint2D(pt, M):
    """
    Transform point in 2D coordinates
    :param pt: point coordinates
    :param M: transformation matrix
    :return: transformed point
    """
    pt2 = numpy.asmatrix(M.reshape((3, 3))) * numpy.matrix([pt[0], pt[1], 1]).T
    return numpy.array([pt2[0] / pt2[2], pt2[1] / pt2[2]])
项目:deep-prior    作者:moberweger    | 项目源码 | 文件源码
def transformPoint3D(pt, M):
    """
    Transform point in 3D coordinates
    :param pt: point coordinates
    :param M: transformation matrix
    :return: transformed point
    """
    pt3 = numpy.asmatrix(M.reshape((4, 4))) * numpy.matrix([pt[0], pt[1], pt[2], 1]).T
    return numpy.array([pt3[0] / pt3[3], pt3[1] / pt3[3], pt3[2] / pt3[3]])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_matrix_fancy(self):
        # The matrix class messes with the shape. While this is always
        # weird (getitem is not used, it does not have setitem nor knows
        # about fancy indexing), this tests gh-3110
        m = np.matrix([[1, 2], [3, 4]])

        assert_(isinstance(m[[0,1,0], :], np.matrix))

        # gh-3110. Note the transpose currently because matrices do *not*
        # support dimension fixing for fancy indexing correctly.
        x = np.asmatrix(np.arange(50).reshape(5,10))
        assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def eye(n,M=None, k=0, dtype=float):
    """
    Return a matrix with ones on the diagonal and zeros elsewhere.

    Parameters
    ----------
    n : int
        Number of rows in the output.
    M : int, optional
        Number of columns in the output, defaults to `n`.
    k : int, optional
        Index of the diagonal: 0 refers to the main diagonal,
        a positive value refers to an upper diagonal,
        and a negative value to a lower diagonal.
    dtype : dtype, optional
        Data-type of the returned matrix.

    Returns
    -------
    I : matrix
        A `n` x `M` matrix where all elements are equal to zero,
        except for the `k`-th diagonal, whose values are equal to one.

    See Also
    --------
    numpy.eye : Equivalent array function.
    identity : Square identity matrix.

    Examples
    --------
    >>> import numpy.matlib
    >>> np.matlib.eye(3, k=1, dtype=float)
    matrix([[ 0.,  1.,  0.],
            [ 0.,  0.,  1.],
            [ 0.,  0.,  0.]])

    """
    return asmatrix(np.eye(n, M, k, dtype))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_matrix_std_argmax(self,level=rlevel):
        # Ticket #83
        x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
        self.assertEqual(x.std().shape, ())
        self.assertEqual(x.argmax().shape, ())
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_asmatrix(self):
        A = np.arange(100).reshape(10, 10)
        mA = asmatrix(A)
        A[0, 0] = -10
        assert_(A[0, 0] == mA[0, 0])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        x = asmatrix(np.zeros((3, 2), float))
        y = np.zeros((3, 1), float)
        y[:, 0] = [0.8, 0.2, 0.3]
        x[:, 1] = y > 0.5
        assert_equal(x, [[0, 1], [0, 0], [0, 0]])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_scalar_indexing(self):
        x = asmatrix(np.zeros((3, 2), float))
        assert_equal(x[0, 0], x[0][0])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_row_column_indexing(self):
        x = asmatrix(np.eye(2))
        assert_array_equal(x[0,:], [[1, 0]])
        assert_array_equal(x[1,:], [[0, 1]])
        assert_array_equal(x[:, 0], [[1], [0]])
        assert_array_equal(x[:, 1], [[0], [1]])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_list_indexing(self):
        A = np.arange(6)
        A.shape = (3, 2)
        x = asmatrix(A)
        assert_array_equal(x[:, [1, 0]], x[:, ::-1])
        assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def lms(x1: numpy.array, x2: numpy.array, N: int):
    # Verify argument shape.
    s1, s2 = x1.shape, x2.shape
    if len(s1) != 1 or len(s2) != 1 or s1[0] != s2[0]:
        raise Exception("Argument shape invalid, in 'lms' function")
    l = s1[0]

    # Coefficient matrix
    W = numpy.mat(numpy.zeros([1, 2 * N + 1]))
    # Coefficient (time) matrix
    Wt = numpy.mat(numpy.zeros([l, 2 * N + 1]))
    # Feedback (time) matrix
    y = numpy.mat(numpy.zeros([l, 1]))
    # Error (time) matrix
    e = numpy.mat(numpy.zeros([l, 1]))

    # Traverse channel data
    for i in range(N, l-N):
        x1_vec = numpy.asmatrix(x1[i-N:i+N+1])
        y[i] = x1_vec * numpy.transpose(W)
        e[i] = x2[i] - y[i]
        W += mu * e[i] * x1_vec
        Wt[i] = W

    # Find the coefficient matrix which has max maximum.
    Wt_maxs = numpy.max(Wt, axis=1)
    row_idx = numpy.argmax(Wt_maxs)
    max_W = Wt[row_idx]
    delay_count = numpy.argmax(max_W) - N

    plot(l, x1, x2, y, e)

    return delay_count
项目:Chalutier    作者:LaBaleineFr    | 项目源码 | 文件源码
def evaluate_portefolio(wei, returns_vec):
    """ Given a repartition, compute expected return and risk from a portefolio

    :param wei: Weights for each currency
    :type wei: ndarray of float
    :return: expected return and risk
    :rtype: (float, float)
    """
    p = np.asmatrix(np.mean(returns_vec, axis=1))
    w = np.asmatrix(wei)
    c = np.asmatrix(np.cov(returns_vec))
    mu = w * p.T
    sigma = np.sqrt(w * c * w.T)
    return mu, sigma
项目:Least-Squared-Error-Based-FIR-Filters    作者:fourier-being    | 项目源码 | 文件源码
def lpfls2notch(N,wp,ws,wn1,wn2,W):
    M = (N-1)/2
    nq = np.arange(0,2*M+1)
    nb = np.arange(0,M+1)
    q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
    b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
    q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
    b = np.asmatrix(b)
    b = b.transpose()

    Q1 = ln.toeplitz(q[0:M+1])
    Q2 = ln.hankel(q[0:M+1],q[M:])
    Q = Q1+Q2

    G1 = np.cos(wn1*nb)
    G2 = np.cos(wn2*nb)
    G = np.matrix([G1,G2])

    d = np.array([0,0])
    d = np.asmatrix(d)
    d = d.transpose()

    c = np.asmatrix(ln.solve(Q,b))

    mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)

    a = c - ln.solve(Q,G.transpose()*mu)
    h = np.zeros(N)
    for i in nb:
        h[i] = 0.5*a[M-i]
        h[N-1-i] = h[i]
    h[M] = 2*h[M]
    hmax = max(np.absolute(h))
    for i in nq:
        h[i] = (8191/hmax)*h[i]
    return h
项目:Least-Squared-Error-Based-FIR-Filters    作者:fourier-being    | 项目源码 | 文件源码
def lpfls1notch(N,wp,ws,wn1,W):
    M = (N-1)/2
    nq = np.arange(0,2*M+1)
    nb = np.arange(0,M+1)
    q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
    b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
    q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
    b = np.asmatrix(b)
    b = b.transpose()

    Q1 = ln.toeplitz(q[0:M+1])
    Q2 = ln.hankel(q[0:M+1],q[M:])
    Q = Q1+Q2

    G1 = np.cos(wn1*nb)
    G = np.matrix([G1])

    d = np.array([0])
    d = np.asmatrix(d)

    c = np.asmatrix(ln.solve(Q,b))

    mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)

    a = c - ln.solve(Q,G.transpose()*mu)
    h = np.zeros(N)
    for i in nb:
        h[i] = 0.5*a[M-i]
        h[N-1-i] = h[i]
    h[M] = 2*h[M]
    hmax = max(np.absolute(h))
    for i in nq:
        h[i] = (8191/hmax)*h[i]
    return h
项目:AND4NMF    作者:PrincetonML    | 项目源码 | 文件源码
def decoding(self):
        D = self.A_true.shape[1]
        num_doc = self.Y.shape[1]
        Z = np.asmatrix(np.zeros((D, num_doc)))
        A = np.asarray(self.A.copy())
        Y = np.asarray(self.Y.copy())
        for i in range(num_doc):
            Yi = np.array(Y[:, i]).flatten()
            t, bla = nnls(A, Yi)
            Z[:, i] = np.asmatrix(t).transpose()
        Z = np.asmatrix(Z)
        return Z
项目:AND4NMF    作者:PrincetonML    | 项目源码 | 文件源码
def decoding(self):
        D = self.A_true.shape[1]
        num_doc = self.Y.shape[1]
        Z = np.asmatrix(np.zeros((D, num_doc)))
        for i in range(num_doc):
            Yi = np.array(self.Y[:, i].copy()).flatten()
            A = np.asarray(self.A.copy())
            t, bla = nnls(A, Yi)
            Z[:, i] = np.asmatrix(t).transpose()
        Z = np.asmatrix(Z)
        return Z
项目:AND4NMF    作者:PrincetonML    | 项目源码 | 文件源码
def train(self):
        D = self.A_true.shape[1]
        for i in range(20):
            self.show_error()

            start = time.time()
            prior = self.sparsity / np.float(self.A_true.shape[1])
            lda = LDA(n_topics=D, random_state=0, doc_topic_prior = prior, max_iter=i)
            lda.fit(self.Y.transpose())
            end = time.time()
            self.time = end - start
            self.A = np.asmatrix(lda.components_.transpose())