Python numpy 模块,int_() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用numpy.int_()

项目:diy_driverless_car_ROS    作者:wilselby    | 项目源码 | 文件源码
def render_lane(image, corners, ploty, fitx, ):

    _,  src,  dst = perspective_transform(image, corners)
    Minv = cv2.getPerspectiveTransform(dst, src)

    # Create an image to draw the lines on
    warp_zero = np.zeros_like(image[:,:,0]).astype(np.uint8)
    color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

    # Recast the x and y points into usable format for cv2.fillPoly()
    pts = np.vstack((fitx,ploty)).astype(np.int32).T

    # Draw the lane onto the warped blank image
    #plt.plot(left_fitx, ploty, color='yellow')
    cv2.polylines(color_warp,  [pts],  False,  (0, 255, 0),  10)
    #cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))

    # Warp the blank back to original image space using inverse perspective matrix (Minv)
    newwarp = cv2.warpPerspective(color_warp, Minv, (image.shape[1], image.shape[0])) 

    # Combine the result with the original image
    result = cv2.addWeighted(image, 1, newwarp, 0.3, 0)

    return result
项目:table-compositor    作者:InvestmentSystems    | 项目源码 | 文件源码
def df_type_to_str(i):
    '''
    Convert into simple datatypes from pandas/numpy types
    '''
    if isinstance(i, np.bool_):
        return bool(i)
    if isinstance(i, np.int_):
        return int(i)
    if isinstance(i, np.float):
        if np.isnan(i):
            return 'NaN'
        elif np.isinf(i):
            return str(i)
        return float(i)
    if isinstance(i, np.uint):
        return int(i)
    if type(i) == bytes:
        return i.decode('UTF-8')
    if isinstance(i, (tuple, list)):
        return str(i)
    if i is pd.NaT:  # not identified as a float null
        return 'NaN'
    return str(i)
项目:warhexer    作者:sudasana    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:warhexer    作者:sudasana    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:wikilinks    作者:trovdimi    | 项目源码 | 文件源码
def pickle_transitions_matrix_data():
    transitions = pickle.load( open( "/ssd/ddimitrov/pickle/transitions", "rb" ) )
    vocab = pickle.load( open( "/ssd/ddimitrov/pickle/vocab", "rb" ) )

    i_indices = array.array(str("l"))
    j_indices = array.array(str("l"))
    values = array.array(str("d"))

    for s, targets in transitions.iteritems():
        for t, v in targets.iteritems():
            i_indices.append(vocab[s])
            j_indices.append(vocab[t])
            values.append(v)

    i_indices = np.frombuffer(i_indices, dtype=np.int_)
    j_indices = np.frombuffer(j_indices, dtype=np.int_)
    values = np.frombuffer(values, dtype=np.float64)
    transition_matrix=[i_indices,j_indices,values]
    pickle.dump(transition_matrix, open("/ssd/ddimitrov/pickle/transition_matrix", "wb"), protocol=pickle.HIGHEST_PROTOCOL)
    print "transition_matrix"
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def get_fra_num_by_dose( exp_dose, exp_time, att=1, dead_time =2 ):
    '''
    Calculate the frame number to be correlated by giving a X-ray exposure dose

    Paramters:
        exp_dose: a list, the exposed dose, e.g., in unit of exp_time(ms)*N(fram num)*att( attenuation)
        exp_time: float, the exposure time for a xpcs time sereies
        dead_time: dead time for the fast shutter reponse time, CHX = 2ms
    Return:
        noframes: the frame number to be correlated, exp_dose/( exp_time + dead_time )  
    e.g.,

    no_dose_fra = get_fra_num_by_dose(  exp_dose = [ 3.34* 20, 3.34*50, 3.34*100, 3.34*502, 3.34*505 ],
                                   exp_time = 1.34, dead_time = 2)

    --> no_dose_fra  will be array([ 20,  50, 100, 502, 504])     
    '''
    return np.int_(    np.array( exp_dose )/( exp_time + dead_time)/ att )
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def create_time_slice( N, slice_num, slice_width, edges=None ):
    '''create a ROI time regions '''
    if edges is not None:
        time_edge = edges
    else:
        if slice_num==1:
            time_edge =  [ [0,N] ]
        else:
            tstep = N // slice_num
            te = np.arange( 0, slice_num +1   ) * tstep
            tc = np.int_( (te[:-1] + te[1:])/2 )[1:-1]
            if slice_width%2:
                sw = slice_width//2 +1
                time_edge =   [ [0,slice_width],  ] + [  [s-sw+1,s+sw] for s in tc  ] +  [ [N-slice_width,N]]
            else:
                sw= slice_width//2
                time_edge =   [ [0,slice_width],  ] + [  [s-sw,s+sw] for s in tc  ] +  [ [N-slice_width,N]]



    return np.array(time_edge)
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def get_his_std_qi( data_pixel_qi, max_cts=None):
    '''
    YG. Dev 16, 2016
    Calculate the photon histogram for one q by giving 
    Parameters:
        data_pixel_qi: one-D array, for the photon counts
        max_cts: for bin max, bin will be [0,1,2,..., max_cts]
    Return:
        bins
        his
        std    
    '''
    if max_cts is None:
        max_cts = np.max( data_pixel_qi ) +1
    bins = np.arange(max_cts)
    dqn, dqm = data_pixel_qi.shape
    #get histogram here
    H = np.apply_along_axis(np.bincount, 1, np.int_(data_pixel_qi), minlength= max_cts )/dqm
    #do average for different frame
    his = np.average( H, axis=0)
    std = np.std( H, axis=0 )
    #cal average photon counts
    kmean= np.average(data_pixel_qi )
    return bins, his, std, kmean
项目:incubator-airflow-old    作者:apache    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:df-style-worldgen    作者:Dozed12    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:df-style-worldgen    作者:Dozed12    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:pytorch_divcolor    作者:aditya12agd5    | 项目源码 | 文件源码
def __tiledoutput__(self, net_op, batch_size, num_cols=8, net_recon_const=None):

    num_rows = np.int_(np.ceil((batch_size*1.)/num_cols))
    out_img = np.zeros((num_rows*self.outshape[0], num_cols*self.outshape[1], 3), dtype='uint8')
    img_lab = np.zeros((self.outshape[0], self.outshape[1], 3), dtype='uint8')
    c = 0
    r = 0

    for i in range(batch_size):
      if(i % num_cols == 0 and i > 0):
        r = r + 1
        c = 0
      img_lab[..., 0] = self.__decodeimg__(net_recon_const[i, 0, :, :].reshape(\
        self.outshape[0], self.outshape[1]))
      img_lab[..., 1] = self.__decodeimg__(net_op[i, 0, :, :].reshape(\
        self.shape[0], self.shape[1]))
      img_lab[..., 2] = self.__decodeimg__(net_op[i, 1, :, :].reshape(\
        self.shape[0], self.shape[1]))
      img_rgb = cv2.cvtColor(img_lab, cv2.COLOR_LAB2BGR)
      out_img[r*self.outshape[0]:(r+1)*self.outshape[0], \
        c*self.outshape[1]:(c+1)*self.outshape[1], ...] = img_rgb
      c = c+1

    return out_img
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_constructors():
    from pybind11_tests.array import default_constructors, converting_constructors

    defaults = default_constructors()
    for a in defaults.values():
        assert a.size == 0
    assert defaults["array"].dtype == np.array([]).dtype
    assert defaults["array_t<int32>"].dtype == np.int32
    assert defaults["array_t<double>"].dtype == np.float64

    results = converting_constructors([1, 2, 3])
    for a in results.values():
        np.testing.assert_array_equal(a, [1, 2, 3])
    assert results["array"].dtype == np.int_
    assert results["array_t<int32>"].dtype == np.int32
    assert results["array_t<double>"].dtype == np.float64
项目:armcom2    作者:sudasana    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:armcom2    作者:sudasana    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def maybe_convert_indices(indices, n):
    """ if we have negative indicies, translate to postive here
    if have indicies that are out-of-bounds, raise an IndexError
    """
    if isinstance(indices, list):
        indices = np.array(indices)
        if len(indices) == 0:
            # If list is empty, np.array will return float and cause indexing
            # errors.
            return np.empty(0, dtype=np.int_)

    mask = indices < 0
    if mask.any():
        indices[mask] += n
    mask = (indices >= n) | (indices < 0)
    if mask.any():
        raise IndexError("indices are out-of-bounds")
    return indices
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_empty_fancy(self):
        empty_farr = np.array([], dtype=np.float_)
        empty_iarr = np.array([], dtype=np.int_)
        empty_barr = np.array([], dtype=np.bool_)

        # pd.DatetimeIndex is excluded, because it overrides getitem and should
        # be tested separately.
        for idx in [self.strIndex, self.intIndex, self.floatIndex]:
            empty_idx = idx.__class__([])

            self.assertTrue(idx[[]].identical(empty_idx))
            self.assertTrue(idx[empty_iarr].identical(empty_idx))
            self.assertTrue(idx[empty_barr].identical(empty_idx))

            # np.ndarray only accepts ndarray of int & bool dtypes, so should
            # Index.
            self.assertRaises(IndexError, idx.__getitem__, empty_farr)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, np.ones((1, 10)))

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, np.ones((1, 10)))

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test all close w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, np.ones((1, 10)))

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, np.ones((1, 10)))

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test all close w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:ArmouredCommanderLinux    作者:AndroidHell    | 项目源码 | 文件源码
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
项目:ArmouredCommanderLinux    作者:AndroidHell    | 项目源码 | 文件源码
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
项目:gtfspy    作者:CxAalto    | 项目源码 | 文件源码
def test_get_all_route_shapes(self):
        res = self.gtfs.get_all_route_shapes()
        self.assertTrue(isinstance(res, list))
        el = res[0]
        keys = u"name type agency lats lons".split()
        for key in keys:
            self.assertTrue(key in el)

        for el in res:
            self.assertTrue(isinstance(el[u"name"], string_types), type(el[u"name"]))
            self.assertTrue(isinstance(el[u"type"], (int, numpy.int_)), type(el[u'type']))
            self.assertTrue(isinstance(el[u"agency"], string_types))
            self.assertTrue(isinstance(el[u"lats"], list), type(el[u'lats']))
            self.assertTrue(isinstance(el[u"lons"], list))
            self.assertTrue(isinstance(el[u'lats'][0], float))
            self.assertTrue(isinstance(el[u'lons'][0], float))
项目:gtfspy    作者:CxAalto    | 项目源码 | 文件源码
def test_get_stop_count_data(self):
        dt_start_query = datetime.datetime(2007, 1, 1, 7, 59, 59)
        dt_end_query = datetime.datetime(2007, 1, 1, 10, 2, 1)
        start_query = self.gtfs.unlocalized_datetime_to_ut_seconds(dt_start_query)
        end_query = self.gtfs.unlocalized_datetime_to_ut_seconds(dt_end_query)
        df = self.gtfs.get_stop_count_data(start_query, end_query)
        self.assertTrue(isinstance(df, pandas.DataFrame))
        columns = ["stop_I", "count", "lat", "lon", "name"]
        for c in columns:
            self.assertTrue(c in df.columns)
            el = df[c].iloc[0]
            if c in ["stop_I", "count"]:
                self.assertTrue(isinstance(el, (int, numpy.int_)))
            if c in ["lat", "lon"]:
                self.assertTrue(isinstance(el, float))
            if c in ["name"]:
                self.assertTrue(isinstance(el, string_types), type(el))
        self.assertTrue((df['count'].values > 0).any())
项目:nanoraw    作者:marcus1487    | 项目源码 | 文件源码
def get_reads_base_sds(chrm_strand_reads, chrm_len, rev_strand):
    base_sd_sums = np.zeros(chrm_len)
    base_cov = np.zeros(chrm_len, dtype=np.int_)
    for r_data in chrm_strand_reads:
        # extract read means data so data across all chrms is not
        # in RAM at one time
        try:
            read_data = h5py.File(r_data.fn, 'r')
        except IOError:
            # probably truncated file
            continue
        events_slot = '/'.join((
            '/Analyses', r_data.corr_group, 'Events'))
        if events_slot not in read_data:
            continue
        read_sds = read_data[events_slot]['norm_stdev']

        if rev_strand:
            read_sds = read_sds[::-1]
        base_sd_sums[r_data.start:
                     r_data.start + len(read_sds)] += read_sds
        base_cov[r_data.start:r_data.start + len(read_sds)] += 1

    return base_sd_sums / base_cov
项目:nanoraw    作者:marcus1487    | 项目源码 | 文件源码
def get_reads_base_lengths(chrm_strand_reads, chrm_len, rev_strand):
    base_length_sums = np.zeros(chrm_len)
    base_cov = np.zeros(chrm_len, dtype=np.int_)
    for r_data in chrm_strand_reads:
        # extract read means data so data across all chrms is not
        # in RAM at one time
        try:
            read_data = h5py.File(r_data.fn, 'r')
        except IOError:
            # probably truncated file
            continue
        events_slot = '/'.join((
            '/Analyses', r_data.corr_group, 'Events'))
        if events_slot not in read_data:
            continue
        read_lengths = read_data[events_slot]['length']

        if rev_strand:
            read_lengths = read_lengths[::-1]
        base_length_sums[
            r_data.start:
            r_data.start + len(read_lengths)] += read_lengths
        base_cov[r_data.start:r_data.start + len(read_lengths)] += 1

    return base_length_sums / base_cov
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:airflow    作者:apache-airflow    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in [np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64]:
            return int(obj)
        elif type(obj) in [np.bool_]:
            return bool(obj)
        elif type(obj) in [np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128]:
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_int_subclassing(self):
        # Regression test for https://github.com/numpy/numpy/pull/3526

        numpy_int = np.int_(0)

        if sys.version_info[0] >= 3:
            # On Py3k int_ should not inherit from int, because it's not
            # fixed-width anymore
            assert_equal(isinstance(numpy_int, int), False)
        else:
            # Otherwise, it should inherit from int...
            assert_equal(isinstance(numpy_int, int), True)

            # ... and fast-path checks on C-API level should also work
            from numpy.core.multiarray_tests import test_int_subclass
            assert_equal(test_int_subclass(numpy_int), True)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a))
项目:table-compositor    作者:InvestmentSystems    | 项目源码 | 文件源码
def data_style_func(df):
        '''
        Default value that can be used as callback for data_style_func

        Args:
            df: the dataframe that will be used to build the presentation model

        Returns:
            a function table takes idx, col as arguments and returns a dictionary of html style attributes
        '''
        def _style_func(r, c):
            if isinstance(df.at[r,c], (np.int_, np.float, np.uint)):
                return td_style_to_str(default_numeric_td_style)
            return td_style_to_str(default_td_style)
        return _style_func