Python numpy 模块,str() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.str()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_leak_in_structured_dtype_comparison(self):
        # gh-6250
        recordtype = np.dtype([('a', np.float64),
                               ('b', np.int32),
                               ('d', (np.str, 5))])

        # Simple case
        a = np.zeros(2, dtype=recordtype)
        for i in range(100):
            a == a
        assert_(sys.getrefcount(a) < 10)

        # The case in the bug report.
        before = sys.getrefcount(a)
        u, v = a[0], a[1]
        u == v
        del u, v
        gc.collect()
        after = sys.getrefcount(a)
        assert_equal(before, after)
项目:PedWorks    作者:BrnCPrz    | 项目源码 | 文件源码
def add_node_attribute(inFile, pedgraph, animal=1, atCol=4, atName="attr1"):
    """
    inFile - pedigree as .txt file
    pedgraph - Pedigree as a networkX graph object
    animal - column for the animal ID
    atCol - column for the attribute
    atName - name for the attribute
    """
    ped_df = pd.read_table(inFile, header=None, delim_whitespace=True)
    #print ped_df
    dic_ped = dict(zip(ped_df[animal - 1], ped_df[atCol - 1]))
    #print dic_ped
    correct_dic_ped = {str(k):int(v) for k,v in dic_ped.items()}
    #print correct_dic_ped
    for node, value in dic_ped.items():
        pedgraph.node[str(node)]["EBV"] = value

    return correct_dic_ped
项目:PedWorks    作者:BrnCPrz    | 项目源码 | 文件源码
def add_ebv_attribute(inFile, pedgraph, animal=1, atCol=4, atName="attr1"):
    """
    inFile - pedigree as .txt file
    pedgraph - Pedigree as a networkX graph object
    animal - column for the animal ID
    atCol - column for the attribute
    atName - name for the attribute
    """
    ped_df = pd.read_table(inFile, header=None, delim_whitespace=True)
    #print ped_df
    dic_ped = dict(zip(ped_df[animal - 1], ped_df[atCol - 1]))
    #print dic_ped
    correct_dic_ped = {str(k):int(-v) for k,v in dic_ped.items()}
    #print correct_dic_ped
    for node, value in dic_ped.items():
        pedgraph.node[str(node)]["EBV"] = value

    return correct_dic_ped
项目:bot2017Fin    作者:AllanYiin    | 项目源码 | 文件源码
def __init__(self,filename='word2vec.pklz'):
        """
        Py Word2vec??
        """
        super().__init__()
        self.name='word2vec'
        self.load(filename)
        self.vocab_cnt=len(self)
        self.dims=self[list(self.keys())[0]].shape[0]

        print('???:' + str(self.vocab_cnt))
        print('???:' + str(self.dims))

        self.word2idx= {w: i for i, w in enumerate(self.keys())}
        self.idx2word= {i: w for i, w in enumerate(self.keys())}
        self._matrix =np.array(list(self.values()))
        print(self._matrix.shape)
项目:bot2017Fin    作者:AllanYiin    | 项目源码 | 文件源码
def get_antonyms(self,wordA:str, topk:int=10,ispositive:bool=True):
        seed=[['??','??'],['??','??'],['??','??'],['??','??'],['??','??']]
        proposal={}
        for pair in seed:
            if ispositive:
                result=self.analogy(pair[0],pair[1],wordA,topk)
                print(w2v.find_nearest_word((self[pair[0]] + self[pair[1]]) / 2, 3))
            else:
                result = self.analogy(pair[1], pair[0], wordA, topk)
                print(w2v.find_nearest_word((self[pair[0]] + self[pair[1]]) / 2, 3))

            for item in result:
                term_products = np.argwhere(self[wordA] * self[item[0]] < 0)
                #print(item[0] + ':' +wordA + str(term_products))
                #print(item[0] + ':' +wordA+'('+str(pair)+')  '+ str(len(term_products)))
                if len(term_products)>=self.dims/4:
                    if item[0] not in proposal:
                        proposal[item[0]] = item[1]
                    elif item[1]> proposal[item[0]]:
                        proposal[item[0]] +=item[1]
        for k,v in  proposal.items():
            proposal[k]=v/len(seed)
        sortitems=sorted(proposal.items(), key=lambda d: d[1],reverse=True)
        return  [sortitems[i] for i in range(min(topk,len(sortitems)))]
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_leak_in_structured_dtype_comparison(self):
        # gh-6250
        recordtype = np.dtype([('a', np.float64),
                               ('b', np.int32),
                               ('d', (np.str, 5))])

        # Simple case
        a = np.zeros(2, dtype=recordtype)
        for i in range(100):
            a == a
        assert_(sys.getrefcount(a) < 10)

        # The case in the bug report.
        before = sys.getrefcount(a)
        u, v = a[0], a[1]
        u == v
        del u, v
        gc.collect()
        after = sys.getrefcount(a)
        assert_equal(before, after)
项目:stock    作者:Rockyzsu    | 项目源码 | 文件源码
def __init__(self):
        #??????????????data????????
        current = os.getcwd()
        folder = os.path.join(current, 'data')
        if os.path.exists(folder) == False:
            os.mkdir(folder)
        os.chdir(folder)
        #??tushare?????A???
        #df0=ts.get_stock_basics()
        df0=pd.read_csv('bases.csv',dtype={'code':np.str})
        self.bases=df0.sort_values('timeToMarket',ascending=False)

        #????? ????????????

        self.cxg=self.bases[(self.bases['timeToMarket']>20170101) & (self.bases['timeToMarket']<20170401)]
        self.codes= self.cxg['code'].values
项目:stock    作者:Rockyzsu    | 项目源码 | 文件源码
def getBigDeal(self, code,vol):
        df = ts.get_today_ticks(code)
        t= df[df['volume']>vol]
        s=df[df['amount']>100000000]
        print '\n'
        if t.size!=0:
            print "Big volume"
            print self.base[self.base['code']==str(code)]['name'].values[0]
            print t
        if s.size!=0:
            print "Big amount: "
            print self.base[self.base['code']==str(code)]['name'].values[0]
            print s
        r=df[df['volume']>vol*10]
        if r.size!=0:
            print "Super amount:"
            print self.base[self.base['code']==str(code)]['name'].values[0]
            print r
项目:stock    作者:Rockyzsu    | 项目源码 | 文件源码
def years(self):
        df_list=[]
        k=[str(i) for i in range(1,13)]
        print k
        j=[i for i in range(1,13)]
        result=[]
        for i in range(1,13):
            filename='2016-%s.xls' %str(i).zfill(2)
            #print filename
            t=pd.read_table(filename,encoding='gbk',dtype={u'????':np.str})
            fee=t[u'???'].sum()+t[u'???'].sum()+t[u'????'].sum()
            print i," fee: "
            print fee
            df_list.append(t)
            result.append(fee)
        df=pd.concat(df_list,keys=k)
        #print df
        #df.to_excel('2016_delivery_order.xls')
        self.caculation(df)
        plt.plot(j,result)
        plt.show()
项目:stock    作者:Rockyzsu    | 项目源码 | 文件源码
def getTotal():
    path=os.path.join(os.getcwd(),'data')
    os.chdir(path)

    all=pd.read_csv('bases.csv',dtype={'code':np.str})
    #print all

    all_code=all['code'].values
    #print all_code

    lists=[]
    for i in all_code:
        df=ts.get_k_data(i,start='2017-07-17',end='2017-07-17')
        lists.append(df)

    all_df=pd.DataFrame(lists)
    print all_df
    all_df.to_csv('2017-all.csv',encoding='gbk')
    all_df.to_excel('2017-excel.xls')
项目:stock    作者:Rockyzsu    | 项目源码 | 文件源码
def add_code_redis():
    rds = redis.StrictRedis(REDIS_HOST, 6379, db=0)
    rds_1 = redis.StrictRedis(REDIS_HOST, 6379, db=1)
    df = ts.get_stock_basics()
    df = df.reset_index()

    # ?????
    if rds.dbsize() != 0:
        rds.flushdb()
    if rds_1.dbsize() != 0:
        rds_1.flushdb()

    for i in range(len(df)):
        code, name, timeToMarket = df.loc[i]['code'], df.loc[i]['name'], df.loc[i]['timeToMarket']
        # print str(timeToMarket)
        d = dict({code: ':'.join([name, str(timeToMarket)])})
        # print d
        rds.set(code, name)
        rds_1.lpush('codes', d)
项目:readquant    作者:Teichlab    | 项目源码 | 文件源码
def read_cufflinks(sample_path, isoforms=False):
    ''' Function for reading a Cufflinks quantification result.

    Returns
    -------
    A pandas.Series with the expression values in the sample.
    '''
    if isoforms:
        quant_file = sample_path + '/isoforms.fpkm_tracking'
    else:
        quant_file = sample_path + '/genes.fpkm_tracking'
    df = pd.read_table(quant_file, engine='c',
                                   usecols=['tracking_id', 'FPKM'],
                                   index_col=0,
                                   dtype={'tracking_id': np.str, 'FPKM': np.float64})

    df['tracking_id'] = df.index
    df = df.groupby('tracking_id').sum()
    df['TPM'] = df['FPKM'] / df['FPKM'].sum() * 1e6

    df = df.rename(columns={'tracking_id': 'target_id'})
    return df['TPM']
项目:BetaElephant    作者:milkpku    | 项目源码 | 文件源码
def tensor2state(tensor_frd, tensor_emy):
    '''
    transform tensor 2 state
    tensor_frd, tensor_emy ndarray [9,10,16]
    return state ndarray [10,9]
    '''
    assert tensor_frd.shape == tensor_emy.shape
    state = np.zeros((10,9), dtype=np.str)
    chessfrdplayer = 'KAABBNNRRCCPPPPP'
    chessemyplayer = 'kaabbnnrrccppppp'
    for i in range(tensor_frd.shape[0]):
        for j in range(tensor_frd.shape[1]):
            if ~(tensor_frd[i][j] == 0).all():
                layer = np.argmax(tensor_frd[i][j])
                state[j][i] = chessfrdplayer[layer]
            elif ~(tensor_emy[i][j] == 0).all():
                layer = np.argmax(tensor_emy[i][j])
                state[j][i] = chessemyplayer[layer]
            else:
                state[j][i] = ' '
    return state
项目:BetaElephant    作者:milkpku    | 项目源码 | 文件源码
def tensor2state(tensor_frd, tensor_emy):
    '''
    transform tensor 2 state
    tensor_frd, tensor_emy ndarray [9,10,16]
    return state ndarray [10,9]
    '''
    assert tensor_frd.shape == tensor_emy.shape
    state = np.zeros((10,9), dtype=np.str)
    chessfrdplayer = 'KAABBNNRRCCPPPPP'
    chessemyplayer = 'kaabbnnrrccppppp'
    for i in range(tensor_frd.shape[0]):
        for j in range(tensor_frd.shape[1]):
            if ~(tensor_frd[i][j] == 0).all():
                layer = np.argmax(tensor_frd[i][j])
                state[j][i] = chessfrdplayer[layer]
            elif ~(tensor_emy[i][j] == 0).all():
                layer = np.argmax(tensor_emy[i][j])
                state[j][i] = chessemyplayer[layer]
            else:
                state[j][i] = ' '
    return state
项目:BetaElephant    作者:milkpku    | 项目源码 | 文件源码
def tensor2state(tensor_frd, tensor_emy):
    '''
    transform tensor 2 state
    tensor_frd, tensor_emy ndarray [9,10,16]
    return state ndarray [10,9]
    '''
    assert tensor_frd.shape == tensor_emy.shape
    state = np.zeros((10,9), dtype=np.str)
    chessfrdplayer = 'KAABBNNRRCCPPPPP'
    chessemyplayer = 'kaabbnnrrccppppp'
    for i in range(tensor_frd.shape[0]):
        for j in range(tensor_frd.shape[1]):
            if ~(tensor_frd[i][j] == 0).all():
                layer = np.argmax(tensor_frd[i][j])
                state[j][i] = chessfrdplayer[layer]
            elif ~(tensor_emy[i][j] == 0).all():
                layer = np.argmax(tensor_emy[i][j])
                state[j][i] = chessemyplayer[layer]
            else:
                state[j][i] = ' '
    return state
项目:BetaElephant    作者:milkpku    | 项目源码 | 文件源码
def tensor2state(tensor_frd, tensor_emy):
    '''
    transform tensor 2 state
    tensor_frd, tensor_emy ndarray [9,10,16]
    return state ndarray [10,9]
    '''
    assert tensor_frd.shape == tensor_emy.shape
    state = np.zeros((10,9), dtype=np.str)
    chessfrdplayer = 'KAABBNNRRCCPPPPP'
    chessemyplayer = 'kaabbnnrrccppppp'
    for i in range(tensor_frd.shape[0]):
        for j in range(tensor_frd.shape[1]):
            if ~(tensor_frd[i][j] == 0).all():
                layer = np.argmax(tensor_frd[i][j])
                state[j][i] = chessfrdplayer[layer]
            elif ~(tensor_emy[i][j] == 0).all():
                layer = np.argmax(tensor_emy[i][j])
                state[j][i] = chessemyplayer[layer]
            else:
                state[j][i] = ' '
    return state
项目:BetaElephant    作者:milkpku    | 项目源码 | 文件源码
def tensor2state(tensor_frd, tensor_emy):
    '''
    transform tensor 2 state
    tensor_frd, tensor_emy ndarray [9,10,16]
    return state ndarray [10,9]
    '''
    assert tensor_frd.shape == tensor_emy.shape
    state = np.zeros((10,9), dtype=np.str)
    chessfrdplayer = 'KAABBNNRRCCPPPPP'
    chessemyplayer = 'kaabbnnrrccppppp'
    for i in range(tensor_frd.shape[0]):
        for j in range(tensor_frd.shape[1]):
            if ~(tensor_frd[i][j] == 0).all():
                layer = np.argmax(tensor_frd[i][j])
                state[j][i] = chessfrdplayer[layer]
            elif ~(tensor_emy[i][j] == 0).all():
                layer = np.argmax(tensor_emy[i][j])
                state[j][i] = chessemyplayer[layer]
            else:
                state[j][i] = ' '
    return state
项目:auDeep    作者:auDeep    | 项目源码 | 文件源码
def _get_value(self, var: str):
        """
        Utility method to return the value of the specified variable for this instance in the backing xarray data set.

        Parameters
        ----------
        var: str
            Name of the variable. There should be no reason to pass a str directly. Instead, the names defined in the
            _DataVar class should be used.

        Returns
        -------
        depending on variable
            The value of the specified variable for this instance
        """
        return self._data[var][dict(instance=self._instance)]
项目:auDeep    作者:auDeep    | 项目源码 | 文件源码
def contains(self,
                 filename: str,
                 chunk_nr: int) -> bool:
        """
        Check whether this data set contains an instance with the specified filename and chunk number.

        Parameters
        ----------
        filename: str
            The filename of the instance
        chunk_nr: int
            The chunk number of the instance

        Returns
        -------
        bool
            True, if this data set contains an instance with the specified filename and chunk number, False otherwise
        """
        if filename not in self._data[_DataVar.FILENAME].values:
            return False

        instances_with_filename = self._data.where(self._data[_DataVar.FILENAME] == filename)

        return chunk_nr in instances_with_filename[_DataVar.CHUNK_NR].values
项目:auDeep    作者:auDeep    | 项目源码 | 文件源码
def labels_nominal(self) -> np.ndarray:
        """
        Returns the nominal labels of all instances in this data set as a NumPy array.

        The order of labels in the returned array matches the order in which instances are stored in this data set.

        Returns
        -------
        numpy.ndarray
            The nominal labels of the instances in this data set

        Raises
        ------
        AttributeError
            If the data set is not fully labeled
        """
        if not self.is_fully_labeled:
            raise AttributeError("data set does not have label information")

        return self._data[_DataVar.LABEL_NOMINAL].values.astype(np.str)
项目:auDeep    作者:auDeep    | 项目源码 | 文件源码
def save(self, path: Path):
        """
        Writes this data set to the specified path.

        Any directories in the path that do not exist are automatically created.

        Parameters
        ----------
        path: pathlib.Path
        """
        if not path.parent.exists():
            path.parent.mkdir(parents=True)

        self.log.info("writing data set as netCDF4 to %s", path)

        self._data.to_netcdf(path=str(path),
                             engine="netcdf4",
                             format="NETCDF4")
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_leak_in_structured_dtype_comparison(self):
        # gh-6250
        recordtype = np.dtype([('a', np.float64),
                               ('b', np.int32),
                               ('d', (np.str, 5))])

        # Simple case
        a = np.zeros(2, dtype=recordtype)
        for i in range(100):
            a == a
        assert_(sys.getrefcount(a) < 10)

        # The case in the bug report.
        before = sys.getrefcount(a)
        u, v = a[0], a[1]
        u == v
        del u, v
        gc.collect()
        after = sys.getrefcount(a)
        assert_equal(before, after)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_leak_in_structured_dtype_comparison(self):
        # gh-6250
        recordtype = np.dtype([('a', np.float64),
                               ('b', np.int32),
                               ('d', (np.str, 5))])

        # Simple case
        a = np.zeros(2, dtype=recordtype)
        for i in range(100):
            a == a
        assert_(sys.getrefcount(a) < 10)

        # The case in the bug report.
        before = sys.getrefcount(a)
        u, v = a[0], a[1]
        u == v
        del u, v
        gc.collect()
        after = sys.getrefcount(a)
        assert_equal(before, after)
项目:serenata-toolbox    作者:datasciencebr    | 项目源码 | 文件源码
def _read_xz(self, filepath):
        dtype = {
            'applicant_id': np.str,
            'batch_number': np.str,
            'cnpj_cpf': np.str,
            'congressperson_document': np.str,
            'congressperson_id': np.str,
            'document_id': np.str,
            'document_number': np.str,
            'document_type': np.str,
            'leg_of_the_trip': np.str,
            'passenger': np.str,
            'reimbursement_number': np.str,
            'subquota_group_description': np.str,
            'subquota_group_id': np.str,
            'subquota_number': np.str,
            'term_id': np.str,
        }
        return pd.read_csv(filepath, dtype=dtype)
项目:serenata-toolbox    作者:datasciencebr    | 项目源码 | 文件源码
def read_csv(self, name):
        filepath = os.path.join(self.path, name)
        log.info('Loading {}…'.format(name))
        dtype = {
            'applicant_id': np.str,
            'batch_number': np.str,
            'cnpj_cpf': np.str,
            'congressperson_document': np.str,
            'congressperson_id': np.str,
            'document_id': np.str,
            'document_number': np.str,
            'document_type': np.str,
            'leg_of_the_trip': np.str,
            'passenger': np.str,
            'reimbursement_number': np.str,
            'subquota_group_description': np.str,
            'subquota_group_id': np.str,
            'subquota_number': np.str,
            'term_id': np.str,
        }
        return pd.read_csv(filepath, dtype=dtype)
项目:FCN_train    作者:315386775    | 项目源码 | 文件源码
def pcaCreate(image_files,dir,name_num, dir_list):
    image_list = []
    new_file_name = dir
    save_dir = dir_list + new_file_name
    save_dir_tt = save_dir + "\\"
    for image_file in image_files:
        image_list.append(misc.imread(image_file))

    for image in image_list:
        img = np.asarray(image, dtype='float32')
        img = img / 255.
        img_size = img.size / 3
        img1 = img.reshape(img_size, 3)
        img1 = np.transpose(img1)
        img_cov = np.cov([img1[0], img1[1], img1[2]])
        lamda, p = np.linalg.eig(img_cov)

        p = np.transpose(p)

        alpha1 = random.normalvariate(0, 0.3)
        alpha2 = random.normalvariate(0, 0.3)
        alpha3 = random.normalvariate(0, 0.3)
        v = np.transpose((alpha1 * lamda[0], alpha2 * lamda[1], alpha3 * lamda[2]))

        add_num = np.dot(p, v)

        img2 = np.array([img[:, :, 0] + add_num[0], img[:, :, 1] + add_num[1], img[:, :, 2] + add_num[2]])

        img2 = np.swapaxes(img2, 0, 2)
        img2 = np.swapaxes(img2, 0, 1)

        misc.imsave(save_dir_tt + np.str(name_num) + '.jpg', img2)
        name_num += 1
    return image_list
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def dataset(self):
        path = self.update_datasets()
        self._dataset = pd.read_csv(path, dtype={'cnpj_cpf': np.str}, encoding='utf-8')
        self.prepare_dataset()
        return self._dataset
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def setUp(self):
        self.dataset = pd.read_csv('rosie/core/tests/fixtures/invalid_cnpj_cpf_classifier.csv',
                                   dtype={'recipient_id': np.str})
        self.subject = InvalidCnpjCpfClassifier()
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def setUp(self):
        self.full_dataset = pd.read_csv(
            self.MONTHLY_SUBQUOTA_LIMIT_FIXTURE_FILE, dtype={'subquota_number': np.str})
        self.dataset = self.full_dataset[
            ['applicant_id', 'subquota_number', 'issue_date', 'year', 'month', 'net_value']]
        self.test_result_dataset = self.full_dataset[['expected_prediction', 'test_case_description']]

        self.subject = MonthlySubquotaLimitClassifier()
        self.subject.fit_transform(self.dataset)
        self.prediction = self.subject.predict(self.dataset)
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def setUp(self):
        self.dataset = pd.read_csv('rosie/chamber_of_deputies/tests/fixtures/meal_price_outlier_classifier.csv',
                                   dtype={'recipient_id': np.str})
        self.subject = MealPriceOutlierClassifier()
        self.subject.fit(self.dataset)
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def setUp(self):
        self.dataset = pd.read_csv('rosie/chamber_of_deputies/tests/fixtures/traveled_speeds_classifier.csv',
                                   dtype={'recipient_id': np.str})
        self.subject = TraveledSpeedsClassifier()
        self.subject.fit(self.dataset)
项目:rosie    作者:datasciencebr    | 项目源码 | 文件源码
def get_companies(self):
        path = os.path.join(self.path, self.COMPANIES_DATASET)
        dataset = pd.read_csv(path, dtype={'cnpj': np.str}, low_memory=False)
        dataset['cnpj'] = dataset['cnpj'].str.replace(r'\D', '')
        dataset['situation_date'] = pd.to_datetime(
            dataset['situation_date'], errors='coerce')
        return dataset
项目:klineyes    作者:tenstone    | 项目源码 | 文件源码
def load_test_data(ticker='000001'):
    '''
    Load test test_data for develop
    :param ticker:
    :return:    ticker  tradeDate   turnoverVol closePrice  highestPrice    lowestPrice openPrice
    '''
    return pd.read_csv(BASE_DIR+'/tests/test_data/'+ticker+'.csv', dtype={"ticker": np.str}, index_col=0)
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def load_mesh(filename):
    """
    Open a json file and load the mesh into the target class

    As long as there are no namespace conflicts, the target __class__
    will be stored on the properties.HasProperties registry and may be
    fetched from there.

    :param str filename: name of file to read in
    """
    with open(filename, 'r') as outfile:
        jsondict = json.load(outfile)
        data = BaseMesh.deserialize(jsondict, trusted=True)
    return data
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def _readUBC_3DMesh(TensorMesh, fileName):
        """Read UBC GIF 3D tensor mesh and generate same dimension TensorMesh.

        :param string fileName: path to the UBC GIF mesh file
        :rtype: TensorMesh
        :return: The tensor mesh for the fileName.
        """

        # Interal function to read cell size lines for the UBC mesh files.
        def readCellLine(line):
            line_list = []
            for seg in line.split():
                if '*' in seg:
                    sp = seg.split('*')
                    seg_arr = np.ones((int(sp[0]),)) * float(sp[1])
                else:
                    seg_arr = np.array([float(seg)], float)
                line_list.append(seg_arr)
            return np.concatenate(line_list)

        # Read the file as line strings, remove lines with comment = !
        msh = np.genfromtxt(fileName, delimiter='\n', dtype=np.str, comments='!')
        # Fist line is the size of the model
        sizeM = np.array(msh[0].split(), dtype=float)
        # Second line is the South-West-Top corner coordinates.
        x0 = np.array(msh[1].split(), dtype=float)
        # Read the cell sizes
        h1 = readCellLine(msh[2])
        h2 = readCellLine(msh[3])
        h3temp = readCellLine(msh[4])
        # Invert the indexing of the vector to start from the bottom.
        h3 = h3temp[::-1]
        # Adjust the reference point to the bottom south west corner
        x0[2] = x0[2] - np.sum(h3)
        # Make the mesh
        tensMsh = TensorMesh([h1, h2, h3], x0=x0)
        return tensMsh
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def readUBC(TensorMesh, fileName, meshdim=None):
        """Wrapper to Read UBC GIF 2D  and 3D tensor mesh and generate same dimension TensorMesh.

        :param string fileName: path to the UBC GIF mesh file
        :param int meshdim: expected dimension of the mesh, if unknown the default argument is None
        :rtype: TensorMesh
        :return: The tensor mesh for the fileName.
        """
        # Check the expected mesh dimensions
        if meshdim == None:
            # Read the file as line strings, remove lines with comment = !
            msh = np.genfromtxt(fileName, delimiter='\n', dtype=np.str, comments='!', max_rows=1)
            # Fist line is the size of the model
            sizeM = np.array(msh.ravel()[0].split(), dtype=float)
            # Check if the mesh is a UBC 2D mesh
            if sizeM.shape[0] == 1:
                Tnsmsh = TensorMesh._readUBC_2DMesh(fileName)
            # Check if the mesh is a UBC 3D mesh
            elif sizeM.shape[0] == 3:
                Tnsmsh = TensorMesh._readUBC_3DMesh(fileName)
            else:
                raise Exception('File format not recognized')
        # expected dimension is 2
        elif meshdim == 2:
            Tnsmsh = TensorMesh._readUBC_2DMesh(fileName)
        # expected dimension is 3
        elif meshdim == 3:
            Tnsmsh = TensorMesh._readUBC_3DMesh(fileName)
        return Tnsmsh
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def writeUBC(mesh, fileName, models=None):
        """Writes a TensorMesh to a UBC-GIF format mesh file.

        :param string fileName: File to write to
        :param dict models: A dictionary of the models

        """
        assert mesh.dim == 3
        s = ''
        s += '{0:d} {1:d} {2:d}\n'.format(*tuple(mesh.vnC))
        # Have to it in the same operation or use mesh.x0.copy(),
        # otherwise the mesh.x0 is updated.
        origin = mesh.x0 + np.array([0, 0, mesh.hz.sum()])
        origin.dtype = float

        s += '{0:.6f} {1:.6f} {2:.6f}\n'.format(*tuple(origin))
        s += ('%.6f '*mesh.nCx+'\n')%tuple(mesh.hx)
        s += ('%.6f '*mesh.nCy+'\n')%tuple(mesh.hy)
        s += ('%.6f '*mesh.nCz+'\n')%tuple(mesh.hz[::-1])
        f = open(fileName, 'w')
        f.write(s)
        f.close()

        if models is None: return
        assert type(models) is dict, 'models must be a dict'
        for key in models:
            assert type(key) is str, 'The dict key is a file name'
            mesh.writeModelUBC(key, models[key])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_pickle_py2_bytes_encoding(self):
        # Check that arrays and scalars pickled on Py2 are
        # unpickleable on Py3 using encoding='bytes'

        test_data = [
            # (original, py2_pickle)
            (np.unicode_('\u6f2c'),
             asbytes("cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n"
                     "(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\n"
                     "I0\ntp6\nbS',o\\x00\\x00'\np7\ntp8\nRp9\n.")),

            (np.array([9e123], dtype=np.float64),
             asbytes("cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\n"
                     "p1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\n"
                     "p7\n(S'f8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'<'\np11\nNNNI-1\nI-1\n"
                     "I0\ntp12\nbI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np13\ntp14\nb.")),

            (np.array([(9e123,)], dtype=[('name', float)]),
             asbytes("cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n"
                     "(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n"
                     "(S'V8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'name'\np12\ntp13\n"
                     "(dp14\ng12\n(g7\n(S'f8'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'<'\np18\nNNNI-1\n"
                     "I-1\nI0\ntp19\nbI0\ntp20\nsI8\nI1\nI0\ntp21\n"
                     "bI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np22\ntp23\nb.")),
        ]

        if sys.version_info[:2] >= (3, 4):
            # encoding='bytes' was added in Py3.4
            for original, data in test_data:
                result = pickle.loads(data, encoding='bytes')
                assert_equal(result, original)

                if isinstance(result, np.ndarray) and result.dtype.names:
                    for name in result.dtype.names:
                        assert_(isinstance(name, str))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_mem_on_invalid_dtype(self):
        "Ticket #583"
        self.assertRaises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_sign_bit(self, level=rlevel):
        x = np.array([0, -0.0, 0])
        assert_equal(str(np.abs(x)), '[ 0.  0.  0.]')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_unaligned_unicode_access(self, level=rlevel):
        # Ticket #825
        for i in range(1, 9):
            msg = 'unicode offset: %d chars' % i
            t = np.dtype([('a', 'S%d' % i), ('b', 'U2')])
            x = np.array([(asbytes('a'), sixu('b'))], dtype=t)
            if sys.version_info[0] >= 3:
                assert_equal(str(x), "[(b'a', 'b')]", err_msg=msg)
            else:
                assert_equal(str(x), "[('a', u'b')]", err_msg=msg)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_zeros(self):
        # Regression test for #1061.
        # Set a size which cannot fit into a 64 bits signed integer
        sz = 2 ** 64
        good = 'Maximum allowed dimension exceeded'
        try:
            np.empty(sz)
        except ValueError as e:
            if not str(e) == good:
                self.fail("Got msg '%s', expected '%s'" % (e, good))
        except Exception as e:
            self.fail("Got exception of type %s instead of ValueError" % type(e))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_eq_string_and_object_array(self):
        # From e-mail thread "__eq__ with str and object" (Keith Goodman)
        a1 = np.array(['a', 'b'], dtype=object)
        a2 = np.array(['a', 'c'])
        assert_array_equal(a1 == a2, [True, False])
        assert_array_equal(a2 == a1, [True, False])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_refcount_error_in_clip(self):
        # Ticket #1588
        a = np.zeros((2,), dtype='>i2').clip(min=0)
        x = a + a
        # This used to segfault:
        y = str(x)
        # Check the final string:
        assert_(y == "[0 0]")
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_format_on_flex_array_element(self):
        # Ticket #4369.
        dt = np.dtype([('date', '<M8[D]'), ('val', '<f8')])
        arr = np.array([('2000-01-01', 1)], dt)
        formatted = '{0}'.format(arr[0])
        assert_equal(formatted, str(arr[0]))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_run(self):
        """Only test hash runs at all."""
        for t in [np.int, np.float, np.complex, np.int32, np.str, np.object,
                np.unicode]:
            dt = np.dtype(t)
            hash(dt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_dtypeattr(self):
        assert_equal(self.one.dtype, np.dtype(np.int_))
        assert_equal(self.three.dtype, np.dtype(np.float_))
        assert_equal(self.one.dtype.char, 'l')
        assert_equal(self.three.dtype.char, 'd')
        self.assertTrue(self.three.dtype.str[0] in '<>')
        assert_equal(self.one.dtype.str[1], 'i')
        assert_equal(self.three.dtype.str[1], 'f')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_empty_subscript(self):
        a, b = self.d
        self.assertEqual(a[()], 0)
        self.assertEqual(b[()], 'x')
        self.assertTrue(type(a[()]) is a.dtype.type)
        self.assertTrue(type(b[()]) is str)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_empty_unicode(self):
        # don't throw decode errors on garbage memory
        for i in range(5, 100, 5):
            d = np.empty(i, dtype='U')
            str(d)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_swapaxes(self):
        a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
        idx = np.indices(a.shape)
        assert_(a.flags['OWNDATA'])
        b = a.copy()
        # check exceptions
        assert_raises(ValueError, a.swapaxes, -5, 0)
        assert_raises(ValueError, a.swapaxes, 4, 0)
        assert_raises(ValueError, a.swapaxes, 0, -5)
        assert_raises(ValueError, a.swapaxes, 0, 4)

        for i in range(-4, 4):
            for j in range(-4, 4):
                for k, src in enumerate((a, b)):
                    c = src.swapaxes(i, j)
                    # check shape
                    shape = list(src.shape)
                    shape[i] = src.shape[j]
                    shape[j] = src.shape[i]
                    assert_equal(c.shape, shape, str((i, j, k)))
                    # check array contents
                    i0, i1, i2, i3 = [dim-1 for dim in c.shape]
                    j0, j1, j2, j3 = [dim-1 for dim in src.shape]
                    assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
                                 c[idx[i0], idx[i1], idx[i2], idx[i3]],
                                 str((i, j, k)))
                    # check a view is always returned, gh-5260
                    assert_(not c.flags['OWNDATA'], str((i, j, k)))
                    # check on non-contiguous input array
                    if k == 1:
                        b = c