Python numpy 模块,intp() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.intp()

项目:dask_gdf    作者:gpuopenanalytics    | 项目源码 | 文件源码
def reset_index(self):
        """Reset index to range based
        """
        dfs = self.to_delayed()
        sizes = np.asarray(compute(*map(delayed(len), dfs)))
        prefixes = np.zeros_like(sizes)
        prefixes[1:] = np.cumsum(sizes[:-1])

        @delayed
        def fix_index(df, startpos):
            return df.set_index(np.arange(start=startpos,
                                          stop=startpos + len(df),
                                          dtype=np.intp))

        outdfs = [fix_index(df, startpos)
                  for df, startpos in zip(dfs, prefixes)]
        return from_delayed(outdfs)
项目:hienoi    作者:christophercrouzet    | 项目源码 | 文件源码
def __init__(self, data, bucket_size=128):
        if bucket_size < 1:
            raise ValueError("A minimum bucket size of 1 is expected.")

        self._data = data
        self._n, self._k = self._data.shape
        self._nodes = None
        self._buckets = []
        self._bucket_size = bucket_size

        self._node_dtype = numpy.dtype([
            ('size', numpy.intp),
            ('bucket', numpy.intp),
            ('lower_bounds', (numpy.float_, self._k)),
            ('upper_bounds', (numpy.float_, self._k)),
        ])
        self._neighbour_dtype = numpy.dtype([
            ('squared_distance', numpy.float_),
            ('index', numpy.intp),
        ])

        self._build()
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)

        assert_raises(IndexError, ott.count, 1)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
            np.testing.assert_array_almost_equal(out1, out2)
        else:
            np.testing.assert_array_equal(out1, out2)
项目:polara    作者:Evfro    | 项目源码 | 文件源码
def csc_matvec(mat_csc, vec, dense_output=True, dtype=None):
    v_nnz = vec.indices
    v_val = vec.data

    m_val = mat_csc.data
    m_ind = mat_csc.indices
    m_ptr = mat_csc.indptr

    res_dtype = dtype or np.result_type(mat_csc.dtype, vec.dtype)
    if dense_output:
        res = np.zeros((mat_csc.shape[0],), dtype=res_dtype)
        matvec2dense(m_ptr, m_ind, m_val, v_nnz, v_val, res)
    else:
        sizes = m_ptr.take(v_nnz+1) - m_ptr.take(v_nnz)
        sizes = np.concatenate(([0], np.cumsum(sizes)))
        n = sizes[-1]
        data = np.empty((n,), dtype=res_dtype)
        indices = np.empty((n,), dtype=np.intp)
        indptr = np.array([0, n], dtype=np.intp)
        matvec2sparse(m_ptr, m_ind, m_val, v_nnz, v_val, sizes, indices, data)
        res = sp.sparse.csr_matrix((data, indices, indptr), shape=(1, mat_csc.shape[0]), dtype=res_dtype)
        res.sum_duplicates() # expensive operation
    return res
项目:polara    作者:Evfro    | 项目源码 | 文件源码
def to_coo(self, tensor_mode=False):
        userid, itemid, feedback = self.fields
        user_item_data = self.training[[userid, itemid]].values

        if tensor_mode:
            # TODO this recomputes feedback data every new functon call,
            # but if data has not changed - no need for this, make a property
            new_feedback, feedback_transform = self.reindex(self.training, feedback, inplace=False)
            self.index = self.index._replace(feedback=feedback_transform)

            idx = np.hstack((user_item_data, new_feedback[:, np.newaxis]))
            idx = np.ascontiguousarray(idx)
            val = np.ones(self.training.shape[0],)
        else:
            idx = user_item_data
            val = self.training[feedback].values

        shp = tuple(idx.max(axis=0) + 1)
        idx = idx.astype(np.intp)
        val = np.ascontiguousarray(val)
        return idx, val, shp
项目:polara    作者:Evfro    | 项目源码 | 文件源码
def test_to_coo(self, tensor_mode=False):
        userid, itemid, feedback = self.fields
        test_data = self.test.testset

        user_idx = test_data[userid].values.astype(np.intp)
        item_idx = test_data[itemid].values.astype(np.intp)
        fdbk_val = test_data[feedback].values

        if tensor_mode:
            fdbk_idx = self.index.feedback.set_index('old').loc[fdbk_val, 'new'].values
            if np.isnan(fdbk_idx).any():
                raise NotImplementedError('Not all values of feedback are present in training data')
            else:
                fdbk_idx = fdbk_idx.astype(np.intp)
            test_coo = (user_idx, item_idx, fdbk_idx)
        else:
            test_coo = (user_idx, item_idx, fdbk_val)

        return test_coo
项目:cuvarbase    作者:johnh2o2    | 项目源码 | 文件源码
def _compile_and_prepare_functions(self, **kwargs):

        module_text = _module_reader(find_kernel('lomb'), self._cpp_defs)

        self.module = SourceModule(module_text, options=self.module_options)
        self.dtypes = dict(
            lomb=[np.intp, np.intp, np.intp, np.intp, np.int32,
                  self.real_type, self.real_type, np.int32, np.int32],
            lomb_dirsum=[np.intp, np.intp, np.intp, np.intp, np.intp,
                         np.int32, np.int32, self.real_type, self.real_type,
                         self.real_type, self.real_type, np.int32]
        )

        self.nfft_proc._compile_and_prepare_functions(**kwargs)
        for fname, dtype in self.dtypes.items():
            func = self.module.get_function(fname)
            self.prepared_functions[fname] = func.prepare(dtype)
        self.function_tuple = tuple(self.prepared_functions[fname]
                                    for fname in sorted(self.dtypes.keys()))
项目:incubator-airflow-old    作者:apache    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)

        assert_raises(IndexError, ott.count, 1)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
            np.testing.assert_array_almost_equal(out1, out2)
        else:
            np.testing.assert_array_equal(out1, out2)
项目:hyperstar    作者:nlpub    | 项目源码 | 文件源码
def nn_vec_basic(arr1, arr2, topn, sort=True, return_sims=False, nthreads=8):
    """
    For each row in arr1 (m1 x d) find topn most similar rows from arr2 (m2 x d). Similarity is defined as dot product.
    Please note, that in the case of normalized rows in arr1 and arr2 dot product will be equal to cosine and will be
    monotonically decreasing function of Eualidean distance.
    :param arr1: array of vectors to find nearest neighbours for
    :param arr2: array of vectors to search for nearest neighbours in
    :param topn: number of nearest neighbours
    :param sort: indices in i-th row of returned array should sort corresponding rows of arr2 in descending order of
    similarity to i-th row of arr2
    :param return_sims: return similarities along with indices of nearest neighbours
    :param nthreads:
    :return: array (m1 x topn) where i-th row contains indices of rows in arr2 most similar to i-th row of m1, and, if
    return_sims=True, an array (m1 x topn) of corresponding similarities.
    """
    sims = np.dot(arr1, arr2.T)
    best_inds = argmaxk_rows(sims, topn, sort=sort, nthreads=nthreads)
    if not return_sims:
        return best_inds

    # generate row indices corresponding to best_inds (just current row id in each row) (m x k)
    rows = np.arange(best_inds.shape[0], dtype=np.intp)[:, np.newaxis].repeat(best_inds.shape[1], axis=1)
    return best_inds, sims[rows, best_inds]
项目:hyperstar    作者:nlpub    | 项目源码 | 文件源码
def argmaxk_rows_opt1(arr, k=10, sort=False):
    """
    Optimized implementation. When sort=False it is equal to argmaxk_rows_basic. When sort=True and k << arr.shape[1],
    it is should be faster, because we argsort only subarray of k max elements from each row of arr (arr.shape[0] x k) instead of
    the whole array arr (arr.shape[0] x arr.shape[1]).
    """
    best_inds = np.argpartition(arr, kth=-k, axis=1)[:, -k:]  # column indices of k max elements in each row (m x k)
    if not sort:
        return best_inds
    # generate row indices corresponding to best_ids (just current row id in each row) (m x k)
    rows = np.arange(best_inds.shape[0], dtype=np.intp)[:, np.newaxis].repeat(best_inds.shape[1], axis=1)
    best_elems = arr[rows, best_inds]  # select k max elements from each row using advanced indexing (m x k)
    # indices which sort each row of best_elems in descending order (m x k)
    best_elems_inds = np.argsort(best_elems, axis=1)[:, ::-1]
    # reorder best_indices so that arr[i, sorted_best_inds[i,:]] will be sorted in descending order
    sorted_best_inds = best_inds[rows, best_elems_inds]
    return sorted_best_inds
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)

        assert_raises(IndexError, ott.count, 1)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
            np.testing.assert_array_almost_equal(out1, out2)
        else:
            np.testing.assert_array_equal(out1, out2)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)

        assert_raises(IndexError, ott.count, 1)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
            np.testing.assert_array_almost_equal(out1, out2)
        else:
            np.testing.assert_array_equal(out1, out2)
项目:scipy-2017-cython-tutorial    作者:kwmsmith    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(mt19937.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(mt19937.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
            assert_array_almost_equal(out1, out2)
        else:
            assert_array_equal(out1, out2)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)
        assert_raises(ValueError, ott.count, axis=1)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
            np.testing.assert_array_almost_equal(out1, out2)
        else:
            np.testing.assert_array_equal(out1, out2)
项目:airflow    作者:apache-airflow    | 项目源码 | 文件源码
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in [np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64]:
            return int(obj)
        elif type(obj) in [np.bool_]:
            return bool(obj)
        elif type(obj) in [np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128]:
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_big_indices(self):
        # ravel_multi_index for big indices (issue #7546)
        if np.intp == np.int64:
            arr = ([1, 29], [3, 5], [3, 117], [19, 2],
                   [2379, 1284], [2, 2], [0, 1])
            assert_equal(
                np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
                [5627771580, 117259570957])

        # test overflow checking for too big array (issue #7546)
        dummy_arr = ([0],[0])
        half_max = np.iinfo(np.intp).max // 2
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2))
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)
        assert_raises(ValueError, ott.count, axis=1)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
            assert_array_almost_equal(out1, out2)
        else:
            assert_array_equal(out1, out2)
项目:MetaHeuristic    作者:gonzalesMK    | 项目源码 | 文件源码
def predict(self, X):
        if not hasattr(self, "classes_"):        
            raise ValueError('fit')

        if self.normalize_:
            X = self._sc_X.fit_transform(X)

        X_ = self.transform(X)
        y_pred = self.estimator.predict(X_)
        return   self.classes_.take(np.asarray(y_pred, dtype=np.intp))

#        elif self.predict_with == 'all':
#
#            predict_ = []
#            
#            for mask in self.mask_:
#                self.estimator.fit(X=self.transform(self.X_, mask=mask), y=self.y_)
#                X_ = self.transform(X, mask=mask)
#                y_pred = self.estimator.predict(X_)
#                predict_.append(self.classes_.take(np.asarray(y_pred, dtype=np.intp)))
#            return np.asarray(predict_)
项目:MetaHeuristic    作者:gonzalesMK    | 项目源码 | 文件源码
def predict(self, X):
        if not hasattr(self, "classes_"):        
            raise ValueError('fit')

        if self.normalize_:
            X = self._sc_X.fit_transform(X)

        X_ = self.transform(X)
        y_pred = self.estimator.predict(X_)
        return   self.classes_.take(np.asarray(y_pred, dtype=np.intp))

#        elif self.predict_with == 'all':
#
#            predict_ = []
#            
#            for mask in self.mask_:
#                self.estimator.fit(X=self.transform(self.X_, mask=mask), y=self.y_)
#                X_ = self.transform(X, mask=mask)
#                y_pred = self.estimator.predict(X_)
#                predict_.append(self.classes_.take(np.asarray(y_pred, dtype=np.intp)))
#            return np.asarray(predict_)
项目:neurodriver    作者:neurokernel    | 项目源码 | 文件源码
def get_curand_int_func():
    code = """
#include "curand_kernel.h"
extern "C" {
__global__ void 
rand_setup(curandStateXORWOW_t* state, int size, unsigned long long seed)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    int total_threads = blockDim.x * gridDim.x;

    for(int i = tid; i < size; i+=total_threads)
    {
        curand_init(seed, i, 0, &state[i]);
    }
}
}
    """
    mod = SourceModule(code, no_extern_c = True)
    func = mod.get_function("rand_setup")
    func.prepare('PiL')#[np.intp, np.int32, np.uint64])
    return func
项目:neurodriver    作者:neurokernel    | 项目源码 | 文件源码
def get_fill_function(dtype, pitch = True):
    type_dst = dtype_to_ctype(dtype)
    name = "fill"

    if pitch:
        func = SourceModule(
            fill_pitch_template % {
                    "name": name,
                    "type_dst": type_dst
            }, options=["--ptxas-options=-v"]).get_function(name)
        func.prepare('iiPi'+np.dtype(dtype).char)
        #    [np.int32, np.int32, np.intp, np.int32, _get_type(dtype)])
    else:
        func = SourceModule(
                fill_nonpitch_template % {
                    "name": name,
                    "type_dst": type_dst
                },
                options=["--ptxas-options=-v"]).get_function(name)
        func.prepare('iP'+np.dtype(dtype).char)#[np.int32, np.intp, _get_type(dtype)])
    return func
项目:neurodriver    作者:neurokernel    | 项目源码 | 文件源码
def get_transpose_function(dtype, conj = False):
    src_type = dtype_to_ctype(dtype)
    name = "trans"
    operation = ""

    if conj:
        if dtype == np.complex128:
            operation = "pycuda::conj"
        elif dtype == np.complex64:
            operation = "pycuda::conj"

    func = SourceModule(
            transpose_template % {
                "name": name,
                "type": src_type,
                "operation": operation
            },
            options=["--ptxas-options=-v"]).get_function(name)
    func.prepare('iiPiPi')#[np.int32, np.int32, np.intp,
    #              np.int32, np.intp, np.int32])
    return func
项目:lim    作者:limix    | 项目源码 | 文件源码
def npy2py_type(npy_type):
    int_types = [
        np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64,
        np.uint8, np.uint16, np.uint32, np.uint64
    ]

    float_types = [np.float_, np.float16, np.float32, np.float64]

    bytes_types = [np.str_, np.string_]

    if npy_type in int_types:
        return int
    if npy_type in float_types:
        return float
    if npy_type in bytes_types:
        return bytes

    if hasattr(npy_type, 'char'):
        if npy_type.char in ['S', 'a']:
            return bytes
        raise TypeError

    return npy_type
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_multinomial_binary():
    # Test multinomial LR on a binary problem.
    target = (iris.target > 0).astype(np.intp)
    target = np.array(["setosa", "not-setosa"])[target]

    for solver in ['lbfgs', 'newton-cg', 'sag']:
        clf = LogisticRegression(solver=solver, multi_class='multinomial',
                                 random_state=42, max_iter=2000)
        clf.fit(iris.data, target)

        assert_equal(clf.coef_.shape, (1, iris.data.shape[1]))
        assert_equal(clf.intercept_.shape, (1,))
        assert_array_equal(clf.predict(iris.data), target)

        mlr = LogisticRegression(solver=solver, multi_class='multinomial',
                                 random_state=42, fit_intercept=False)
        mlr.fit(iris.data, target)
        pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data),
                                      axis=1)]
        assert_greater(np.mean(pred == target), .9)
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_int_float_dict():
    rng = np.random.RandomState(0)
    keys = np.unique(rng.randint(100, size=10).astype(np.intp))
    values = rng.rand(len(keys))

    d = IntFloatDict(keys, values)
    for key, value in zip(keys, values):
        assert_equal(d[key], value)
    assert_equal(len(d), len(keys))

    d.append(120, 3.)
    assert_equal(d[120], 3.0)
    assert_equal(len(d), len(keys) + 1)
    for i in xrange(2000):
        d.append(i + 1000, 4.0)
    assert_equal(d[1100], 4.0)
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def get_indices(self, i):
        """Row and column indices of the i'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Returns
        -------
        row_ind : np.array, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : np.array, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.

        """
        rows = self.rows_[i]
        columns = self.columns_[i]
        return np.nonzero(rows)[0], np.nonzero(columns)[0]
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def predict(self, X):
        """Perform classification on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            For kernel="precomputed", the expected shape of X is
            [n_samples_test, n_samples_train]

        Returns
        -------
        y_pred : array, shape (n_samples,)
            Class labels for samples in X.
        """
        y = super(BaseSVC, self).predict(X)
        return self.classes_.take(np.asarray(y, dtype=np.intp))

    # Hacky way of getting predict_proba to raise an AttributeError when
    # probability=False using properties. Do not use this in new code; when
    # probabilities are not available depending on a setting, introduce two
    # estimators.
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
项目:extra-trees    作者:allrod5    | 项目源码 | 文件源码
def fit(self, X, y, **kwargs):
        # Determine output settings
        n_samples, self.n_features_ = X.shape
        if self.max_features is None:
            self.max_features = 'auto'

        y = np.atleast_1d(y)

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]
        self.classes_ = [None] * self.n_outputs_
        self.n_classes_ = [1] * self.n_outputs_
        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if len(y) != n_samples:
            raise ValueError(
                "Number of labels=%d does not match number of samples=%d"
                % (len(y), n_samples))

        # Build tree
        self.tree_ = ExtraTree(
            self.max_features, self.min_samples_split, self.n_classes_,
            self.n_outputs_, self.classification)
        self.tree_.build(X, y)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_intp(self,level=rlevel):
        # Ticket #99
        i_width = np.int_(0).nbytes*2 - 1
        np.intp('0x' + 'f'*i_width, 16)
        self.assertRaises(OverflowError, np.intp, '0x' + 'f'*(i_width+1), 16)
        self.assertRaises(ValueError, np.intp, '0x1', 32)
        assert_equal(255, np.intp('0xFF', 16))
        assert_equal(1024, np.intp(1024))