Python numpy 模块,bitwise_and() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.bitwise_and()

项目:pybot    作者:spillai    | 项目源码 | 文件源码
def draw_flow(img, flow, step=16):
    h, w = img.shape[:2]
    y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1)
    fx, fy = flow[y,x].T
    m = np.bitwise_and(np.isfinite(fx), np.isfinite(fy))
    lines = np.vstack([x[m], y[m], x[m]+fx[m], y[m]+fy[m]]).T.reshape(-1, 2, 2)
    lines = np.int32(lines + 0.5)
    vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    cv2.polylines(vis, lines, 0, (0, 255, 0))
    for (x1, y1), (x2, y2) in lines:
        cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
    return vis
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def logpdf(self, samples):
        '''
        Calculates the log of the probability density function.

        Parameters
        ----------
        samples : array_like
            n-by-2 matrix of samples where n is the number of samples.

        Returns
        -------
        vals : ndarray
            Log of the probability density function evaluated at `samples`.
        '''
        samples = np.copy(np.asarray(samples))
        samples = self.__rotate_input(samples)
        inner = np.all(np.bitwise_and(samples > 0.0, samples < 1.0), axis=1)
        outer = np.invert(inner)
        vals = np.zeros(samples.shape[0])
        vals[inner] = self._logpdf(samples[inner, :])
        # Assign zero mass to border
        vals[outer] = -np.inf
        return vals
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:pycolor_detection    作者:parth1993    | 项目源码 | 文件源码
def get_rgb_mask(img, debug=False):
    assert isinstance(img, numpy.ndarray), 'image must be a numpy array'
    assert img.ndim == 3, 'skin detection can only work on color images'
    logger.debug('getting rgb mask')

    lower_thresh = numpy.array([45, 52, 108], dtype=numpy.uint8)
    upper_thresh = numpy.array([255, 255, 255], dtype=numpy.uint8)

    mask_a = cv2.inRange(img, lower_thresh, upper_thresh)
    mask_b = 255 * ((img[:, :, 2] - img[:, :, 1]) / 20)
    mask_c = 255 * ((numpy.max(img, axis=2) - numpy.min(img, axis=2)) / 20)
    mask_d = numpy.bitwise_and(numpy.uint64(mask_a), numpy.uint64(mask_b))
    # mask = numpy.zeros_like(mask_d, dtype=numpy.uint8)
    msk_rgb = numpy.bitwise_and(numpy.uint64(mask_c), numpy.uint64(mask_d))
    # msk_rgb = cv2.fromarray(mask_rgb)
    msk_rgb[msk_rgb < 128] = 0
    msk_rgb[msk_rgb >= 128] = 1

    if debug:
        scripts.display('input', img)
        scripts.display('mask_rgb', msk_rgb)

    return msk_rgb.astype(float)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:doubleDQN    作者:masataka46    | 项目源码 | 文件源码
def agent_start(self, observation):

        # Preprocess
        tmp = np.bitwise_and(np.asarray(observation.intArray[128:]).reshape([210, 160]), 0b0001111)  # Get Intensity from the observation
        obs_array = (spm.imresize(tmp, (110, 84)))[110-84-8:110-8, :]  # Scaling

        # Initialize State
        self.state = np.zeros((4, 84, 84), dtype=np.uint8)
        self.state[0] = obs_array
        state_ = cuda.to_gpu(np.asanyarray(self.state.reshape(1, 4, 84, 84), dtype=np.float32))

        # Generate an Action e-greedy
        returnAction = Action()
        action, Q_now = self.DDQN.e_greedy(state_, self.epsilon)
        returnAction.intArray = [action]

        # Update for next step
        self.lastAction = copy.deepcopy(returnAction)
        self.last_state = self.state.copy()
        self.last_observation = obs_array

        return returnAction
项目:beachfront-py    作者:venicegeo    | 项目源码 | 文件源码
def create_mask_from_bitmask(geoimg, filename=''):
    """ Mask geoimg with a series of provided bitmasks """
    # medium and high confidence clouds
    nodata = int('0000000000000001', 2)
    clouds = int('1000000000000000', 2)
    cirrus = int('0011000000000000', 2)

    # calculate mask
    arr = geoimg.read().astype('int16')
    # it is a good data mask
    mask = (np.bitwise_and(arr, nodata) != nodata) & \
           (np.bitwise_and(arr, clouds) < clouds) & \
           (np.bitwise_and(arr, cirrus) < cirrus)

    # create mask file
    logger.info('Saving to file %s' % filename, action='Save file', actee=filename, actor=__name__)
    maskimg = GeoImage.create_from(geoimg, filename=filename, dtype='uint8')
    maskimg.set_nodata(0)
    maskimg[0].write(mask.astype('uint8'))

    return maskimg
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_values(self):
        for dt in self.bitwise_types:
            zeros = np.array([0], dtype=dt)
            ones = np.array([-1], dtype=dt)
            msg = "dt = '%s'" % dt.char

            assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
            assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)

            assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
            assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
            assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
            assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)

            assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
            assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
            assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
            assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)

            assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
            assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
            assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
            assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
项目:Theano-Deep-learning    作者:GeekLiB    | 项目源码 | 文件源码
def set_ufunc(self, scalar_op):
        # This is probably a speed up of the implementation
        if isinstance(scalar_op, theano.scalar.basic.Add):
            self.ufunc = numpy.add
        elif isinstance(scalar_op, theano.scalar.basic.Mul):
            self.ufunc = numpy.multiply
        elif isinstance(scalar_op, theano.scalar.basic.Maximum):
            self.ufunc = numpy.maximum
        elif isinstance(scalar_op, theano.scalar.basic.Minimum):
            self.ufunc = numpy.minimum
        elif isinstance(scalar_op, theano.scalar.basic.AND):
            self.ufunc = numpy.bitwise_and
        elif isinstance(scalar_op, theano.scalar.basic.OR):
            self.ufunc = numpy.bitwise_or
        elif isinstance(scalar_op, theano.scalar.basic.XOR):
            self.ufunc = numpy.bitwise_xor
        else:
            self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
项目:sudomemo-utils    作者:Sudomemo    | 项目源码 | 文件源码
def parseNpf(self, buffer, imageWidth, imageHeight):
        # Read the header
        sectionLengths = self._readUgarHeader(buffer)
        # Read the palette data (section number 1)
        paletteData = np.frombuffer(buffer.read(roundToPower(sectionLengths[0])), dtype=np.uint16)
        # Read the image data (section number 2)
        imageData = np.frombuffer(buffer.read(sectionLengths[1]), dtype=np.uint8)
        # NPF image data uses 1 byte per 2 pixels, so we need to split that byte into two
        imageData = np.stack((np.bitwise_and(imageData, 0x0f), np.bitwise_and(imageData >> 4, 0x0f)), axis=-1).flatten()
        # Unpack palette colors
        palette = unpackColors(paletteData, useAlpha=False)
        # Convert each pixel from a palette index to full color
        pixels = np.fromiter((palette[i] if i > 0 else 0 for i in imageData), dtype=">u4")
        # Clip the image data and create a Pillow image from it
        return Image.fromarray(self._clipImageData(pixels, (imageWidth, imageHeight)), mode="RGBA")

    # Write the image as an npf to buffer
项目:sudomemo-utils    作者:Sudomemo    | 项目源码 | 文件源码
def __init__(self, imageBuffer, size):
        width, height = self.get_size(size)
        self.size = size
        self.surface = Surface((width, height), depth=8)
        # Read the header
        paletteLength, imageDataLength = self.read_ugar_header(imageBuffer)
        # Read the image palette and unpack
        palette = self.unpack_palette(np.fromstring(imageBuffer.read(self.round_to_power(paletteLength)), dtype=np.uint16))
        self.surface.set_palette(palette)
        # All pixels with the index of 0 are transparent
        self.surface.set_colorkey(0)
        # Read the pixel data bytes
        pixelData = np.fromstring(imageBuffer.read(imageDataLength), dtype=np.uint8)
        # Split each byte into 2 pixels
        pixels = np.stack((np.bitwise_and(pixelData, 0x0f), np.bitwise_and(pixelData >> 4, 0x0f)), axis=-1).flatten()
        pixels = np.swapaxes(np.reshape(pixels, (-1, width)), 0, 1)
        pixelcopy.array_to_surface(self.surface, pixels)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def test_uw_rgbd_object(): 
    from pybot.vision.image_utils import to_color
    from pybot.vision.imshow_utils import imshow_cv

    object_directory = '~/data/rgbd_datasets/udub/rgbd-object-crop/rgbd-dataset'
    rgbd_data_uw = UWRGBDObjectDataset(directory=object_directory)

    for f in rgbd_data_uw.iteritems(every_k_frames=5): 
        bbox = f.bbox
        imshow_cv('frame', 
                  np.hstack([f.img, np.bitwise_and(f.img, to_color(f.mask))]), 
                  text='Image + Mask [Category: [%i] %s, Instance: %i]' % 
                  (bbox['category'], rgbd_data_uw.get_category_name(bbox['category']), bbox['instance']))
        imshow_cv('depth', (f.depth / 16).astype(np.uint8), text='Depth')
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def project(self, X, check_bounds=False, check_depth=False, return_depth=False, min_depth=0.1):
        """
        Project [Nx3] points onto 2-D image plane [Nx2]
        """
        R, t = self.to_Rt()
    rvec,_ = cv2.Rodrigues(R)
    proj,_ = cv2.projectPoints(X, rvec, t, self.K, self.D)
        x = proj.reshape(-1,2)

        if check_depth: 
            # Only return positive depths
            depths = self.depth_from_projection(X)
            valid = depths >= min_depth
        else:
            valid = np.ones(len(x), dtype=np.bool)

        if check_bounds: 
            if self.shape is None: 
                raise ValueError('check_bounds cannot proceed. Camera.shape is not set')

            # Only return points within-image bounds
            valid = np.bitwise_and(
                valid, np.bitwise_and(
                    np.bitwise_and(x[:,0] >= 0, x[:,0] < self.shape[1]), \
                    np.bitwise_and(x[:,1] >= 0, x[:,1] < self.shape[0]))
            )

        if return_depth: 
            return x[valid], depths[valid]

        return x[valid]
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def get_bounded_projection(camera, pts, subsample=10): 
    """ Project points and only return points that are within image bounds """

    # Project points
    pts2d = camera.project(pts[::subsample].astype(np.float32))

    # Only return points within-image bounds
    valid = np.bitwise_and(np.bitwise_and(pts2d[:,0] >= 0, pts2d[:,0] < camera.shape[1]), \
                           np.bitwise_and(pts2d[:,1] >= 0, pts2d[:,1] < camera.shape[0]))
    return pts2d[valid], valid
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def bbox_inbounds(bb, shape): 
    assert(shape[1] > shape[0] and bb.shape[1] == 4)
    return np.all(np.bitwise_and(np.bitwise_and(bb[:,0] >= 0, bb[:,2] < shape[1]), \
                                 np.bitwise_and(bb[:,1] >= 0, bb[:,3] < shape[0])))
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def match_targets(bboxes_truth, bboxes_test, intersection_th=0.5): 
    A = brute_force_match_coords(bboxes_truth, bboxes_test)
    B = brute_force_match_target(bboxes_truth, bboxes_test)
    pos = np.bitwise_and(A > intersection_th, B)
    return pos
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def finite_and_within_bounds(xys, shape): 
    H, W = shape[:2]
    if not len(xys): 
        return np.array([])
    return np.bitwise_and(np.isfinite(xys).all(axis=1), 
                          reduce(lambda x,y: np.bitwise_and(x,y), [xys[:,0] >= 0, xys[:,0] < W, 
                                                                   xys[:,1] >= 0, xys[:,1] < H]))
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def detect(self, im, mask=None): 
        edges = self.detect_edges_(im)
        # edges1 = edges.copy()
        if mask is not None: 
            edges = np.bitwise_and(edges, mask)
        # cv2.imshow('mask', np.hstack([edges1, edges]))
        kpts = self.detector_.detect(im, mask=edges)
        return kpts
项目:deep-prior    作者:moberweger    | 项目源码 | 文件源码
def getCrop(self, dpt, xstart, xend, ystart, yend, zstart, zend, thresh_z=True):
        """
        Crop patch from image
        :param dpt: depth image to crop from
        :param xstart: start x
        :param xend: end x
        :param ystart: start y
        :param yend: end y
        :param zstart: start z
        :param zend: end z
        :param thresh_z: threshold z values
        :return: cropped image
        """
        if len(dpt.shape) == 2:
            cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1])].copy()
            # add pixels that are out of the image in order to keep aspect ratio
            cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0),
                                           abs(yend)-min(yend, dpt.shape[0])),
                                          (abs(xstart)-max(xstart, 0),
                                           abs(xend)-min(xend, dpt.shape[1]))), mode='constant', constant_values=0)
        elif len(dpt.shape) == 3:
            cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1]), :].copy()
            # add pixels that are out of the image in order to keep aspect ratio
            cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0),
                                           abs(yend)-min(yend, dpt.shape[0])),
                                          (abs(xstart)-max(xstart, 0),
                                           abs(xend)-min(xend, dpt.shape[1])),
                                          (0, 0)), mode='constant', constant_values=0)
        else:
            raise NotImplementedError()

        if thresh_z is True:
            msk1 = numpy.bitwise_and(cropped < zstart, cropped != 0)
            msk2 = numpy.bitwise_and(cropped > zend, cropped != 0)
            cropped[msk1] = zstart
            cropped[msk2] = 0.  # backface is at 0, it is set later
        return cropped
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _ccdf(self, samples):
        vals = np.zeros(samples.shape[0])
        # Avoid subtraction of infinities
        neqz = np.bitwise_and(np.any(samples > 0.0, axis=1),
                              np.any(samples < 1.0, axis=1))
        nrvs = norm.ppf(samples[neqz, :])
        vals[neqz] = norm.cdf((nrvs[:, 0] - self.theta * nrvs[:, 1])
                              / np.sqrt(1 - self.theta**2))
        vals[np.invert(neqz)] = norm.cdf(0.0)
        return vals
项目:pyconnectome    作者:neurospin    | 项目源码 | 文件源码
def roi_from_bbox(
        input_file,
        bbox,
        output_file):
    """ Create a ROI image from a bounding box.

    Parameters
    ----------
    input_file: str
        the reference image where the bbox is defined.
    bbox: 6-uplet
        the corner of the bbox in voxel coordinates: xmin, xmax, ymin, ymax,
        zmin, zmax.
    output_file: str
        the desired ROI image file.
    """
    # Load the reference image and generate a grid
    im = nibabel.load(input_file)
    xv, yv, zv = numpy.meshgrid(
        numpy.linspace(0, im.shape[0] - 1, im.shape[0]),
        numpy.linspace(0, im.shape[1] - 1, im.shape[1]),
        numpy.linspace(0, im.shape[2] - 1, im.shape[2]))
    xv = xv.astype(int)
    yv = yv.astype(int)
    zv = zv.astype(int)

    # Intersect the grid with the bbox
    xa = numpy.bitwise_and(xv >= bbox[0], xv <= bbox[1])
    ya = numpy.bitwise_and(yv >= bbox[2], yv <= bbox[3])
    za = numpy.bitwise_and(zv >= bbox[4], zv <= bbox[5])

    # Generate bbox indices
    indices = numpy.bitwise_and(numpy.bitwise_and(xa, ya), za)

    # Generate/save ROI
    roi = numpy.zeros(im.shape, dtype=int)
    roi[xv[indices].tolist(), yv[indices].tolist(), zv[indices].tolist()] = 1
    roi_im = nibabel.Nifti1Image(roi, affine=im.get_affine())
    nibabel.save(roi_im, output_file)
项目:agent-trainer    作者:lopespm    | 项目源码 | 文件源码
def _rgb_integers_to_components(self, rgb_integers):
        red_mask = 0x00FF0000
        green_mask = 0x0000FF00
        blue_mask =  0x000000FF
        masks = np.asarray([[red_mask, green_mask, blue_mask]])
        masked_rgb_components = np.bitwise_and(rgb_integers, masks)

        red_shifted = np.right_shift(masked_rgb_components[:,0], 16)
        green_shifted = np.right_shift(masked_rgb_components[:,1], 8)
        blue_shifted =  np.right_shift(masked_rgb_components[:,2], 0)
        return np.array([red_shifted, green_shifted, blue_shifted]).transpose()
项目:feagen    作者:ianlini    | 项目源码 | 文件源码
def load_feature_run_model(bundle_hdf_path, prediction_csv_path):
    with h5py.File(bundle_hdf_path, 'r') as bundle_f:
        is_valid = bundle_f['info']['is_valid'].value
        is_test = bundle_f['info']['is_test'].value
        passenger_id = bundle_f['id'].value
        label = bundle_f['label'].value

        # concated
        feature = bundle_f['features'].value

    train_filter = (np.bitwise_and(~is_valid, ~is_test))
    valid_filter = (np.bitwise_and(is_valid, ~is_test))
    test_filter = is_test

    ##############
    # validation #
    ##############
    clf = RandomForestClassifier()
    clf.fit(feature[train_filter], label[train_filter])
    print('validation score: (Accuracy)',
          clf.score(feature[valid_filter], label[valid_filter]))

    ##############
    # prediction #
    ##############
    clf.fit(feature[~test_filter], label[~test_filter])
    prediction = clf.predict(feature[test_filter])

    df = pd.DataFrame(prediction, columns=['Survived'],
                      index=passenger_id[test_filter])
    df.index.rename('PassengerId')
    df.to_csv(prediction_csv_path)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_truth_table_bitwise(self):
        arg1 = [False, False, True, True]
        arg2 = [False, True, False, True]

        out = [False, True, True, True]
        assert_equal(np.bitwise_or(arg1, arg2), out)

        out = [False, False, False, True]
        assert_equal(np.bitwise_and(arg1, arg2), out)

        out = [False, True, True, False]
        assert_equal(np.bitwise_xor(arg1, arg2), out)
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def __and__(self, other):
        return bitwise_and(self, other)
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def __iand__(self, other):
        return bitwise_and(self, other, self)
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def __rand__(self, other):
        return bitwise_and(other, self)
项目:uncover-ml    作者:GeoscienceAustralia    | 项目源码 | 文件源码
def main():
    """Main demo."""

    # Load survey data
    llh, data = get_flightlines()

    decimate = 5
    llh = llh[::decimate]
    data = data[::decimate]


    # Select by height intervals  (57% of the data)
    hrange = [95., 105.]
    keep = np.bitwise_and(llh[:, 2] > hrange[0], llh[:,2] < hrange[1])
    llh = llh[keep]
    data = data[keep]

    # Write out the reduced llh, data
    sf = shapefile.Writer(shapefile.POINT)
    outname = data_root + 'new_flightlines'
    log.info('Writing shapefile')
    sf.field("K")
    sf.field("Th")
    sf.field("U")
    for ll, dat in tqdm(zip(llh, data)):
        sf.point(ll[0], ll[1], ll[2])
        sf.record(K=dat[0], Th=dat[1], U=dat[2])
    sf.save(outname)
    log.info('Done!')
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def create_binary_wf_data(wf, sync_mkr=0, samp_mkr=0, vertical_resolution=12):
        """Given numpy arrays of waveform and marker data convert to binary format.
        Assumes waveform data is np.float in range -1 to 1 and marker data can be cast to bool
        Binary format is waveform in MSB and and markers in LSB
        waveform       sync_mkr samp_mkr
        15 downto 4/2     1      0
        """
        #cast the waveform to integers
        if not((vertical_resolution == 12) or (vertical_resolution == 14)):
            raise ValueError("vertical resolution must be 12 or 14 bits")

        #convert waveform to integers
        scale_factor = 2**(vertical_resolution-1)
        bin_data = np.int16((scale_factor-1)*np.array(wf))

        #clip if necessary
        if np.max(bin_data) > scale_factor-1 or np.min(bin_data) < -scale_factor:
            warnings.warn("Clipping waveform. Max value: {:d} Min value: {:d}. Scale factor: {:d}.".format(np.max(bin_data), np.min(bin_data),scale_factor))
            bin_data = np.clip(bin_data, -scale_factor, scale_factor-1)

        # bin_data = bin_data.byteswap()
        #shift up to the MSB
        bin_data = np.left_shift(bin_data, 4 if vertical_resolution == 12 else 2)

        #add in the marker bits
        bin_data = np.bitwise_or(bin_data, np.bitwise_or(np.left_shift(np.bitwise_and(sync_mkr, 0x1), 1), np.bitwise_and(samp_mkr, 0x1)))

        return bin_data
项目:chainer-fcis    作者:knorth55    | 项目源码 | 文件源码
def get_mask_overlap(mask1, mask2):
    intersect = np.bitwise_and(mask1, mask2).sum()
    union = np.bitwise_or(mask1, mask2).sum()
    return 1.0 * intersect / union
项目:scikit-cycling    作者:scikit-cycling    | 项目源码 | 文件源码
def training_stress_pma_grappe_score(X, pma):
    """Compute the training stress score using the MAP.

    Parameters
    ----------
    X : array-like, shape (n_samples, )
        Array containing the power intensities for a ride.

    pma : float
        Maximum Anaerobic Power.

    Returns
    -------
    tss_score: float
        Return the training stress score.

    """
    # Check the consistency of X and pma
    if len(X.shape) != 1:
        raise ValueError('X should have 1 dimension. Got {}, instead'.format(
            len(X.shape)))

    # Compute the stress for each item of the ESIE
    tss_grappe = 0.
    for key_sc in TS_SCALE_GRAPPE.keys():

        # Count the number of elements which corresponds to as sec
        # We need to convert it to minutes
        curr_stress = np.count_nonzero(
            np.bitwise_and(X >= ESIE_SCALE_GRAPPE[key_sc][0] * pma,
                           X < ESIE_SCALE_GRAPPE[key_sc][1] * pma)) / 60

        # Compute the cumulative stress
        tss_grappe += curr_stress * TS_SCALE_GRAPPE[key_sc]

    return tss_grappe
项目:semi-auto-anno    作者:moberweger    | 项目源码 | 文件源码
def getCrop(self, dpt, xstart, xend, ystart, yend, zstart, zend, thresh_z=True):
        """
        Crop patch from image
        :param dpt: depth image to crop from
        :param xstart: start x
        :param xend: end x
        :param ystart: start y
        :param yend: end y
        :param zstart: start z
        :param zend: end z
        :param thresh_z: threshold z values
        :return: cropped image
        """
        if len(dpt.shape) == 2:
            cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1])].copy()
            # add pixels that are out of the image in order to keep aspect ratio
            cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0),
                                           abs(yend)-min(yend, dpt.shape[0])),
                                          (abs(xstart)-max(xstart, 0),
                                           abs(xend)-min(xend, dpt.shape[1]))), mode='constant', constant_values=0)
        elif len(dpt.shape) == 3:
            cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1]), :].copy()
            # add pixels that are out of the image in order to keep aspect ratio
            cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0),
                                           abs(yend)-min(yend, dpt.shape[0])),
                                          (abs(xstart)-max(xstart, 0),
                                           abs(xend)-min(xend, dpt.shape[1])),
                                          (0, 0)), mode='constant', constant_values=0)
        else:
            raise NotImplementedError()

        if thresh_z is True:
            msk1 = numpy.bitwise_and(cropped < zstart, cropped != 0)
            msk2 = numpy.bitwise_and(cropped > zend, cropped != 0)
            cropped[msk1] = zstart
            cropped[msk2] = 0.  # backface is at 0, it is set later
        return cropped
项目:py-graphart    作者:dandydarcy    | 项目源码 | 文件源码
def delta_plus(self, nodes):
        '''
        Returns the list of edges forwarding from a set of nodes
        '''
        bool_indices_head = np.array([x[0] in nodes for x in self.edges])
        bool_indices_tail = np.array([x[1] not in nodes for x in self.edges])
        bool_indices_edges = np.bitwise_and(
            bool_indices_head, bool_indices_tail)
        return self.edges[bool_indices_edges]
项目:py-graphart    作者:dandydarcy    | 项目源码 | 文件源码
def delta_minus(self, nodes):
        '''
        Returns the list of edges backwarding from a set of nodes
        '''
        bool_indices_head = np.array([x[0] not in nodes for x in self.edges])
        bool_indices_tail = np.array([x[1] in nodes for x in self.edges])
        bool_indices_edges = np.bitwise_and(
            bool_indices_head, bool_indices_tail)
        return self.edges[bool_indices_edges]
项目:PyGraphArt    作者:dnlcrl    | 项目源码 | 文件源码
def delta_plus(self, nodes):
        '''
        Returns the list of edges forwarding from a set of nodes
        '''
        bool_indices_head = np.array([x[0] in nodes for x in self.edges])
        bool_indices_tail = np.array([x[1] not in nodes for x in self.edges])
        bool_indices_edges = np.bitwise_and(
            bool_indices_head, bool_indices_tail)
        return self.edges[bool_indices_edges]
项目:PyGraphArt    作者:dnlcrl    | 项目源码 | 文件源码
def delta_minus(self, nodes):
        '''
        Returns the list of edges backwarding from a set of nodes
        '''
        bool_indices_head = np.array([x[0] not in nodes for x in self.edges])
        bool_indices_tail = np.array([x[1] in nodes for x in self.edges])
        bool_indices_edges = np.bitwise_and(
            bool_indices_head, bool_indices_tail)
        return self.edges[bool_indices_edges]
项目:varapp-backend-py    作者:varapp    | 项目源码 | 文件源码
def binary_and(a,b):
    """Compare two binary arrays of the same length and return a third one,
    the bitwise addition of the first two."""
    # return np.logical_and(a,b)  # does not work with packed arrays
    return np.bitwise_and(a, b)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_truth_table_bitwise(self):
        arg1 = [False, False, True, True]
        arg2 = [False, True, False, True]

        out = [False, True, True, True]
        assert_equal(np.bitwise_or(arg1, arg2), out)

        out = [False, False, False, True]
        assert_equal(np.bitwise_and(arg1, arg2), out)

        out = [False, True, True, False]
        assert_equal(np.bitwise_xor(arg1, arg2), out)
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def __iand__(self, other):
            np.bitwise_and(self, other, out=self)
            return self
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def _bin_results(self, length, results):
        """
        Add hits to the bins corresponding to these results. length_hit_bins
        is flattened, so we need to figure out the offset for this hit by
        factoring the sizes of the other dimensions.
        """
        hit_bin = np.zeros(results.shape[0], dtype='int64')
        multi = 1
        good = np.ones(results.shape[0], dtype='bool')
        for dim in range(len(self.out_labels)):
            for d1 in range(dim):
                multi *= self.bin_edges[d1].size
            if dim == 0 and len(self.out_labels)==1:
                try:
                    digi = np.digitize(results, self.bin_edges[dim])
                except ValueError:
                    # The user probably did something like 
                    # return a * b rather than
                    # return a[0] * b[0], which will only happen
                    # for single field functions.
                    digi = np.digitize(results[0], self.bin_edges[dim])
            else:
                digi = np.digitize(results[:,dim], self.bin_edges[dim])
            too_low = (digi == 0)
            too_high = (digi == self.bin_edges[dim].size)
            self.too_low[dim] += (too_low).sum()
            self.too_high[dim] += (too_high).sum()
            newgood = np.bitwise_and(np.invert(too_low), np.invert(too_high))
            good = np.bitwise_and(good, newgood)
            hit_bin += np.multiply((digi - 1), multi)
        digi_bins = np.arange(self.length_bin_hits[length].size+1)
        hist, digi_bins = np.histogram(hit_bin[good], digi_bins)
        self.length_bin_hits[length] += hist
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def spread_bitsv(ival, level):
    res = np.zeros_like(ival, dtype='int64')
    for i in range(level):
        ares = np.bitwise_and(ival, 1<<i) << (i*2)
        np.bitwise_or(res, ares, res)
    return res
项目:retinal-exudates-detection    作者:getsanjeev    | 项目源码 | 文件源码
def extract_bv(image):          
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
    contrast_enhanced_green_fundus = clahe.apply(image)
    # applying alternate sequential filtering (3 times closing opening)
    r1 = cv2.morphologyEx(contrast_enhanced_green_fundus, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1)
    R1 = cv2.morphologyEx(r1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1)
    r2 = cv2.morphologyEx(R1, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1)
    R2 = cv2.morphologyEx(r2, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1)
    r3 = cv2.morphologyEx(R2, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1)
    R3 = cv2.morphologyEx(r3, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1)
    f4 = cv2.subtract(R3,contrast_enhanced_green_fundus)
    f5 = clahe.apply(f4)

    # removing very small contours through area parameter noise removal
    ret,f6 = cv2.threshold(f5,15,255,cv2.THRESH_BINARY)
    mask = np.ones(f5.shape[:2], dtype="uint8") * 255
    im2, contours, hierarchy = cv2.findContours(f6.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contours:
        if cv2.contourArea(cnt) <= 200:
            cv2.drawContours(mask, [cnt], -1, 0, -1)            
    im = cv2.bitwise_and(f5, f5, mask=mask)
    ret,fin = cv2.threshold(im,15,255,cv2.THRESH_BINARY_INV)            
    newfin = cv2.erode(fin, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1)   

    # removing blobs of microaneurysm & unwanted bigger chunks taking in consideration they are not straight lines like blood
    # vessels and also in an interval of area
    fundus_eroded = cv2.bitwise_not(newfin)
    xmask = np.ones(image.shape[:2], dtype="uint8") * 255
    x1, xcontours, xhierarchy = cv2.findContours(fundus_eroded.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)    
    for cnt in xcontours:
        shape = "unidentified"
        peri = cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, 0.04 * peri, False)
        if len(approx) > 4 and cv2.contourArea(cnt) <= 3000 and cv2.contourArea(cnt) >= 100:
            shape = "circle"    
        else:
            shape = "veins"
        if(shape=="circle"):
            cv2.drawContours(xmask, [cnt], -1, 0, -1)   

    finimage = cv2.bitwise_and(fundus_eroded,fundus_eroded,mask=xmask)  
    blood_vessels = cv2.bitwise_not(finimage)
    dilated = cv2.erode(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)), iterations=1)
    #dilated1 = cv2.dilate(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1)
    blood_vessels_1 = cv2.bitwise_not(dilated)
    return blood_vessels_1
项目:retinal-exudates-detection    作者:getsanjeev    | 项目源码 | 文件源码
def extract_bv(image):
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
    contrast_enhanced_green_fundus = clahe.apply(image)
    # applying alternate sequential filtering (3 times closing opening)
    r1 = cv2.morphologyEx(contrast_enhanced_green_fundus, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1)
    R1 = cv2.morphologyEx(r1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1)
    r2 = cv2.morphologyEx(R1, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1)
    R2 = cv2.morphologyEx(r2, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1)
    r3 = cv2.morphologyEx(R2, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1)
    R3 = cv2.morphologyEx(r3, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1)
    f4 = cv2.subtract(R3,contrast_enhanced_green_fundus)
    f5 = clahe.apply(f4)

    # removing very small contours through area parameter noise removal
    ret,f6 = cv2.threshold(f5,15,255,cv2.THRESH_BINARY)
    mask = np.ones(f5.shape[:2], dtype="uint8") * 255
    im2, contours, hierarchy = cv2.findContours(f6.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contours:
        if cv2.contourArea(cnt) <= 200:
            cv2.drawContours(mask, [cnt], -1, 0, -1)            
    im = cv2.bitwise_and(f5, f5, mask=mask)
    ret,fin = cv2.threshold(im,15,255,cv2.THRESH_BINARY_INV)            
    newfin = cv2.erode(fin, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1)   

    # removing blobs of microaneurysm & unwanted bigger chunks taking in consideration they are not straight lines like blood
    # vessels and also in an interval of area
    fundus_eroded = cv2.bitwise_not(newfin)
    xmask = np.ones(image.shape[:2], dtype="uint8") * 255
    x1, xcontours, xhierarchy = cv2.findContours(fundus_eroded.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)    
    for cnt in xcontours:
        shape = "unidentified"
        peri = cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, 0.04 * peri, False)
        if len(approx) > 4 and cv2.contourArea(cnt) <= 3000 and cv2.contourArea(cnt) >= 100:
            shape = "circle"    
        else:
            shape = "veins"
        if(shape=="circle"):
            cv2.drawContours(xmask, [cnt], -1, 0, -1)   

    finimage = cv2.bitwise_and(fundus_eroded,fundus_eroded,mask=xmask)  
    blood_vessels = cv2.bitwise_not(finimage)
    dilated = cv2.erode(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)), iterations=1)
    #dilated1 = cv2.dilate(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1)
    blood_vessels_1 = cv2.bitwise_not(dilated)
    return blood_vessels_1
项目:deeptracking    作者:lvsn    | 项目源码 | 文件源码
def mask_real_image(color, depth, depth_render):
    mask = (depth_render != 0).astype(np.uint8)[:, :, np.newaxis]
    masked_rgb = color * mask

    masked_hsv = cv2.cvtColor(masked_rgb, cv2.COLOR_BGR2HSV)
    saturation_mask = (masked_hsv[:, :, 2] <= SATURATION_THRESHOLD)[:, :, np.newaxis].astype(np.uint8)
    total_mask = np.bitwise_and(mask, saturation_mask)

    masked_color = color * total_mask
    masked_depth = depth[:total_mask.shape[0], :total_mask.shape[1]] * total_mask[:, :, 0]
    return masked_color, masked_depth
项目:deeptracking    作者:lvsn    | 项目源码 | 文件源码
def show_occlusion(detection, rgb, depth, camera, bb_width):
    pixels = compute_2Dboundingbox(detection, camera, bb_width)
    depth_crop = depth[pixels[0, 0]:pixels[1, 0], pixels[0, 1]:pixels[2, 1]].astype(np.float)
    mask = np.bitwise_and(depth_crop < 880, depth_crop != 0)
    mask = cv2.erode(mask.astype(np.uint8), np.ones((3, 3)))
    print("Occlusion level : {}".format(np.sum(mask) / (mask.shape[0] * mask.shape[1])))
    cv2.imshow("object crop mask", (mask * 255))
    cv2.imshow("object crop depth", ((depth_crop / np.max(depth_crop) * 255).astype(np.uint8)))
    cv2.rectangle(rgb, tuple(pixels[0][::-1]), tuple(pixels[3][::-1]), (0, 0, 255), 2)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_truth_table_bitwise(self):
        arg1 = [False, False, True, True]
        arg2 = [False, True, False, True]

        out = [False, True, True, True]
        assert_equal(np.bitwise_or(arg1, arg2), out)

        out = [False, False, False, True]
        assert_equal(np.bitwise_and(arg1, arg2), out)

        out = [False, True, True, False]
        assert_equal(np.bitwise_xor(arg1, arg2), out)