Python numpy 模块,uint() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.uint()

项目:table-compositor    作者:InvestmentSystems    | 项目源码 | 文件源码
def df_type_to_str(i):
    '''
    Convert into simple datatypes from pandas/numpy types
    '''
    if isinstance(i, np.bool_):
        return bool(i)
    if isinstance(i, np.int_):
        return int(i)
    if isinstance(i, np.float):
        if np.isnan(i):
            return 'NaN'
        elif np.isinf(i):
            return str(i)
        return float(i)
    if isinstance(i, np.uint):
        return int(i)
    if type(i) == bytes:
        return i.decode('UTF-8')
    if isinstance(i, (tuple, list)):
        return str(i)
    if i is pd.NaT:  # not identified as a float null
        return 'NaN'
    return str(i)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def savetxt(filename, ndarray):
    dir = os.path.dirname(filename)

    if not os.path.exists(dir):
        os.makedirs(dir)

    if not os.path.isfile(filename):
        with open(filename, 'w') as f:
            labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
            for row in ndarray:
                row_str = row.astype(str)
                label_str = labels[row[-1]]
                feature_str = ' '.join(row_str[:-1])
                f.write('|labels {} |features {}\n'.format(label_str, feature_str))
    else:
        print("File already exists", filename)
项目:ai-gym    作者:tuzzer    | 项目源码 | 文件源码
def save_as_txt(filename, ndarray):
    dir = os.path.dirname(filename)

    if not os.path.exists(dir):
        os.makedirs(dir)

    if not os.path.isfile(filename):
        print("Saving to ", filename, end=" ")
        with open(filename, 'w') as f:
            labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
            for row in ndarray:
                row_str = row.astype(str)
                label_str = labels[row[-1]]
                feature_str = ' '.join(row_str[:-1])
                f.write('|labels {} |features {}\n'.format(label_str, feature_str))
    else:
        print("File already exists", filename)
项目:bx-python    作者:bxlab    | 项目源码 | 文件源码
def union_elements(elements):
    """elements = [(chr, s, e, id), ...], this is to join elements that have a
    deletion in the 'to' species
    """

    if len(elements) < 2: return elements
    assert set( [e[3] for e in elements] ) == set( [elements[0][3]] ), "more than one id"
    el_id = elements[0][3]

    unioned_elements = []
    for ch, chgrp in groupby(elements, key=itemgetter(0)):
        for (s, e) in elem_u( np.array([itemgetter(1, 2)(_) for _ in chgrp], dtype=np.uint) ):
            if (s < e):
                unioned_elements.append( (ch, s, e, el_id) )
    assert len(unioned_elements) <= len(elements)
    return unioned_elements
项目:abcpy    作者:eth-cscs    | 项目源码 | 文件源码
def __init__(self, mean, cov, df, seed=None):
        """Defines the mean, co-variance and degrees of freedom a p-dimensional multivariate Student T distribution.

        Parameters
        ----------
        mean: numpy.ndarray
            Vector containing p means, one for every dimension        
        cov: numpy.ndarray
            pxp matrix containing the co-variance matrix        
        df: np.uint
            Degrees of freedom

        """

        MultiStudentT._check_parameters(mean, cov, df)

        self.mean = mean
        self.cov = cov
        self.df = df
        self.rng = np.random.RandomState(seed)
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def test_predict_wrong_X_dimensions(self):
        rs = np.random.RandomState(1)

        model = RandomForestWithInstances(np.zeros((10,), dtype=np.uint), bounds=np.array(
            list(map(lambda x: (0, 10), range(10))), dtype=object))
        X = rs.rand(10)
        self.assertRaisesRegexp(ValueError, "Expected 2d array, got 1d array!",
                                model.predict, X)
        X = rs.rand(10, 10, 10)
        self.assertRaisesRegexp(ValueError, "Expected 2d array, got 3d array!",
                                model.predict, X)

        X = rs.rand(10, 5)
        self.assertRaisesRegexp(ValueError, "Rows in X should have 10 entries "
                                            "but have 5!",
                                model.predict, X)
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def test_predict_marginalized_over_instances_mocked(self, rf_mock):
        """Use mock to count the number of calls to predict()"""

        class SideEffect(object):
            def __call__(self, X):
                # Numpy array of number 0 to X.shape[0]
                rval = np.array(list(range(X.shape[0]))).reshape((-1, 1))
                # Return mean and variance
                return rval, rval

        rf_mock.side_effect = SideEffect()

        rs = np.random.RandomState(1)
        F = rs.rand(10, 5)

        model = RandomForestWithInstances(np.zeros((15,), dtype=np.uint),
                                          instance_features=F,
                                          bounds=np.array(list(map(lambda x: (0, 10), range(10))), dtype=object))
        means, vars = model.predict_marginalized_over_instances(rs.rand(11, 10))
        self.assertEqual(rf_mock.call_count, 11)
        self.assertEqual(means.shape, (11, 1))
        self.assertEqual(vars.shape, (11, 1))
        for i in range(11):
            self.assertEqual(means[i], 4.5)
            self.assertEqual(vars[i], 4.5)
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def test_train_and_predict_with_rf(self):
        rs = np.random.RandomState(1)
        X = rs.rand(20, 10)
        Y = rs.rand(10, 2)
        model = UncorrelatedMultiObjectiveRandomForestWithInstances(
            ['cost', 'ln(runtime)'],
            types=np.zeros((10, ), dtype=np.uint),
            bounds=np.array([
                (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan),
                (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan)
            ], dtype=object),
            rf_kwargs={'seed': 1},
            pca_components=5
        )
        self.assertEqual(model.estimators[0].seed, 1)
        self.assertEqual(model.estimators[1].seed, 1)
        self.assertEqual(model.pca_components, 5)
        model.train(X[:10], Y)
        m, v = model.predict(X[10:])
        self.assertEqual(m.shape, (10, 2))
        self.assertEqual(v.shape, (10, 2))
项目:gymexperiments    作者:tambetm    | 项目源码 | 文件源码
def _L(x):
    # initialize with zeros
    batch_size = x.shape[0]
    a = T.zeros((batch_size, num_actuators, num_actuators))
    # set diagonal elements
    batch_idx = T.extra_ops.repeat(T.arange(batch_size), num_actuators)
    diag_idx = T.tile(T.arange(num_actuators), batch_size)
    b = T.set_subtensor(a[batch_idx, diag_idx, diag_idx], T.flatten(T.exp(x[:, :num_actuators])))
    # set lower triangle
    cols = np.concatenate([np.array(range(i), dtype=np.uint) for i in xrange(num_actuators)])
    rows = np.concatenate([np.array([i]*i, dtype=np.uint) for i in xrange(num_actuators)])
    cols_idx = T.tile(T.as_tensor_variable(cols), batch_size)
    rows_idx = T.tile(T.as_tensor_variable(rows), batch_size)
    batch_idx = T.extra_ops.repeat(T.arange(batch_size), len(cols))
    c = T.set_subtensor(b[batch_idx, rows_idx, cols_idx], T.flatten(x[:, num_actuators:]))
    return c
项目:gymexperiments    作者:tambetm    | 项目源码 | 文件源码
def _L(x):
    # initialize with zeros
    batch_size = x.shape[0]
    a = T.zeros((batch_size, num_actuators, num_actuators))
    # set diagonal elements
    batch_idx = T.extra_ops.repeat(T.arange(batch_size), num_actuators)
    diag_idx = T.tile(T.arange(num_actuators), batch_size)
    b = T.set_subtensor(a[batch_idx, diag_idx, diag_idx], T.flatten(T.exp(x[:, :num_actuators])))
    # set lower triangle
    cols = np.concatenate([np.array(range(i), dtype=np.uint) for i in xrange(num_actuators)])
    rows = np.concatenate([np.array([i]*i, dtype=np.uint) for i in xrange(num_actuators)])
    cols_idx = T.tile(T.as_tensor_variable(cols), batch_size)
    rows_idx = T.tile(T.as_tensor_variable(rows), batch_size)
    batch_idx = T.extra_ops.repeat(T.arange(batch_size), len(cols))
    c = T.set_subtensor(b[batch_idx, rows_idx, cols_idx], T.flatten(x[:, num_actuators:]))
    return c
项目:gymexperiments    作者:tambetm    | 项目源码 | 文件源码
def __init__(self, max_timesteps, max_episodes, observation_shape, action_shape):
    self.max_timesteps = max_timesteps
    self.max_episodes = max_episodes
    self.observation_shape = observation_shape
    self.action_shape = action_shape

    self.preobs = np.empty((self.max_timesteps, self.max_episodes) + observation_shape)
    self.actions = np.empty((self.max_timesteps, self.max_episodes) + action_shape)
    self.rewards = np.empty((self.max_timesteps, self.max_episodes))
    self.postobs = np.empty((self.max_timesteps, self.max_episodes) + observation_shape)
    self.terminals = np.empty((self.max_timesteps, self.max_episodes), dtype = np.bool)
    self.lengths = np.zeros(self.max_episodes, np.uint)

    self.num_episodes = 0
    self.episode = 0
    self.timestep = 0
项目:Theano-Deep-learning    作者:GeekLiB    | 项目源码 | 文件源码
def test_make_vector(self):
        mv = opt.make_vector(1, 2, 3)
        self.assertRaises(
            tensor.NotScalarConstantError,
            get_scalar_constant_value,
            mv)
        assert get_scalar_constant_value(mv[0]) == 1
        assert get_scalar_constant_value(mv[1]) == 2
        assert get_scalar_constant_value(mv[2]) == 3
        assert get_scalar_constant_value(mv[numpy.int32(0)]) == 1
        assert get_scalar_constant_value(mv[numpy.int64(1)]) == 2
        assert get_scalar_constant_value(mv[numpy.uint(2)]) == 3
        t = theano.scalar.Scalar('int64')
        self.assertRaises(
            tensor.NotScalarConstantError,
            get_scalar_constant_value,
            mv[t()])
项目:table-compositor    作者:InvestmentSystems    | 项目源码 | 文件源码
def data_style_func(df):
        '''
        Default value that can be used as callback for data_style_func

        Args:
            df: the dataframe that will be used to build the presentation model

        Returns:
            a function table takes idx, col as arguments and returns a dictionary of html style attributes
        '''
        def _style_func(r, c):
            if isinstance(df.at[r,c], (np.int_, np.float, np.uint)):
                return td_style_to_str(default_numeric_td_style)
            return td_style_to_str(default_td_style)
        return _style_func
项目:galario    作者:mtazzari    | 项目源码 | 文件源码
def matrix_size(udat, vdat, **kwargs):

    maxuv_factor = kwargs.get('maxuv_factor', 4.8)
    minuv_factor = kwargs.get('minuv_factor', 4.)

    uvdist = np.sqrt(udat**2 + vdat**2)

    maxuv = max(uvdist)*maxuv_factor
    minuv = min(uvdist)/minuv_factor

    minpix = np.uint(maxuv/minuv)

    Nuv = kwargs.get('force_nx', int(2**np.ceil(np.log2(minpix))))

    return Nuv, minuv, maxuv
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _computeUnindexedVertexes(self):
        ## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes
        ## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14) 

        ## I think generally this should be discouraged..
        faces = self._vertexesIndexedByFaces
        verts = {}  ## used to remember the index of each vertex position
        self._faces = np.empty(faces.shape[:2], dtype=np.uint)
        self._vertexes = []
        self._vertexFaces = []
        self._faceNormals = None
        self._vertexNormals = None
        for i in xrange(faces.shape[0]):
            face = faces[i]
            inds = []
            for j in range(face.shape[0]):
                pt = face[j]
                pt2 = tuple([round(x*1e14) for x in pt])  ## quantize to be sure that nearly-identical points will be merged
                index = verts.get(pt2, None)
                if index is None:
                    #self._vertexes.append(QtGui.QVector3D(*pt))
                    self._vertexes.append(pt)
                    self._vertexFaces.append([])
                    index = len(self._vertexes)-1
                    verts[pt2] = index
                self._vertexFaces[index].append(i)  # keep track of which vertexes belong to which faces
                self._faces[i,j] = index
        self._vertexes = np.array(self._vertexes, dtype=float)

    #def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None):
        #self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes]
        #self._faces = faces.astype(np.uint)
        #self._edges = None
        #self._vertexFaces = None
        #self._faceNormals = None
        #self._vertexNormals = None
        #self._vertexColors = vertexColors
        #self._faceColors = faceColors
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _computeEdges(self):
        if not self.hasFaceIndexedData:
            ## generate self._edges from self._faces
            nf = len(self._faces)
            edges = np.empty(nf*3, dtype=[('i', np.uint, 2)])
            edges['i'][0:nf] = self._faces[:,:2]
            edges['i'][nf:2*nf] = self._faces[:,1:3]
            edges['i'][-nf:,0] = self._faces[:,2]
            edges['i'][-nf:,1] = self._faces[:,0]

            # sort per-edge
            mask = edges['i'][:,0] > edges['i'][:,1]
            edges['i'][mask] = edges['i'][mask][:,::-1]

            # remove duplicate entries
            self._edges = np.unique(edges)['i']
            #print self._edges
        elif self._vertexesIndexedByFaces is not None:
            verts = self._vertexesIndexedByFaces
            edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint)
            nf = verts.shape[0]
            edges[:,0,0] = np.arange(nf) * 3
            edges[:,0,1] = edges[:,0,0] + 1
            edges[:,1,0] = edges[:,0,1]
            edges[:,1,1] = edges[:,1,0] + 1
            edges[:,2,0] = edges[:,1,1]
            edges[:,2,1] = edges[:,0,0]
            self._edges = edges
        else:
            raise Exception("MeshData cannot generate edges--no faces in this data.")
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def sphere(rows, cols, radius=1.0, offset=True):
        """
        Return a MeshData instance with vertexes and faces computed
        for a spherical surface.
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)

        ## compute vertexes
        phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
        s = radius * np.sin(phi)
        verts[...,2] = radius * np.cos(phi)
        th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) 
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = s * np.cos(th)
        verts[...,1] = s * np.sin(th)
        verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)]  ## remove redundant vertexes from top and bottom

        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
        faces = faces[cols:-cols]  ## cut off zero-area triangles at top and bottom

        ## adjust for redundant vertexes that were removed from top and bottom
        vmin = cols-1
        faces[faces<vmin] = vmin
        faces -= vmin  
        vmax = verts.shape[0]-1
        faces[faces>vmax] = vmax

        return MeshData(vertexes=verts, faces=faces)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
        """
        Return a MeshData instance with vertexes and faces computed
        for a cylindrical surface.
        The cylinder may be tapered with different radii at each end (truncated cone)
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)
        if isinstance(radius, int):
            radius = [radius, radius] # convert to list
        ## compute vertexes
        th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
        r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z
        verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = r * np.cos(th) # x = r cos(th)
        verts[...,1] = r * np.sin(th) # y = r sin(th)
        verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols

        return MeshData(vertexes=verts, faces=faces)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def generateFaces(self):
        cols = self._z.shape[1]-1
        rows = self._z.shape[0]-1
        faces = np.empty((cols*rows*2, 3), dtype=np.uint)
        rowtemplate1 = np.arange(cols).reshape(cols, 1) + np.array([[0, 1, cols+1]])
        rowtemplate2 = np.arange(cols).reshape(cols, 1) + np.array([[cols+1, 1, cols+2]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * (cols+1)
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * (cols+1)
        self._faces = faces
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _computeUnindexedVertexes(self):
        ## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes
        ## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14) 

        ## I think generally this should be discouraged..
        faces = self._vertexesIndexedByFaces
        verts = {}  ## used to remember the index of each vertex position
        self._faces = np.empty(faces.shape[:2], dtype=np.uint)
        self._vertexes = []
        self._vertexFaces = []
        self._faceNormals = None
        self._vertexNormals = None
        for i in xrange(faces.shape[0]):
            face = faces[i]
            inds = []
            for j in range(face.shape[0]):
                pt = face[j]
                pt2 = tuple([round(x*1e14) for x in pt])  ## quantize to be sure that nearly-identical points will be merged
                index = verts.get(pt2, None)
                if index is None:
                    #self._vertexes.append(QtGui.QVector3D(*pt))
                    self._vertexes.append(pt)
                    self._vertexFaces.append([])
                    index = len(self._vertexes)-1
                    verts[pt2] = index
                self._vertexFaces[index].append(i)  # keep track of which vertexes belong to which faces
                self._faces[i,j] = index
        self._vertexes = np.array(self._vertexes, dtype=float)

    #def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None):
        #self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes]
        #self._faces = faces.astype(np.uint)
        #self._edges = None
        #self._vertexFaces = None
        #self._faceNormals = None
        #self._vertexNormals = None
        #self._vertexColors = vertexColors
        #self._faceColors = faceColors
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _computeEdges(self):
        if not self.hasFaceIndexedData:
            ## generate self._edges from self._faces
            nf = len(self._faces)
            edges = np.empty(nf*3, dtype=[('i', np.uint, 2)])
            edges['i'][0:nf] = self._faces[:,:2]
            edges['i'][nf:2*nf] = self._faces[:,1:3]
            edges['i'][-nf:,0] = self._faces[:,2]
            edges['i'][-nf:,1] = self._faces[:,0]

            # sort per-edge
            mask = edges['i'][:,0] > edges['i'][:,1]
            edges['i'][mask] = edges['i'][mask][:,::-1]

            # remove duplicate entries
            self._edges = np.unique(edges)['i']
            #print self._edges
        elif self._vertexesIndexedByFaces is not None:
            verts = self._vertexesIndexedByFaces
            edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint)
            nf = verts.shape[0]
            edges[:,0,0] = np.arange(nf) * 3
            edges[:,0,1] = edges[:,0,0] + 1
            edges[:,1,0] = edges[:,0,1]
            edges[:,1,1] = edges[:,1,0] + 1
            edges[:,2,0] = edges[:,1,1]
            edges[:,2,1] = edges[:,0,0]
            self._edges = edges
        else:
            raise Exception("MeshData cannot generate edges--no faces in this data.")
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def sphere(rows, cols, radius=1.0, offset=True):
        """
        Return a MeshData instance with vertexes and faces computed
        for a spherical surface.
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)

        ## compute vertexes
        phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
        s = radius * np.sin(phi)
        verts[...,2] = radius * np.cos(phi)
        th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) 
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = s * np.cos(th)
        verts[...,1] = s * np.sin(th)
        verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)]  ## remove redundant vertexes from top and bottom

        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
        faces = faces[cols:-cols]  ## cut off zero-area triangles at top and bottom

        ## adjust for redundant vertexes that were removed from top and bottom
        vmin = cols-1
        faces[faces<vmin] = vmin
        faces -= vmin  
        vmax = verts.shape[0]-1
        faces[faces>vmax] = vmax

        return MeshData(vertexes=verts, faces=faces)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
        """
        Return a MeshData instance with vertexes and faces computed
        for a cylindrical surface.
        The cylinder may be tapered with different radii at each end (truncated cone)
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)
        if isinstance(radius, int):
            radius = [radius, radius] # convert to list
        ## compute vertexes
        th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
        r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z
        verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = r * np.cos(th) # x = r cos(th)
        verts[...,1] = r * np.sin(th) # y = r sin(th)
        verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols

        return MeshData(vertexes=verts, faces=faces)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def generateFaces(self):
        cols = self._z.shape[1]-1
        rows = self._z.shape[0]-1
        faces = np.empty((cols*rows*2, 3), dtype=np.uint)
        rowtemplate1 = np.arange(cols).reshape(cols, 1) + np.array([[0, 1, cols+1]])
        rowtemplate2 = np.arange(cols).reshape(cols, 1) + np.array([[cols+1, 1, cols+2]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * (cols+1)
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * (cols+1)
        self._faces = faces
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_dtype_keyerrors_(self):
        # Ticket #1106.
        dt = np.dtype([('f1', np.uint)])
        assert_raises(KeyError, dt.__getitem__, "f2")
        assert_raises(IndexError, dt.__getitem__, 1)
        assert_raises(ValueError, dt.__getitem__, 0.0)
项目:Generative-ConvACs    作者:HUJI-Deep    | 项目源码 | 文件源码
def get_val_indices_uniform(m_total, m_val):
    all_idxs = np.arange(m_total)    
    samps_per_class = m_val / NUM_CLASSES
    val_idxs = np.array([])
    for i in range(NUM_CLASSES):
        all_class_idxs = all_idxs[( all_idxs % NUM_CLASSES == i)]
        sel_class_idxs = np.random.choice(all_class_idxs, samps_per_class, replace=False)
        val_idxs = np.concatenate((val_idxs,sel_class_idxs))
    np.random.shuffle(val_idxs)
    return val_idxs.astype(np.uint)
项目:Generative-ConvACs    作者:HUJI-Deep    | 项目源码 | 文件源码
def get_val_indices(m_total, m_val, info_mat):
    all_idxs = np.arange(m_total)    
    val_idxs = np.array([])
    for i in range(NUM_CLASSES):
        cat_for_val = np.random.choice(TR_CATS,1)[0]
        all_class_idxs = all_idxs[( all_idxs % NUM_CLASSES == i)]
        class_info = info_mat[all_class_idxs]
        sel_class_idxs = np.where(class_info[:,0] == cat_for_val)[0]
        val_idxs = np.concatenate((val_idxs,all_class_idxs[sel_class_idxs]))
    np.random.shuffle(val_idxs)
    return val_idxs.astype(np.uint)
项目:ShadowRemoval    作者:Orcuslc    | 项目源码 | 文件源码
def __init__(self, img):
        self.img = np.asarray(img, np.float32) # The image to be handled;
        self.img2 = img # The real image;
        self.rows, self.cols = get_size(img)
        self.mask = np.zeros((self.rows, self.cols), dtype = np.uint) # In this class, we use just one mask to contain the Ms and Ml in the paper; In the mask, the places where the value = self._SHADOW belongs to Ms, and other pixels belongs to Ml;
        self.trimap = np.zeros((self.rows, self.cols), dtype = np.uint) # The trimap containing info that whether a pixel is inside the shadow, outside the shadow, or unknown;
        self.mask_shadow = np.zeros((self.rows, self.cols), dtype = np.uint) # The area where shadow removal is required;

        self._SHADOW = 1 # The flag of shadow;
        self._LIT = 0 # The flag of lit;
        self._UNKNOWN = -1 # The flag of unknown;
        self._threshold = 0.1;
        self._drawing = True # The flag of drawing;
        self._drawn = False # The status of whether seed initialise is finished;
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def saveTxt(filename, ndarray):
    with open(filename, 'w') as f:
        labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
        for row in ndarray:
            row_str = row.astype(str)
            label_str = labels[row[-1]]
            feature_str = ' '.join(row_str[:-1])
            f.write('|labels {} |features {}\n'.format(label_str, feature_str))
项目:k8scntkSamples    作者:weehyong    | 项目源码 | 文件源码
def saveTxt(filename, ndarray):
    with open(filename, 'w') as f:
        labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
        for row in ndarray:
            row_str = row.astype(str)
            label_str = labels[row[-1]]
            feature_str = ' '.join(row_str[:-1])
            f.write('|labels {} |features {}\n'.format(label_str, feature_str))
项目:k8scntkSamples    作者:weehyong    | 项目源码 | 文件源码
def saveTxt(filename, ndarray):
    with open(filename, 'w') as f:
        labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
        for row in ndarray:
            row_str = row.astype(str)
            label_str = labels[row[-1]]
            feature_str = ' '.join(row_str[:-1])
            f.write('|labels {} |features {}\n'.format(label_str, feature_str))
项目:k8scntkSamples    作者:weehyong    | 项目源码 | 文件源码
def saveTxt(filename, ndarray):
    with open(filename, 'w') as f:
        labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
        for row in ndarray:
            row_str = row.astype(str)
            label_str = labels[row[-1]]
            feature_str = ' '.join(row_str[:-1])
            f.write('|labels {} |features {}\n'.format(label_str, feature_str))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_dtype_keyerrors_(self):
        # Ticket #1106.
        dt = np.dtype([('f1', np.uint)])
        assert_raises(KeyError, dt.__getitem__, "f2")
        assert_raises(IndexError, dt.__getitem__, 1)
        assert_raises(ValueError, dt.__getitem__, 0.0)
项目:newsgraph    作者:exchez    | 项目源码 | 文件源码
def make_stack(series):
    stack_size = compute_stack_size(series)
    new = np.empty(stack_size, dtype=[('doc_index', np.uint), ('word', "S30"), ('value', np.float)])
    counter = 0
    for row in series.iteritems():
        for word in row[1]:
            new[counter] = (row[0], word, row[1][word])
            counter +=1
    return new
项目:newsgraph    作者:exchez    | 项目源码 | 文件源码
def get_articles_by_distance(article, corpus): #article is the row from the articles df
    article = corpus[article['index'],:]
    iterable = ((x, cosine_distance(article, corpus[x,:])) for x in range(corpus.shape[0]))
    articles_by_distance = np.fromiter(iterable, dtype='uint,float', count=corpus.shape[0])
    articles_by_distance = pd.DataFrame(articles_by_distance).rename(columns={'f1':'cosine_distance', 'f0':'index'}).sort_values(by='cosine_distance')
    return articles_by_distance[0:25]
项目:pytorch_60min_blitz    作者:kyuhyoung    | 项目源码 | 文件源码
def saveTxt(filename, ndarray):
    with open(filename, 'w') as f:
        labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
        for row in ndarray:
            row_str = row.astype(str)
            label_str = labels[row[-1]]
            feature_str = ' '.join(row_str[:-1])
            f.write('|labels {} |features {}\n'.format(label_str, feature_str))
项目:deeptracking    作者:lvsn    | 项目源码 | 文件源码
def backproject_depth(self, depth):
        constant_x = 1.0 / self.focal_x
        constant_y = 1.0 / self.focal_y
        row, col = depth.shape
        coords = np.zeros((row, col, 2), dtype=np.uint)
        coords[..., 0] = np.arange(row)[:, None]
        coords[..., 1] = np.arange(col)
        coords = coords.reshape((-1, 2))
        output = np.zeros((len(coords), 3))
        values = depth[coords[:, 0], coords[:, 1]]
        output[:, 0] = (coords[:, 1] - self.center_x) * values * constant_x
        output[:, 1] = (coords[:, 0] - self.center_y) * values * constant_y
        output[:, 2] = values
        return output
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def testIntArray(self):
        arr = np.arange(100, dtype=np.int)
        dtypes = (np.int, np.int8, np.int16, np.int32, np.int64,
                  np.uint, np.uint8, np.uint16, np.uint32, np.uint64)
        for dtype in dtypes:
            inpt = arr.astype(dtype)
            outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=dtype)
            tm.assert_numpy_array_equal(inpt, outp)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_dtype_keyerrors_(self):
        # Ticket #1106.
        dt = np.dtype([('f1', np.uint)])
        assert_raises(KeyError, dt.__getitem__, "f2")
        assert_raises(IndexError, dt.__getitem__, 1)
        assert_raises(ValueError, dt.__getitem__, 0.0)
项目:mimclib    作者:StochasticNumerics    | 项目源码 | 文件源码
def transNK(self, d, N, problem_arg=0):
        # return np.arange(0, N), np.arange(0, N)
        # Each ind has 2*|ind|_0 samples
        indSet = setutil.GenTDSet(d, N, base=0)
        N_per_ind = 2**np.sum(indSet!=0, axis=1)
        if problem_arg == 1:
            N_per_ind[1:] /= 2
        _, k_ind = np.unique(np.sum(indSet, axis=1), return_inverse=True)
        k_of_N = np.repeat(k_ind, N_per_ind.astype(np.int))[:N]
        # N_of_k = [j+np.arange(0, i, dtype=np.uint) for i, j in
        #           zip(N_per_ind, np.hstack((np.array([0],
        #                                              dtype=np.uint),
        #                                     np.cumsum(N_per_ind)[:np.max(k_of_N)])))]
        return k_of_N
项目:histonets-cv    作者:sul-cidr    | 项目源码 | 文件源码
def test_json_numpy_encoder_int(self):
        assert (json.dumps(np.uint(10), cls=utils.JSONNumpyEncoder)
                == json.dumps(10))
项目:histonets-cv    作者:sul-cidr    | 项目源码 | 文件源码
def test_json_numpy_encoder_int_array(self):
        array = np.arange(10, dtype=np.uint).reshape(2, 5)
        assert (json.dumps(array, cls=utils.JSONNumpyEncoder)
                == json.dumps(array.tolist()))
项目:histonets-cv    作者:sul-cidr    | 项目源码 | 文件源码
def test_serialize_json(self):
        array = np.arange(10, dtype=np.uint).reshape(2, 5)
        assert (utils.serialize_json(array)
                == json.dumps(array.tolist()))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_dtype_keyerrors_(self):
        # Ticket #1106.
        dt = np.dtype([('f1', np.uint)])
        assert_raises(KeyError, dt.__getitem__, "f2")
        assert_raises(IndexError, dt.__getitem__, 1)
        assert_raises(ValueError, dt.__getitem__, 0.0)
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def is_integer(test_value):
    """ Check all available integer representations.

    @return: bool, True if the passed value is a integer, otherwise false.
    """

    return type(test_value) in [np.int, np.int8, np.int16, np.int32, np.int64,
                                np.uint, np.uint8, np.uint16, np.uint32,
                                np.uint64]
项目:qtim_ROP    作者:QTIM-Lab    | 项目源码 | 文件源码
def mask_od_vessels(skel, od_center):

    # Create optic disk mask
    od_mask = np.zeros_like(skel, dtype=np.uint8)
    cv2.circle(od_mask, od_center, 30, (1, 1, 1), -1)
    od_mask_inv = np.invert(od_mask) / 255.

    skel = skel.astype(np.float)
    masked_skel = skel * od_mask_inv

    return masked_skel.astype(np.uint8)


# def line_diameters(edt, lines):
#
#     diameters = []
#
#     for line in lines:
#
#         p0, p1 = [np.asarray(pt) for pt in line]
#         vec = p1 - p0  # vector between segment end points
#         vec_len = np.linalg.norm(vec)
#
#         pts_along_line = np.uint(np.asarray([p0 + (i * vec) for i in np.arange(0., 1., 1. / vec_len)]))
#
#         for pt in pts_along_line:
#
#             try:
#                 diameters.append(edt[pt[0], pt[1]])
#             except IndexError:
#                 pass
#
#     return diameters
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_dtype_keyerrors_(self):
        # Ticket #1106.
        dt = np.dtype([('f1', np.uint)])
        assert_raises(KeyError, dt.__getitem__, "f2")
        assert_raises(IndexError, dt.__getitem__, 1)
        assert_raises(ValueError, dt.__getitem__, 0.0)
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def train(self, X: np.ndarray, Y: np.ndarray, **kwargs):
        """Trains the EPM on X and Y.

        Parameters
        ----------
        X : np.ndarray [n_samples, n_features (config + instance features)]
            Input data points.
        Y : np.ndarray [n_samples, n_objectives]
            The corresponding target values. n_objectives must match the
            number of target names specified in the constructor.

        Returns
        -------
        self : AbstractEPM
        """

        self.n_params = X.shape[1] - self.n_feats

        # reduce dimensionality of features of larger than PCA_DIM
        if self.pca and X.shape[0] > 1:
            X_feats = X[:, -self.n_feats:]
            # scale features
            X_feats = self.scaler.fit_transform(X_feats)
            X_feats = np.nan_to_num(X_feats)  # if features with max == min
            # PCA
            X_feats = self.pca.fit_transform(X_feats)
            X = np.hstack((X[:, :self.n_params], X_feats))
            if hasattr(self, "types"):
                # for RF, adapt types list
                # if X_feats.shape[0] < self.pca, X_feats.shape[1] ==
                # X_feats.shape[0]
                self.types = np.array(np.hstack((self.types[:self.n_params], np.zeros((X_feats.shape[1])))),
                                      dtype=np.uint)
        return self._train(X, Y)
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def test_predict(self):
        rs = np.random.RandomState(1)
        X = rs.rand(20, 10)
        Y = rs.rand(10, 1)
        model = RandomForestWithInstances(np.zeros((10,), dtype=np.uint), bounds=np.array(
                list(map(lambda x: (0, 10), range(10))), dtype=object))
        model.train(X[:10], Y[:10])
        m_hat, v_hat = model.predict(X[10:])
        self.assertEqual(m_hat.shape, (10, 1))
        self.assertEqual(v_hat.shape, (10, 1))
项目:SMAC3    作者:automl    | 项目源码 | 文件源码
def test_train_with_pca(self):
        rs = np.random.RandomState(1)
        X = rs.rand(20, 20)
        F = rs.rand(10, 10)
        Y = rs.rand(20, 1)
        model = RandomForestWithInstances(np.zeros((20,), dtype=np.uint),
                                          np.array(list(map(lambda x: (0, 10), range(10))), dtype=object),
                                          pca_components=2,
                                          instance_features=F)
        model.train(X, Y)

        self.assertEqual(model.n_params, 10)
        self.assertEqual(model.n_feats, 10)
        self.assertIsNotNone(model.pca)
        self.assertIsNotNone(model.scaler)