Python numpy 模块,void() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.void()

项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def iteratorFn(self, data):
        ## Return 1) a function that will provide an iterator for data and 2) a list of header strings
        if isinstance(data, list) or isinstance(data, tuple):
            return lambda d: d.__iter__(), None
        elif isinstance(data, dict):
            return lambda d: iter(d.values()), list(map(asUnicode, data.keys()))
        elif (hasattr(data, 'implements') and data.implements('MetaArray')):
            if data.axisHasColumns(0):
                header = [asUnicode(data.columnName(0, i)) for i in range(data.shape[0])]
            elif data.axisHasValues(0):
                header = list(map(asUnicode, data.xvals(0)))
            else:
                header = None
            return self.iterFirstAxis, header
        elif isinstance(data, np.ndarray):
            return self.iterFirstAxis, None
        elif isinstance(data, np.void):
            return self.iterate, list(map(asUnicode, data.dtype.names))
        elif data is None:
            return (None,None)
        else:
            msg = "Don't know how to iterate over data type: {!s}".format(type(data))
            raise TypeError(msg)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def iteratorFn(self, data):
        ## Return 1) a function that will provide an iterator for data and 2) a list of header strings
        if isinstance(data, list) or isinstance(data, tuple):
            return lambda d: d.__iter__(), None
        elif isinstance(data, dict):
            return lambda d: iter(d.values()), list(map(asUnicode, data.keys()))
        elif (hasattr(data, 'implements') and data.implements('MetaArray')):
            if data.axisHasColumns(0):
                header = [asUnicode(data.columnName(0, i)) for i in range(data.shape[0])]
            elif data.axisHasValues(0):
                header = list(map(asUnicode, data.xvals(0)))
            else:
                header = None
            return self.iterFirstAxis, header
        elif isinstance(data, np.ndarray):
            return self.iterFirstAxis, None
        elif isinstance(data, np.void):
            return self.iterate, list(map(asUnicode, data.dtype.names))
        elif data is None:
            return (None,None)
        else:
            msg = "Don't know how to iterate over data type: {!s}".format(type(data))
            raise TypeError(msg)
项目:risk-slim    作者:ustunb    | 项目源码 | 文件源码
def filter_sort_unique(self, max_objval=float('Inf')):
        # filter
        if max_objval < float('inf'):
            good_idx = self.objvals <= max_objval
            self.objvals = self.objvals[good_idx]
            self.solutions = self.solutions[good_idx]

        if len(self.objvals) > 0:
            sort_idx = np.argsort(self.objvals)
            self.objvals = self.objvals[sort_idx]
            self.solutions = self.solutions[sort_idx]

            # unique
            b = np.ascontiguousarray(self.solutions).view(
                np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
            _, unique_idx = np.unique(b, return_index=True)
            self.objvals = self.objvals[unique_idx]
            self.solutions = self.solutions[unique_idx]
项目:lps-anchor-pos-estimator    作者:bitcraze    | 项目源码 | 文件源码
def unique(eq):
    eq = eqsize(eq)
    c1 = [None] * eq.shape
    for i in range(0, eq.size):
        c1.append[i] = hash(eq[i])

    c1 = np.asarray(c1)

    if c1.ndim == 1:
        _, ia, ic = np.unique(c1, return_index=True, return_inverse=True)
        ia = (ia[:, ]).conj().T
        ic = (ic[:, ]).conj().T
        u = eq[ia]

    else:
        a = c1
        b = np.ascontiguousarray(a).view(
            np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
        _, ia, ic = np.unique(b, return_index=True, return_inverse=True)

    return u, ia, ic
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:amset    作者:hackingmaterials    | 项目源码 | 文件源码
def stern(self,g,nsym,symop):
        ''' Compute star function for a specific g vector 

            Input:
                g: G vector in real space
                nsym: number of symmetries
                symop: matrixes of the symmetry operations

            Output:
                nst: number of vectors in the star function calculated for the G vector
                stg: star vectors

        '''

        trial = symop[:nsym].dot(g)
        stg = np.unique(trial.view(np.dtype((np.void, trial.dtype.itemsize*trial.shape[1])))).view(trial.dtype).reshape(-1, trial.shape[1])
        nst = len(stg)
        stg = np.concatenate((stg,np.zeros((nsym-nst,3))))
        return nst, stg
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def find_boundary(mesh,vals,threshold=0.5):
    """ Find boundary points on the phase diagram where the switching probability = threshold """
    boundary_points = []
    durs = mesh.points[:,0]
    volts = mesh.points[:,1]
    indices, indptr = mesh.vertex_neighbor_vertices
    for k in range(len(vals)):
        for k_nb in indptr[indices[k]:indices[k+1]]:
            if (vals[k]-threshold)*(vals[k_nb]-threshold)<0:
                x0 = find_cross([durs[k],vals[k]],[durs[k_nb],vals[k_nb]],cut=threshold)
                y0 = find_cross([volts[k],vals[k]],[volts[k_nb],vals[k_nb]],cut=threshold)
                boundary_points.append([x0,y0])

    boundary_points = np.array(boundary_points)
    if len(boundary_points) > 0:
        b = np.ascontiguousarray(boundary_points).view(np.dtype((np.void,
                            boundary_points.dtype.itemsize * boundary_points.shape[1])))
        _, idx = np.unique(b, return_index=True)
        boundary_points = boundary_points[idx]
        # Sort the boundary_points by x-axis
        boundary_points = sorted(boundary_points, key=itemgetter(0))
    return np.array(boundary_points)
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x,
                              unique_inverse_y, calc_DKL=False):
    bins = bins.astype(np.float32)
    num_of_bins = bins.shape[0]
    # bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
    # hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True)
    digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
    b2 = np.ascontiguousarray(digitized).view(
        np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
    unique_array, unique_inverse_t, unique_counts = \
        np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
    p_ts = unique_counts / float(sum(unique_counts))
    PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
    if calc_DKL:
        pxy_given_T = np.array(
            [calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))]
        )
        p_XgT = np.vstack(pxy_given_T[:, 0])
        p_YgT = pxy_given_T[:, 1]
        p_YgT = np.vstack(p_YgT).T
        DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0)
        H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1)
    local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
                                                     unique_array)
    return local_IXT, local_ITY
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs):
    iter_infomration = []
    for j in range(len(ws_iter_index)):
        data = ws_iter_index[j]
        new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1]))
        labels = np.zeros((num_of_samples * label.shape[0], label.shape[1]))
        x = np.zeros((num_of_samples * data.shape[0], 2))
        for i in range(data.shape[0]):
            cov_matrix = np.eye(data[i, :].shape[0]) * sigma
            t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples)
            new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i
            labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :]
            x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i
        b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
        unique_array, unique_indices, unique_inverse_x, unique_counts = \
            np.unique(b, return_index=True, return_inverse=True, return_counts=True)
        b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1])))
        unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
            np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
        pys1 = unique_counts_y / float(np.sum(unique_counts_y))
        iter_infomration.append(
            calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x,
                                       unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1))
        params = np.array(iter_infomration)
        return params
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def extract_probs(label, x):
    """calculate the probabilities of the given data and labels p(x), p(y) and (y|x)"""
    pys = np.sum(label, axis=0) / float(label.shape[0])
    b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
    unique_array, unique_indices, unique_inverse_x, unique_counts = \
        np.unique(b, return_index=True, return_inverse=True, return_counts=True)
    unique_a = x[unique_indices]
    b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1])))
    pxs = unique_counts / float(np.sum(unique_counts))
    p_y_given_x = []
    for i in range(0, len(unique_array)):
        indexs = unique_inverse_x == i
        py_x_current = np.mean(label[indexs, :], axis=0)
        p_y_given_x.append(py_x_current)
    p_y_given_x = np.array(p_y_given_x).T
    b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1])))
    unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
        np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
    pys1 = unique_counts_y / float(np.sum(unique_counts_y))
    return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def from_codes_and_metadata(cls,
                                codes,
                                categories,
                                reverse_categories,
                                missing_value):
        """
        Rehydrate a LabelArray from the codes and metadata.

        Parameters
        ----------
        codes : np.ndarray[integral]
            The codes for the label array.
        categories : np.ndarray[object]
            The unique string categories.
        reverse_categories : dict[str, int]
            The mapping from category to its code-index.
        missing_value : any
            The value used to represent missing data.
        """
        ret = codes.view(type=cls, dtype=np.void)
        ret._categories = categories
        ret._reverse_categories = reverse_categories
        ret._missing_value = missing_value
        return ret
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:pyhiro    作者:wanweiwei07    | 项目源码 | 文件源码
def hashable_rows(data, digits=None):
    '''
    We turn our array into integers, based on the precision 
    given by digits, and then put them in a hashable format. 

    Arguments
    ---------
    data:    (n,m) input array
    digits:  how many digits to add to hash, if data is floating point
             If none, TOL_MERGE will be turned into a digit count and used. 

    Returns
    ---------
    hashable:  (n) length array of custom data which can be sorted 
                or used as hash keys
    '''
    as_int   = float_to_int(data, digits)
    dtype    = np.dtype((np.void, as_int.dtype.itemsize * as_int.shape[1]))
    hashable = np.ascontiguousarray(as_int).view(dtype).reshape(-1)
    return hashable
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def mask_roi_digi(self):
        """
        Get the index of the unique magnitude tuple for each pixel in the ROI.
        """
        # http://stackoverflow.com/q/24205045/#24206440
        A = np.vstack([self.mask_1.mask_roi_sparse,self.mask_2.mask_roi_sparse]).T
        B = self.mask_roi_unique

        AA = np.ascontiguousarray(A)
        BB = np.ascontiguousarray(B)

        dt = np.dtype((np.void, AA.dtype.itemsize * AA.shape[1]))
        a = AA.view(dt).ravel()
        b = BB.view(dt).ravel()

        idx = np.argsort(b)
        indices = np.searchsorted(b[idx],a)
        return idx[indices]
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:phocnet    作者:ssudholt    | 项目源码 | 文件源码
def get_unique_rows(arr, return_indices=False):
        '''
        Returns the unique rows of the supplied array
        this code was originally proposed at stackoverflow
        http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array

        Args:
            arr (2d-ndarray): the array from which to extract the unique rows
            return_indices (bool): if true, the indices corresponding to the unique rows in arr are
                                   returned as well                        
        '''
        b = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
        _, idx = np.unique(b, return_index=True)

        # return the result
        if return_indices:
            return arr[idx], idx
        else:
            return arr[idx]
项目:wildflower-finder    作者:jw15    | 项目源码 | 文件源码
def find_rows(location_arr):
    iterable = zip(location_arr[:,0], location_arr[:,1])
    result_list = []
    for thing in combinations(iterable, 2):
        print(thing[0][1], thing[1][1])
        if float(thing[0][1]) == float(thing[1][1]):
            result_list.append(thing)
    return result_list

    # a = location_arr
    # b = np.copy(location_arr)
    # dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
    #
    # a_view = np.ascontiguousarray(a).view(dt).ravel()
    # b_view = np.ascontiguousarray(b).view(dt).ravel()
    #
    # sort_b = np.argsort(b_view)
    # where_in_b = np.searchsorted(b_view, a_view,
    #                              sorter=sort_b)
    # where_in_b = np.take(sort_b, where_in_b)
    # which_in_a = np.take(b_view, where_in_b) == a_view
    # where_in_b = where_in_b[which_in_a]
    # which_in_a = np.nonzero(which_in_a)[0]
    # return np.column_stack((which_in_a, where_in_b))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
                hardmask=False, copy=False, subok=True):
        _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
        _data = _data.view(self)
        _data._hardmask = hardmask
        if mask is not nomask:
            if isinstance(mask, np.void):
                _data._mask = mask
            else:
                try:
                    # Mask is already a 0D array
                    _data._mask = np.void(mask)
                except TypeError:
                    # Transform the mask to a void
                    mdtype = make_mask_descr(dtype)
                    _data._mask = np.array(mask, dtype=mdtype)[()]
        if fill_value is not None:
            _data.fill_value = fill_value
        return _data
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def filled(self, fill_value=None):
        """
        Return a copy with masked fields filled with a given value.

        Parameters
        ----------
        fill_value : scalar, optional
            The value to use for invalid entries (None by default).
            If None, the `fill_value` attribute is used instead.

        Returns
        -------
        filled_void
            A `np.void` object

        See Also
        --------
        MaskedArray.filled

        """
        return asarray(self).filled(fill_value)[()]
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def iterate(self, data):
        # for numpy.void, which can be iterated but mysteriously 
        # has no __iter__ (??)
        for x in data:
            yield x
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def updateKeys(self, data):
        if isinstance(data, dict):
            keys = list(data.keys())
        elif isinstance(data, list) or isinstance(data, tuple):
            keys = data
        elif isinstance(data, np.ndarray) or isinstance(data, np.void):
            keys = data.dtype.names
        else:
            print("Unknown data type:", type(data), data)
            return

        for c in self.ctrls.values():
            c.blockSignals(True)
        for c in [self.ctrls['x'], self.ctrls['y'], self.ctrls['size']]:
            cur = str(c.currentText())
            c.clear()
            for k in keys:
                c.addItem(k)
                if k == cur:
                    c.setCurrentIndex(c.count()-1)
        for c in [self.ctrls['color'], self.ctrls['border']]:
            c.setArgList(keys)
        for c in self.ctrls.values():
            c.blockSignals(False)

        self.keys = keys
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def iterate(self, data):
        # for numpy.void, which can be iterated but mysteriously 
        # has no __iter__ (??)
        for x in data:
            yield x
项目:risk-slim    作者:ustunb    | 项目源码 | 文件源码
def distinct(self):
        b = np.ascontiguousarray(self.solutions).view(np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
        _, unique_ind = np.unique(b, return_index = True)
        unique_ind = np.sort(unique_ind)
        new = self.copy()
        new.objvals = self.objvals[unique_ind]
        new.solutions = self.solutions[unique_ind]
        return new
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_from_dictproxy(self):
        # Tests for PR #5920
        dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']})
        assert_dtype_equal(dt, np.dtype(dt.fields))
        dt2 = np.dtype((np.void, dt.fields))
        assert_equal(dt2.fields, dt.fields)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def base_metadata_copied(self):
        d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1})))
        assert_equal(d.metadata, {'datum': 1})
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_name_dtype_subclass(self):
        # Ticket #4357
        class user_def_subcls(np.void):
            pass
        assert_equal(np.dtype(user_def_subcls).name, 'user_def_subcls')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_setfield_object(self):
        # make sure object field assignment with ndarray value
        # on void scalar mimics setitem behavior
        b = np.zeros(1, dtype=[('x', 'O')])
        # next line should work identically to b['x'][0] = np.arange(3)
        b[0]['x'] = np.arange(3)
        assert_equal(b[0]['x'], np.arange(3))

        # check that broadcasting check still works
        c = np.zeros(1, dtype=[('x', 'O', 5)])

        def testassign():
            c[0]['x'] = np.arange(3)

        assert_raises(ValueError, testassign)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_ip_types(self):
        unchecked_types = [str, unicode, np.void, object]

        x = np.random.random(1000)*100
        mask = x < 40

        for val in [-100, 0, 15]:
            for types in np.sctypes.values():
                for T in types:
                    if T not in unchecked_types:
                        yield self.tst_basic, x.copy().astype(T), T, mask, val
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_zeros0D(self):
        """Check creation of 0-dimensional objects"""
        h = np.zeros((), dtype=self._descr)
        self.assertTrue(normalize_descr(self._descr) == h.dtype.descr)
        self.assertTrue(h.dtype.fields['x'][0].name[:4] == 'void')
        self.assertTrue(h.dtype.fields['x'][0].char == 'V')
        self.assertTrue(h.dtype.fields['x'][0].type == np.void)
        # A small check that data is ok
        assert_equal(h['z'], np.zeros((), dtype='u1'))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_zerosSD(self):
        """Check creation of single-dimensional objects"""
        h = np.zeros((2,), dtype=self._descr)
        self.assertTrue(normalize_descr(self._descr) == h.dtype.descr)
        self.assertTrue(h.dtype['y'].name[:4] == 'void')
        self.assertTrue(h.dtype['y'].char == 'V')
        self.assertTrue(h.dtype['y'].type == np.void)
        # A small check that data is ok
        assert_equal(h['z'], np.zeros((2,), dtype='u1'))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _izip_fields_flat(iterable):
    """
    Returns an iterator of concatenated fields from a sequence of arrays,
    collapsing any nested structure.

    """
    for element in iterable:
        if isinstance(element, np.void):
            for f in _izip_fields_flat(tuple(element)):
                yield f
        else:
            yield element
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _izip_fields(iterable):
    """
    Returns an iterator of concatenated fields from a sequence of arrays.

    """
    for element in iterable:
        if (hasattr(element, '__iter__') and
                not isinstance(element, basestring)):
            for f in _izip_fields(element):
                yield f
        elif isinstance(element, np.void) and len(tuple(element)) == 1:
            for f in _izip_fields(element):
                yield f
        else:
            yield element
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def __getitem__(self, indx):
        result = self.dataiter.__getitem__(indx).view(type(self.ma))
        if self.maskiter is not None:
            _mask = self.maskiter.__getitem__(indx)
            if isinstance(_mask, ndarray):
                # set shape to match that of data; this is needed for matrices
                _mask.shape = result.shape
                result._mask = _mask
            elif isinstance(_mask, np.void):
                return mvoid(result, mask=_mask, hardmask=self.ma._hardmask)
            elif _mask:  # Just a scalar, masked
                return masked
        return result

    # This won't work if ravel makes a copy
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def __next__(self):
        """
        Return the next value, or raise StopIteration.

        Examples
        --------
        >>> x = np.ma.array([3, 2], mask=[0, 1])
        >>> fl = x.flat
        >>> fl.next()
        3
        >>> fl.next()
        masked_array(data = --,
                     mask = True,
               fill_value = 1e+20)
        >>> fl.next()
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
          File "/home/ralf/python/numpy/numpy/ma/core.py", line 2243, in next
            d = self.dataiter.next()
        StopIteration

        """
        d = next(self.dataiter)
        if self.maskiter is not None:
            m = next(self.maskiter)
            if isinstance(m, np.void):
                return mvoid(d, mask=m, hardmask=self.ma._hardmask)
            elif m:  # Just a scalar, masked
                return masked
        return d
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def __setattr__(self, attr, value):
        super(MaskedArray, self).__setattr__(attr, value)
        if attr == 'dtype' and self._mask is not nomask:
            self._mask = self._mask.view(make_mask_descr(value), ndarray)
            # Try to reset the shape of the mask (if we don't have a void)
            # This raises a ValueError if the dtype change won't work
            try:
                self._mask.shape = self.shape
            except (AttributeError, TypeError):
                pass
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def calc_entropy_for_specipic_t(current_ts, px_i):
    """Calc entropy for specipic t"""
    b2 = np.ascontiguousarray(current_ts).view(
        np.dtype((np.void, current_ts.dtype.itemsize * current_ts.shape[1])))
    unique_array, unique_inverse_t, unique_counts = \
        np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
    p_current_ts = unique_counts / float(sum(unique_counts))
    p_current_ts = np.asarray(p_current_ts, dtype=np.float64).T
    H2X = px_i * (-np.sum(p_current_ts * np.log2(p_current_ts)))
    return H2X