Python numpy 模块,alltrue() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.alltrue()

项目:chemblnet    作者:jaak-s    | 项目源码 | 文件源码
def test_sgld_sparse(self):
        tf.reset_default_graph()

        z     = tf.Variable(tf.zeros((5, 2)), dtype=tf.float32)
        idx   = tf.placeholder(tf.int32)
        zi    = tf.gather(z, idx)
        zloss = tf.square(zi - [10.0, 5.0])

        sgld = SGLD(learning_rate=0.4)
        train_op_sgld = sgld.minimize(zloss)

        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())

        self.assertTrue(np.alltrue(sess.run(z) == 0.0))

        sess.run(train_op_sgld, feed_dict={idx: 3})
        zh = sess.run(z)
        self.assertTrue(np.alltrue(zh[[0, 1, 2, 4], :] == 0.0))
        self.assertTrue(zh[3, 0] > 0)
项目:chemblnet    作者:jaak-s    | 项目源码 | 文件源码
def test_psgld_sparse(self):
        tf.reset_default_graph()

        z     = tf.Variable(tf.zeros((5, 2)), dtype=tf.float32)
        idx   = tf.placeholder(tf.int32)
        zi    = tf.gather(z, idx)
        zloss = tf.square(zi - [10.0, 5.0])

        psgld = pSGLD(learning_rate=0.4)
        train_op_psgld = psgld.minimize(zloss)

        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())

        self.assertTrue(np.alltrue(sess.run(z) == 0.0))

        sess.run(train_op_psgld, feed_dict={idx: 3})
        zh = sess.run(z)
        self.assertTrue(np.alltrue(zh[[0, 1, 2, 4], :] == 0.0))
        self.assertTrue(zh[3, 0] > 0)
项目:pohmm    作者:vmonaco    | 项目源码 | 文件源码
def _set_startprob(self, startprob):
        if startprob is None:
            startprob = np.ones(shape=(self.n_partial_states, self.n_hidden_states)) / self.n_hidden_states
        else:
            startprob = np.asarray(startprob, dtype=np.float)

        # check if there exists a component whose value is exactly zero
        # if so, add a small number and re-normalize
        if not np.alltrue(startprob):
            startprob = normalize(startprob, axis=1)

        if len(startprob) != self.n_partial_states:
            raise ValueError('startprob must have length n_partial_states')
        if not np.allclose(np.sum(startprob, axis=1), 1.0):
            raise ValueError('startprob must sum to 1.0')

        self._log_startprob = np.log(np.asarray(startprob).copy())
项目:pohmm    作者:vmonaco    | 项目源码 | 文件源码
def _set_steadyprob(self, steadyprob):
        if steadyprob is None:
            steadyprob = np.ones(shape=(self.n_partial_states, self.n_hidden_states)) / self.n_hidden_states
        else:
            steadyprob = np.asarray(steadyprob, dtype=np.float)

        # check if there exists a component whose value is exactly zero
        # if so, add a small number and re-normalize
        if not np.alltrue(steadyprob):
            steadyprob = normalize(steadyprob, axis=1)

        if len(steadyprob) != self.n_partial_states:
            raise ValueError('steadyprob must have length n_partial_states')
        if not np.allclose(np.sum(steadyprob, axis=1), 1.0):
            raise ValueError('steadyprob must sum to 1.0')

        self._log_steadyprob = np.log(np.asarray(steadyprob).copy())
项目:pohmm    作者:vmonaco    | 项目源码 | 文件源码
def _set_transmat(self, transmat):
        if transmat is None:
            transmat = np.ones(shape=(self.n_partial_states, self.n_partial_states, self.n_hidden_states,
                                      self.n_hidden_states)) / self.n_hidden_states

        # check if there exists a component whose value is exactly zero
        # if so, add a small number and re-normalize
        if not np.alltrue(transmat):
            transmat = normalize(transmat, axis=3)

        if (np.asarray(transmat).shape
                != (self.n_partial_states, self.n_partial_states, self.n_hidden_states, self.n_hidden_states)):
            raise ValueError('transmat must have shape '
                             '(n_partial_states,n_partial_states,n_hidden_states,n_hidden_states)')
        if not np.all(np.allclose(np.sum(transmat, axis=3), 1.0)):
            raise ValueError('Rows of transmat must sum to 1.0')

        self._log_transmat = np.log(np.asarray(transmat).copy())
        underflow_idx = np.isnan(self._log_transmat)
        self._log_transmat[underflow_idx] = NEGINF
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_backbone_dihedrals(self):
        self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile)
        self.feat.add_backbone_torsions()

        traj = mdtraj.load(self.asn_leu_pdbfile)
        Y = self.feat.transform(traj)
        assert(np.alltrue(Y >= -np.pi))
        assert(np.alltrue(Y <= np.pi))

        desc = self.feat.describe()
        self.assertEqual(len(desc), self.feat.dimension())

        # test ordering of indices
        backbone_feature = self.feat.active_features[0]
        angle_indices = backbone_feature.angle_indexes
        np.testing.assert_equal(angle_indices[0], backbone_feature._phi_inds[0])
        np.testing.assert_equal(angle_indices[1], backbone_feature._psi_inds[0])
        np.testing.assert_equal(angle_indices[2], backbone_feature._phi_inds[1])
        np.testing.assert_equal(angle_indices[3], backbone_feature._psi_inds[1])
项目:pyGAM    作者:dswah    | 项目源码 | 文件源码
def test_single_spline_penalty():
    """
    check that feature functions with only 1 basis are penalized correctly

    derivative penalty should be 0.
    l2 should penalty be 1.
    monotonic_ and convexity_ should be 0.
    """
    coef = np.array(1.)
    assert(np.alltrue(derivative(1, coef).A == 0.))
    assert(np.alltrue(l2(1, coef).A == 1.))
    assert(np.alltrue(monotonic_inc(1, coef).A == 0.))
    assert(np.alltrue(monotonic_dec(1, coef).A == 0.))
    assert(np.alltrue(convex(1, coef).A == 0.))
    assert(np.alltrue(concave(1, coef).A == 0.))
    assert(np.alltrue(circular(1, coef).A == 0.))
    assert(np.alltrue(none(1, coef).A == 0.))
项目:pysynphot    作者:spacetelescope    | 项目源码 | 文件源码
def arraysigtest(self,test,ref):
        #Raise an error if the arrays are not the same size
        if test.shape != ref.shape:
            raise ValueError("Array size mismatch")
        tt=test[2:-2]
        rr=ref[2:-2]
        #Identify the significant elements
        tidx=N.where(tt>(self.sigthresh*tt.max()))[0]
        ridx=N.where(rr>(self.sigthresh*rr.max()))[0]
        #Set a flag if they're not the same set
        if not (N.alltrue(tidx == ridx)):
            self.tra['SigElemDiscrep']=True
            tidx=ridx

        #Now compare only the significant elements.
        #We no longer need to exclude points with zero value, because
        #those points were already excluded as insignificant.
        self.arraytest(tt[ridx],rr[ridx])
项目:pysynphot    作者:spacetelescope    | 项目源码 | 文件源码
def arraytest(self,test,ref):
        #Exclude the endpoints where the gradient is very steep
        self.adiscrep=self.arraydiff(test,ref)#[2:-2]
        count=N.where(abs(self.adiscrep)>self.thresh)[0].size
        try:
            self.tra['Discrepfrac']=float(count)/self.adiscrep.size
            self.tra['Discrepmin']=self.adiscrep.min()
            self.tra['Discrepmax']=self.adiscrep.max()
            self.tra['Discrepmean']=self.adiscrep.mean()
            self.tra['Discrepstd']=self.adiscrep.std()
            self.tra['Outliers']=self.count_outliers(5)
            if (self.tra['Discrepfrac'] > self.superthresh):
                self.tra['Extreme']=True
            self.failUnless(N.alltrue(abs(self.adiscrep)<self.thresh),
                            msg="Worst case %f"%abs(self.adiscrep).max())
        except ZeroDivisionError:
            self.tra['Discrepfrac']=0.0
            self.tra['Discrepmin']=0.0
            self.tra['Discrepmax']=0.0
项目:pysynphot    作者:spacetelescope    | 项目源码 | 文件源码
def arraysigtest(self,ref,test):
        #Raise an error if the arrays are not the same size
        if test.shape != ref.shape:
            raise ValueError("Array size mismatch")
        tt=test[2:-2]
        rr=ref[2:-2]
        #Identify the significant elements
        tidx=N.where(tt>(self.sigthresh*tt.max()))[0]
        ridx=N.where(rr>(self.sigthresh*rr.max()))[0]
        #Set a flag if they're not the same set
        if not (N.alltrue(tidx == ridx)):
            self.tra['SigElemDiscrep']=True
            tidx=ridx

        #Now compare only the significant elements.
        #We no longer need to exclude points with zero value, because
        #those points were already excluded as insignificant.
        self.arraytest(tt[ridx],rr[ridx])
项目:pysynphot    作者:spacetelescope    | 项目源码 | 文件源码
def arraytest(self,ref,test):
        self.adiscrep=self.arraydiff(test,ref)
        count=N.where(abs(self.adiscrep)>self.thresh)[0].size
        try:
            self.tra['Discrepfrac']=float(count)/self.adiscrep.size
            self.tra['Discrepmin']=self.adiscrep.min()
            self.tra['Discrepmax']=self.adiscrep.max()
            self.tra['Discrepmean']=self.adiscrep.mean()
            self.tra['Discrepstd']=self.adiscrep.std()
            self.tra['Outliers']=self.count_outliers(5)
            self.failUnless(N.alltrue(abs(self.adiscrep)<self.thresh),
                            msg="Worst case %f"%abs(self.adiscrep).max())
        except ZeroDivisionError:
            self.tra['Discrepfrac']=0.0
            self.tra['Discrepmin']=0.0
            self.tra['Discrepmax']=0.0

#Helper method for scalar comparison
项目:tslearn    作者:rtavenar    | 项目源码 | 文件源码
def _arraylike_copy(arr):
    """Duplicate content of arr into a numpy array.

     Examples
     --------
     >>> X_npy = numpy.array([1, 2, 3])
     >>> numpy.alltrue(_arraylike_copy(X_npy) == X_npy)
     True
     >>> _arraylike_copy(X_npy) is X_npy
     False
     >>> numpy.alltrue(_arraylike_copy([1, 2, 3]) == X_npy)
     True
     """
    if type(arr) != numpy.ndarray:
        return numpy.array(arr)
    else:
        return arr.copy()
项目:collision    作者:EelcoHoogendoorn    | 项目源码 | 文件源码
def test_point_correctness():
    import itertools
    stencil = [-1, 0, 1]
    ndim = 3
    n = 2000
    stencil = itertools.product(*[stencil]*ndim)
    stencil = np.array(list(stencil)).astype(np.int32)

    points = (np.random.rand(n, ndim) * [1, 2, 3]).astype(np.float32)
    scale = 0.1

    spec = GridSpec(points, float(scale))
    offsets = spec.stencil(stencil).astype(np.int32)
    grid = PointGrid(spec, points, offsets)

    pairs = grid.pairs()

    from scipy.spatial import cKDTree
    tree = cKDTree(points)
    tree_pairs = tree.query_pairs(scale, output_type='ndarray')
    print(tree_pairs)
    print(pairs)

    assert np.alltrue(npi.unique(tree_pairs) == npi.unique(np.sort(pairs, axis=1)))
项目:collision    作者:EelcoHoogendoorn    | 项目源码 | 文件源码
def test_point_correctness():
    import itertools
    stencil = [-1, 0, 1]
    ndim = 3
    n = 2000
    stencil = itertools.product(*[stencil]*ndim)
    stencil = np.array(list(stencil)).astype(np.int32)

    points = (np.random.rand(n, ndim) * [1, 2, 3]).astype(np.float32)
    scale = 0.1

    spec = GridSpec(points, float(scale))
    offsets = spec.stencil(stencil).astype(np.int32)
    grid = PointGrid(spec, points, offsets)

    pairs = grid.pairs()

    from scipy.spatial import cKDTree
    tree = cKDTree(points)
    tree_pairs = tree.query_pairs(scale, output_type='ndarray')
    print(tree_pairs)
    print(pairs)

    assert np.alltrue(npi.unique(tree_pairs) == npi.unique(np.sort(pairs, axis=1)))
项目:chemcoord    作者:mcocdawc    | 项目源码 | 文件源码
def test_grad_zmat():
    path = os.path.join(STRUCTURE_PATH, 'MIL53_beta.xyz')
    molecule = cc.Cartesian.read_xyz(path, start_index=1)
    fragment = molecule.get_fragment([(12, 17), (55, 60)])
    connection = np.array([[3, 99, 1, 12], [17, 3, 99, 12], [60, 3, 17, 12]])
    connection = pd.DataFrame(connection[:, 1:], index=connection[:, 0],
                              columns=['b', 'a', 'd'])
    c_table = molecule.get_construction_table([(fragment, connection)])
    molecule = molecule.loc[c_table.index]

    x = sympy.symbols('x', real=True)

    dist_mol = molecule.copy()
    dist_mol.loc[:, ['x', 'y', 'z']] = 0.
    dist_mol.loc[13, 'x'] = x

    zmat_dist = molecule.get_grad_zmat(c_table)(dist_mol)

    moved_atoms = zmat_dist.index[
        (zmat_dist.loc[:, ['bond', 'angle', 'dihedral']] != 0.).any(axis=1)]

    assert moved_atoms[0] == 13
    assert np.alltrue(
        moved_atoms[1:] == c_table.index[(c_table == 13).any(axis=1)])
项目:chemcoord    作者:mcocdawc    | 项目源码 | 文件源码
def allclose(a, b, align=False, rtol=1.e-5, atol=1.e-8):
    """Compare two molecules for numerical equality.

    Args:
        a (Cartesian):
        b (Cartesian):
        align (bool): a and b are
            prealigned along their principal axes of inertia and moved to their
            barycenters before comparing.
        rtol (float): Relative tolerance for the numerical equality comparison
            look into :func:`numpy.allclose` for further explanation.
        atol (float): Relative tolerance for the numerical equality comparison
            look into :func:`numpy.allclose` for further explanation.

    Returns:
        bool:
    """
    return np.alltrue(isclose(a, b, align=align, rtol=rtol, atol=atol))
项目:pi_gcs    作者:lbusoni    | 项目源码 | 文件源码
def testVoltageLimitsAreSetAtStartUp(self):
        wanted= self._cfg.lowerVoltageLimit
        actual= self._ctrl.getLowerVoltageLimit(self._tt.ALL_CHANNELS)
        self.assertTrue(
            np.alltrue(wanted == actual),
            "%s %s" % (wanted, actual))

        wanted= self._cfg.upperVoltageLimit
        actual= self._ctrl.getUpperVoltageLimit(self._tt.ALL_CHANNELS)
        self.assertTrue(
            np.alltrue(wanted == actual),
            "%s %s" % (wanted, actual))
项目:pi_gcs    作者:lbusoni    | 项目源码 | 文件源码
def test3rdAxisIsSetAsPivotAtStartUp(self):
        pivot= self._ctrl.getAxesIdentifiers()[2]
        wanted= self._cfg.pivotValue
        actual= self._ctrl.getOpenLoopAxisValue(pivot)
        self.assertTrue(
            np.alltrue(wanted == actual),
            "%s %s" % (wanted, actual))
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def _prepare_injection_directions(self):
        """provide genotypic directions for TPA and selective mirroring,
        with no specific length normalization, to be used in the
        coming iteration.

        Details:
        This method is called in the end of `tell`. The result is
        assigned to ``self.pop_injection_directions`` and used in
        `ask_geno`.

        """
        # self.pop_injection_directions is supposed to be empty here
        if self.pop_injection_directions or self.pop_injection_solutions:
            raise ValueError("""Found unused injected direction/solutions.
                This could be a bug in the calling order/logics or due to
                a too small popsize used in `ask()` or when only using
                `ask(1)` repeatedly. """)
        ary = []
        if self.mean_shift_samples:
            ary = [self.mean - self.mean_old]
            ary.append(self.mean_old - self.mean)  # another copy!
            if np.alltrue(ary[-1] == 0.0):
                utils.print_warning('zero mean shift encountered',
                               '_prepare_injection_directions',
                               'CMAEvolutionStrategy', self.countiter)
        if self.opts['pc_line_samples']: # caveat: before, two samples were used
            ary.append(self.pc.copy())
        if self.sp.lam_mirr and (
                self.opts['CMA_mirrormethod'] == 2 or (
                    self.opts['CMA_mirrormethod'] == 1 and ( # replacement for direct selective mirrors
                        not hasattr(self, '_mirrormethod1_done') or
                        self._mirrormethod1_done < self.countiter - 1))):
            i0 = len(ary)
            ary += self.get_selective_mirrors()
            self._indices_of_selective_mirrors = range(i0, len(ary))
        self.pop_injection_directions = ary
        return ary
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_method_args(self, level=rlevel):
        # Make sure methods and functions have same default axis
        # keyword and arguments
        funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
                 ('sometrue', 'any'),
                 ('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
                 'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
                 'round', 'min', 'max', 'argsort', 'sort']
        funcs2 = ['compress', 'take', 'repeat']

        for func in funcs1:
            arr = np.random.rand(8, 7)
            arr2 = arr.copy()
            if isinstance(func, tuple):
                func_meth = func[1]
                func = func[0]
            else:
                func_meth = func
            res1 = getattr(arr, func_meth)()
            res2 = getattr(np, func)(arr2)
            if res1 is None:
                res1 = arr

            if res1.dtype.kind in 'uib':
                assert_((res1 == res2).all(), func)
            else:
                assert_(abs(res1-res2).max() < 1e-8, func)

        for func in funcs2:
            arr1 = np.random.rand(8, 7)
            arr2 = np.random.rand(8, 7)
            res1 = None
            if func == 'compress':
                arr1 = arr1.ravel()
                res1 = getattr(arr2, func)(arr1)
            else:
                arr2 = (15*arr2).astype(int).ravel()
            if res1 is None:
                res1 = getattr(arr1, func)(arr2)
            res2 = getattr(np, func)(arr1, arr2)
            assert_(abs(res1-res2).max() < 1e-8, func)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_fromiter_bytes(self):
        # Ticket #1058
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_fromiter_comparison(self, level=rlevel):
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_values(self):
        expected = np.array(list(self.makegen()))
        a = np.fromiter(self.makegen(), int)
        a20 = np.fromiter(self.makegen(), int, 20)
        self.assertTrue(np.alltrue(a == expected, axis=0))
        self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_nd(self):
        y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
        assert_(not np.all(y1))
        assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
        assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def fill_diagonal(a, val, wrap=False):
    """Fills the main diagonal of the given array of any dimensionality.

    For an array `a` with ``a.ndim > 2``, the diagonal is the list of
    locations with indices ``a[i, i, ..., i]`` all identical. This function
    modifies the input array in-place, it does not return a value.

    Args:
        a (cupy.ndarray): The array, at least 2-D.
        val (scalar): The value to be written on the diagonal.
            Its type must be compatible with that of the array a.
        wrap (bool): If specified, the diagonal is "wrapped" after N columns.
            This affects only tall matrices.

    Examples
    --------
    >>> a = cupy.zeros((3, 3), int)
    >>> cupy.fill_diagonal(a, 5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

     .. seealso:: :func:`numpy.fill_diagonal`
    """
    # The followings are imported from the original numpy
    if a.ndim < 2:
        raise ValueError('array must be at least 2-d')
    end = None
    if a.ndim == 2:
        step = a.shape[1] + 1
        if not wrap:
            end = a.shape[1] * a.shape[1]
    else:
        if not numpy.alltrue(numpy.diff(a.shape) == 0):
            raise ValueError('All dimensions of input must be of equal length')
        step = 1 + numpy.cumprod(a.shape[:-1]).sum()

    # Since the current cupy does not support a.flat,
    # we use a.ravel() instead of a.flat
    a.ravel()[:end:step] = val
项目:electrostatics    作者:tomduck    | 项目源码 | 文件源码
def fluxpoints(self, field, n, uniform=False):
        """Returns points where field lines should enter/exit the surface.

        The flux points are usually chosen so that they are equally separated
        in electric field flux.  However, if 'uniform' is True then the points
        are equispaced.

        This method requires that the flux be in xor out everywhere on the
        circle (unless 'uniform' is True)."""

        # Create a dense array of points around the circle
        a = radians(linspace(0, 360, 1001)) + self.a0
        assert len(a)%4 == 1
        x = self.r*array([cos(a), sin(a)]).T + self.x

        if uniform:
            flux = ones_like(a)

        else:
            # Get the flux through each point.  Ensure the fluxes are either
            # all in or all out.
            flux = field.projection(x, a)

            if numpy.sum(flux) < 0:
                flux *= -1
            assert alltrue(flux > 0)

        # Create an integrated flux curve
        intflux = insert(cumsum((flux[:-1]+flux[1:])/2), 0, 0)
        assert isclose(intflux[-1], numpy.sum(flux[:-1]))

        # Divide the integrated flux curve into n+1 portions, and calculate
        # the corresponding angles.
        v = linspace(0, intflux[-1], n+1)
        a = lininterp2(intflux, a, v)[:-1]

        return self.r*array([cos(a), sin(a)]).T + self.x
项目:kaggle-seizure-prediction    作者:sics-lm    | 项目源码 | 文件源码
def apply(self, data):
        # so that correlation matrix calculation doesn't crash
        for ch in data:
            if np.alltrue(ch == 0.0):
                ch[-1] += 0.00001

        data1 = data

        # if data1.shape[1] > self.max_hz:
        #     data1 = Resample(self.max_hz).apply(data1)

        if self.scale_option == 'usf':
            data1 = UnitScaleFeat().apply(data1)
        elif self.scale_option == 'us':
            data1 = UnitScale().apply(data1)

        data1 = CorrelationMatrix().apply(data1)

        if self.with_eigen:
            w = Eigenvalues().apply(data1)

        out = []
        if self.with_corr:
            data1 = upper_right_triangle(data1)
            out.append(data1)
        if self.with_eigen:
            out.append(w)

        for d in out:
            assert d.ndim == 1

        res = np.concatenate(out, axis=0)

        return res
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_method_args(self, level=rlevel):
        # Make sure methods and functions have same default axis
        # keyword and arguments
        funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
                 ('sometrue', 'any'),
                 ('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
                 'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
                 'round', 'min', 'max', 'argsort', 'sort']
        funcs2 = ['compress', 'take', 'repeat']

        for func in funcs1:
            arr = np.random.rand(8, 7)
            arr2 = arr.copy()
            if isinstance(func, tuple):
                func_meth = func[1]
                func = func[0]
            else:
                func_meth = func
            res1 = getattr(arr, func_meth)()
            res2 = getattr(np, func)(arr2)
            if res1 is None:
                res1 = arr

            if res1.dtype.kind in 'uib':
                assert_((res1 == res2).all(), func)
            else:
                assert_(abs(res1-res2).max() < 1e-8, func)

        for func in funcs2:
            arr1 = np.random.rand(8, 7)
            arr2 = np.random.rand(8, 7)
            res1 = None
            if func == 'compress':
                arr1 = arr1.ravel()
                res1 = getattr(arr2, func)(arr1)
            else:
                arr2 = (15*arr2).astype(int).ravel()
            if res1 is None:
                res1 = getattr(arr1, func)(arr2)
            res2 = getattr(np, func)(arr1, arr2)
            assert_(abs(res1-res2).max() < 1e-8, func)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_fromiter_bytes(self):
        # Ticket #1058
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_fromiter_comparison(self, level=rlevel):
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_values(self):
        expected = np.array(list(self.makegen()))
        a = np.fromiter(self.makegen(), int)
        a20 = np.fromiter(self.makegen(), int, 20)
        self.assertTrue(np.alltrue(a == expected, axis=0))
        self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_nd(self):
        y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
        assert_(not np.all(y1))
        assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
        assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
项目:pypher    作者:aboucaud    | 项目源码 | 文件源码
def trim(image, shape):
    """
    Trim image to a given shape

    Parameters
    ----------
    image: 2D `numpy.ndarray`
        Input image
    shape: tuple of int
        Desired output shape of the image

    Returns
    -------
    new_image: 2D `numpy.ndarray`
        Input image trimmed

    """
    shape = np.asarray(shape, dtype=int)
    imshape = np.asarray(image.shape, dtype=int)

    if np.alltrue(imshape == shape):
        return image

    if np.any(shape <= 0):
        raise ValueError("TRIM: null or negative shape given")

    dshape = imshape - shape
    if np.any(dshape < 0):
        raise ValueError("TRIM: target size bigger than source one")

    if np.any(dshape % 2 != 0):
        raise ValueError("TRIM: source and target shapes "
                         "have different parity")

    idx, idy = np.indices(shape)
    offx, offy = dshape // 2

    return image[idx + offx, idy + offy]
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_viterbi_decoder():    
    coded_bits, un_coded_bits = _generate_data()    
    vit_decoded = components.viterbi_decoder(coded_bits, rate=(2,3))

    assert np.alltrue(vit_decoded == un_coded_bits)
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_outer_deinterleaver():
    interleaved_bits = test_data['op_interleaved_bits']
    super_frame_start = test_data['op_super_frame_start']
    rate = test_data['op_rate']

    exp_coded_bits = test_data['op_coded_bits']
    exp_first_sync_byte_seq_num = test_data['op_first_sync_byte_seq_num']    

    coded_bits,first_sync_byte_seq_num = components.outer_deinterleaver(
                                         interleaved_bits, 
                                         super_frame_start,
                                         rate)

    assert np.alltrue(coded_bits == exp_coded_bits)
    assert first_sync_byte_seq_num == exp_first_sync_byte_seq_num
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_outer_decoder():
    coded_bits = test_data['op_coded_bits']
    first_sync_byte_seq_num = test_data['op_first_sync_byte_seq_num']

    exp_derandomized_bit_array = test_data['op_derandomized_bit_array']

    derandomized_bit_array = components.outer_decoder(coded_bits,
                                           first_sync_byte_seq_num)

    assert np.alltrue(derandomized_bit_array == exp_derandomized_bit_array)
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_inner_processing():
    data_carriers = test_data['ip_data_carriers']
    super_frame_start = test_data['ip_super_frame_start']

    exp_demultiplex_bits = test_data['ip_demultiplex_bits']

    demultiplex_bits = components.inner_processing(data_carriers, 
                                                   super_frame_start)

    assert np.alltrue(demultiplex_bits == exp_demultiplex_bits)
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_demodulate_edge_cases():
    data_carriers = np.array([1+2j, 
                              9+0j,
                              ])

    exp_demodulated = np.array([34,
                                59,
                                ])

    demodulated = components.demodulate(data_carriers)

    assert np.alltrue(demodulated == exp_demodulated)
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_symbol_deinterleaver():
    demodulated = test_data['ip_demodulated']
    super_frame_start = test_data['ip_super_frame_start']
    exp_symbol_deint = test_data['ip_symbol_deint']

    symbol_deint = components.symbol_deinterleaver(demodulated, 
                                                   super_frame_start)

    assert np.alltrue(symbol_deint==exp_symbol_deint)
项目:dvbt_decoder    作者:joneskm    | 项目源码 | 文件源码
def test_bit_deinterleaver():
    symbol_deint = test_data['ip_symbol_deint']
    exp_demultiplex_bits = test_data['ip_demultiplex_bits']

    demultiplex_bits = components.bit_deinterleaver(symbol_deint)

    assert np.alltrue(demultiplex_bits==exp_demultiplex_bits)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def rank(X, cond=1.0e-12):
    """
    Return the rank of a matrix X based on its generalized inverse,
    not the SVD.
    """
    X = np.asarray(X)
    if len(X.shape) == 2:
        import scipy.linalg as SL
        D = SL.svdvals(X)
        result = np.add.reduce(np.greater(D / D.max(), cond))
        return int(result.astype(np.int32))
    else:
        return int(not np.alltrue(np.equal(X, 0.)))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_method_args(self, level=rlevel):
        # Make sure methods and functions have same default axis
        # keyword and arguments
        funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
                 ('sometrue', 'any'),
                 ('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
                 'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
                 'round', 'min', 'max', 'argsort', 'sort']
        funcs2 = ['compress', 'take', 'repeat']

        for func in funcs1:
            arr = np.random.rand(8, 7)
            arr2 = arr.copy()
            if isinstance(func, tuple):
                func_meth = func[1]
                func = func[0]
            else:
                func_meth = func
            res1 = getattr(arr, func_meth)()
            res2 = getattr(np, func)(arr2)
            if res1 is None:
                res1 = arr

            if res1.dtype.kind in 'uib':
                assert_((res1 == res2).all(), func)
            else:
                assert_(abs(res1-res2).max() < 1e-8, func)

        for func in funcs2:
            arr1 = np.random.rand(8, 7)
            arr2 = np.random.rand(8, 7)
            res1 = None
            if func == 'compress':
                arr1 = arr1.ravel()
                res1 = getattr(arr2, func)(arr1)
            else:
                arr2 = (15*arr2).astype(int).ravel()
            if res1 is None:
                res1 = getattr(arr1, func)(arr2)
            res2 = getattr(np, func)(arr1, arr2)
            assert_(abs(res1-res2).max() < 1e-8, func)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_fromiter_bytes(self):
        # Ticket #1058
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_fromiter_comparison(self, level=rlevel):
        a = np.fromiter(list(range(10)), dtype='b')
        b = np.fromiter(list(range(10)), dtype='B')
        assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
        assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_values(self):
        expected = np.array(list(self.makegen()))
        a = np.fromiter(self.makegen(), int)
        a20 = np.fromiter(self.makegen(), int, 20)
        self.assertTrue(np.alltrue(a == expected, axis=0))
        self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_angles(self):
        sel = np.array([[1, 2, 5],
                        [1, 3, 8],
                        [2, 9, 10]], dtype=int)
        self.feat.add_angles(sel)
        assert(self.feat.dimension() == sel.shape[0])
        Y = self.feat.transform(self.traj)
        assert(np.alltrue(Y >= -np.pi))
        assert(np.alltrue(Y <= np.pi))
        self.assertEqual(len(self.feat.describe()), self.feat.dimension())
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_angles_deg(self):
        sel = np.array([[1, 2, 5],
                        [1, 3, 8],
                        [2, 9, 10]], dtype=int)
        self.feat.add_angles(sel, deg=True)
        assert(self.feat.dimension() == sel.shape[0])
        Y = self.feat.transform(self.traj)
        assert(np.alltrue(Y >= -180.0))
        assert(np.alltrue(Y <= 180.0))
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_angles_cossin(self):
        sel = np.array([[1, 2, 5],
                        [1, 3, 8],
                        [2, 9, 10]], dtype=int)
        self.feat.add_angles(sel, cossin=True)
        assert(self.feat.dimension() == 2 * sel.shape[0])
        Y = self.feat.transform(self.traj)
        assert(np.alltrue(Y >= -np.pi))
        assert(np.alltrue(Y <= np.pi))

        desc = self.feat.describe()
        self.assertEqual(len(desc), self.feat.dimension())
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_dihedrals(self):
        sel = np.array([[1, 2, 5, 6],
                        [1, 3, 8, 9],
                        [2, 9, 10, 12]], dtype=int)
        self.feat.add_dihedrals(sel)
        assert(self.feat.dimension() == sel.shape[0])
        Y = self.feat.transform(self.traj)
        assert(np.alltrue(Y >= -np.pi))
        assert(np.alltrue(Y <= np.pi))
        self.assertEqual(len(self.feat.describe()), self.feat.dimension())
项目:coordinates    作者:markovmodel    | 项目源码 | 文件源码
def test_dihedrals_deg(self):
        sel = np.array([[1, 2, 5, 6],
                        [1, 3, 8, 9],
                        [2, 9, 10, 12]], dtype=int)
        self.feat.add_dihedrals(sel, deg=True)
        assert(self.feat.dimension() == sel.shape[0])
        Y = self.feat.transform(self.traj)
        assert(np.alltrue(Y >= -180.0))
        assert(np.alltrue(Y <= 180.0))
        self.assertEqual(len(self.feat.describe()), self.feat.dimension())