我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.less_equal()。
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
def not_equal(x1, x2): """ Return (x1 != x2) element-wise. Unlike `numpy.not_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '!=', True)
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)
def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True)
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
def test_identity_equality_mismatch(self): a = np.array([np.nan], dtype=object) with warnings.catch_warnings(): warnings.filterwarnings('always', '', FutureWarning) assert_warns(FutureWarning, np.equal, a, a) assert_warns(FutureWarning, np.not_equal, a, a) with warnings.catch_warnings(): warnings.filterwarnings('error', '', FutureWarning) assert_raises(FutureWarning, np.equal, a, a) assert_raises(FutureWarning, np.not_equal, a, a) # And the other do not warn: with np.errstate(invalid='ignore'): np.less(a, a) np.greater(a, a) np.less_equal(a, a) np.greater_equal(a, a)
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
def points_in_front(self, points, inverted=False, ret_indices=False): ''' Given an array of points, return the points which lie either on the plane or in the half-space in front of it (i.e. in the direction of the plane normal). points: An array of points. inverted: When `True`, invert the logic. Return the points that lie behind the plane instead. ret_indices: When `True`, return the indices instead of the points themselves. ''' sign = self.sign(points) if inverted: mask = np.less_equal(sign, 0) else: mask = np.greater_equal(sign, 0) indices = np.flatnonzero(mask) return indices if ret_indices else points[indices]
def has_approx_support(m, m_hat, prob=0.01): """Returns 1 if model selection error is less than or equal to prob rate, 0 else. NOTE: why does np.nonzero/np.flatnonzero create so much problems? """ m_nz = np.flatnonzero(np.triu(m, 1)) m_hat_nz = np.flatnonzero(np.triu(m_hat, 1)) upper_diagonal_mask = np.flatnonzero(np.triu(np.ones(m.shape), 1)) not_m_nz = np.setdiff1d(upper_diagonal_mask, m_nz) intersection = np.in1d(m_hat_nz, m_nz) # true positives not_intersection = np.in1d(m_hat_nz, not_m_nz) # false positives true_positive_rate = 0.0 if len(m_nz): true_positive_rate = 1. * np.sum(intersection) / len(m_nz) true_negative_rate = 1. - true_positive_rate false_positive_rate = 0.0 if len(not_m_nz): false_positive_rate = 1. * np.sum(not_intersection) / len(not_m_nz) return int(np.less_equal(true_negative_rate + false_positive_rate, prob))
def atmax(a,upperlimit,dimension=None,inclusive=1): """ Returns the maximum value of a, along dimension, including only values greater than (or equal to, if inclusive=1) upperlimit. If the limit is set to None, a limit larger than the max value in the array is used. Usage: atmax(a,upperlimit,dimension=None,inclusive=1) """ if inclusive: upperfcn = N.less else: upperfcn = N.less_equal if dimension == None: a = N.ravel(a) dimension = 0 if upperlimit == None: upperlimit = N.maximum.reduce(N.ravel(a))+1 smallest = N.minimum.reduce(N.ravel(a)) ta = N.where(upperfcn(a,upperlimit),a,smallest) return N.maximum.reduce(ta,dimension)
def density_slice(rast, rel=np.less_equal, threshold=1000, nodata=-9999): ''' Returns a density slice from a given raster. Arguments: rast A gdal.Dataset or a NumPy array rel A NumPy logic function; defaults to np.less_equal threshold An integer number ''' # Can accept either a gdal.Dataset or numpy.array instance if not isinstance(rast, np.ndarray): rastr = rast.ReadAsArray() else: rastr = rast.copy() if (len(rastr.shape) > 2 and min(rastr.shape) > 1): raise ValueError('Expected a single-band raster array') return np.logical_and( rel(rastr, np.ones(rast.shape) * threshold), np.not_equal(rastr, np.ones(rast.shape) * nodata)).astype(np.int0)