Python numpy 模块,str_() 实例源码

我们从Python开源项目中,提取了以下45个代码示例,用于说明如何使用numpy.str_()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:mean-teacher    作者:CuriousAI    | 项目源码 | 文件源码
def test_stratified_batches():
    data = np.array([('a', -1), ('b', 0), ('c', 1), ('d', -1), ('e', -1)],
                    dtype=[('x', np.str_, 8), ('y', np.int32)])

    assert list(data['x']) == ['a', 'b', 'c', 'd', 'e']
    assert list(data['y']) == [-1, 0, 1, -1, -1]

    batch_generator = training_batches(data, batch_size=3, n_labeled_per_batch=1)

    first_ten_batches = list(islice(batch_generator, 10))

    labeled_batch_portions = [batch[:1] for batch in first_ten_batches]
    unlabeled_batch_portions = [batch[1:] for batch in first_ten_batches]

    labeled_epochs = np.split(np.concatenate(labeled_batch_portions), 5)
    unlabeled_epochs = np.split(np.concatenate(unlabeled_batch_portions), 4)

    assert ([sorted(items['x'].tolist()) for items in labeled_epochs] ==
            [['b', 'c']] * 5)
    assert ([sorted(items['y'].tolist()) for items in labeled_epochs] ==
            [[0, 1]] * 5)
    assert ([sorted(items['x'].tolist()) for items in unlabeled_epochs] ==
            [['a', 'b', 'c', 'd', 'e']] * 4)
    assert ([sorted(items['y'].tolist()) for items in unlabeled_epochs] ==
            [[-1, -1, -1, -1, -1]] * 4)
项目:score_card_base_python    作者:zzstrwolf    | 项目源码 | 文件源码
def discrete(self, x, bin=5):
        #res = np.array([0] * x.shape[-1], dtype=int)
        #?????????????????????WOE?????????????<=?WOE??
        x_copy = pd.Series.copy(x)
        x_copy = x_copy.astype(str)
        #x_copy = x_copy.astype(np.str_)
        #x_copy = x
        x_gt0 = x[x>=0]
        #if x.name == 'TD_PLTF_CNT_1M':
            #bin = 5
            #x_gt0 = x[(x>=0) & (x<=24)]

        for i in range(bin):
            point1 = stats.scoreatpercentile(x_gt0, i * (100.0/bin))
            point2 = stats.scoreatpercentile(x_gt0, (i + 1) * (100.0/bin))
            x1 = x[(x >= point1) & (x <= point2)]
            mask = np.in1d(x, x1)
            #x_copy[mask] = i + 1
            x_copy[mask] = '%s-%s' % (point1,point2)
            #x_copy[mask] = point1
            #print x_copy[mask]
            #print x
        #print x
        return x_copy
项目:score_card_base_python    作者:zzstrwolf    | 项目源码 | 文件源码
def grade(self, x, bin=5):
        #res = np.array([0] * x.shape[-1], dtype=int)
        #?????????????????????WOE?????????????<=?WOE??
        x_copy = np.copy(x)
        #x_copy = x_copy.astype(str)
        #x_copy = x_copy.astype(np.str_)
        #x_copy = x
        x_gt0 = x[x>=0]

        for i in range(bin):
            point1 = stats.scoreatpercentile(x_gt0, i * (100.0/bin))
            point2 = stats.scoreatpercentile(x_gt0, (i + 1) * (100.0/bin))
            x1 = x[(x >= point1) & (x <= point2)]
            mask = np.in1d(x, x1)
            #x_copy[mask] = i + 1
            x_copy[mask] = i + 1
            #x_copy[mask] = point1
            #print x_copy[mask]
            #print x
            print point1,point2
        #print x
        return x_copy
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return false and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentaiton purpose, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations is done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return false and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentaiton purpose, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations is done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:loompy    作者:linnarsson-lab    | 项目源码 | 文件源码
def normalize_attr_strings(a: np.ndarray) -> np.ndarray:
    """
    Take an np.ndarray of all kinds of string-like elements, and return an array of ascii (np.string_) objects
    """
    if np.issubdtype(a.dtype, np.object_):
        if np.all([type(x) is str for x in a]) or np.all([type(x) is np.str_ for x in a]) or np.all([type(x) is np.unicode_ for x in a]):
            return np.array([x.encode('ascii', 'xmlcharrefreplace') for x in a])
        elif np.all([type(x) is np.string_ for x in a]) or np.all([type(x) is np.bytes_ for x in a]):
            return a.astype("string_")
        else:
            print(type(a[0]))
            raise ValueError("Arbitrary numpy object arrays not supported (all elements must be string objects).")
    elif np.issubdtype(a.dtype, np.string_) or np.issubdtype(a.dtype, np.object_):
        return a
    elif np.issubdtype(a.dtype, np.str_) or np.issubdtype(a.dtype, np.unicode_):
        return np.array([x.encode('ascii', 'xmlcharrefreplace') for x in a])
    else:
        raise ValueError("String values must be object, ascii or unicode.")
项目:loompy    作者:linnarsson-lab    | 项目源码 | 文件源码
def materialize_attr_values(a: np.ndarray) -> np.ndarray:
    scalar = False
    if np.isscalar(a):
        scalar = True
        a = np.array([a])
    result: np.ndarray = None
    if np.issubdtype(a.dtype, np.string_):
        # First ensure that what we load is valid ascii (i.e. ignore anything outside 7-bit range)
        temp = np.array([x.decode('ascii', 'ignore') for x in a])
        # Then unescape XML entities and convert to unicode
        result = np.array([html.unescape(x) for x in temp.astype(str)], dtype=np.str_)
    elif np.issubdtype(a.dtype, np.str_) or np.issubdtype(a.dtype, np.unicode_):
        result = np.array(a.astype(str), dtype=np.str_)
    else:
        result = a
    if scalar:
        return result[0]
    else:
        return result
项目:lim    作者:limix    | 项目源码 | 文件源码
def npy2py_type(npy_type):
    int_types = [
        np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64,
        np.uint8, np.uint16, np.uint32, np.uint64
    ]

    float_types = [np.float_, np.float16, np.float32, np.float64]

    bytes_types = [np.str_, np.string_]

    if npy_type in int_types:
        return int
    if npy_type in float_types:
        return float
    if npy_type in bytes_types:
        return bytes

    if hasattr(npy_type, 'char'):
        if npy_type.char in ['S', 'a']:
            return bytes
        raise TypeError

    return npy_type
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_scalar_none_comparison(self):
        # Scalars should still just return False and not give a warnings.
        # The comparisons are flagged by pep8, ignore that.
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_(not np.float32(1) == None)
            assert_(not np.str_('test') == None)
            # This is dubious (see below):
            assert_(not np.datetime64('NaT') == None)

            assert_(np.float32(1) != None)
            assert_(np.str_('test') != None)
            # This is dubious (see below):
            assert_(np.datetime64('NaT') != None)
        assert_(len(w) == 0)

        # For documentation purposes, this is why the datetime is dubious.
        # At the time of deprecation this was no behaviour change, but
        # it has to be considered when the deprecations are done.
        assert_(np.equal(np.datetime64('NaT'), None))
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def initialize(self):
        """Initialize FixPandasDataFrame"""

        self.check_arg_types(read_key=str, store_key=str)
        self.check_arg_types(recurse=True, allow_none=True, original_columns=str)
        self.check_arg_vals('read_key')

        if not isinstance(self.cleanup_string_columns, list) and not isinstance(self.cleanup_string_columns, bool):
            raise AssertionError('cleanup_string_columns should be a list of column names or boolean.')

        if self.read_key == self.store_key:
            self.inplace = True
            self.log().debug('store_key equals read_key; inplace has been set to "True"')

        if self.inplace:
            self.store_key = self.read_key
            self.log().debug('store_key has been set to read_key "%s"', self.store_key)

        if not self.store_key:
            self.store_key = self.read_key + '_fix'
            self.log().debug('store_key has been set to "%s"', self.store_key)

        # check data types
        for k in self.var_dtype.keys():
            if k not in self.contaminated_columns:
                self.contaminated_columns.append(k)
            try:
                # convert to consistent types
                dt = np.dtype(self.var_dtype[k]).type
                if dt is np.str_ or dt is np.object_:
                    dt = str
                self.var_dtype[k] = dt
            except BaseException:
                raise TypeError('unknown assigned datatype to variable "%s"' % k)

        return StatusCode.Success
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:MIT-Thesis    作者:alec-heif    | 项目源码 | 文件源码
def test_string(self):
        lr = LogisticRegression()
        for col in ['features', u'features', np.str_('features')]:
            lr.setFeaturesCol(col)
            self.assertEqual(lr.getFeaturesCol(), 'features')
        self.assertRaises(TypeError, lambda: LogisticRegression(featuresCol=2.3))
项目:MIT-Thesis    作者:alec-heif    | 项目源码 | 文件源码
def _can_convert_to_string(value):
        vtype = type(value)
        return isinstance(value, basestring) or vtype in [np.unicode_, np.string_, np.str_]
项目:MIT-Thesis    作者:alec-heif    | 项目源码 | 文件源码
def toString(value):
        """
        Convert a value to a string, if possible.
        """
        if isinstance(value, basestring):
            return value
        elif type(value) in [np.string_, np.str_]:
            return str(value)
        elif type(value) == np.unicode_:
            return unicode(value)
        else:
            raise TypeError("Could not convert %s to string type" % type(value))
项目:describe    作者:SINGROUP    | 项目源码 | 文件源码
def symbols_to_numbers(symbols):
    """Given element symbol(s), return the atomic number(s) (number of protons).

    Args:
        symbols (str or list of str): Atomic symbol(s).

    Returns:
        ndarray: Atomic number(s) (number of protons).

    Raises:
        ValueError: If a given atomic symbol is invalid and doesn't have a
        corresponding number.
    """
    single_value = False
    if isinstance(symbols, (str, np.str_)):
        symbols = [symbols]
        single_value = True
    numbers = []
    for symbol in symbols:
        number = SYMBOL_TO_NUMBER_MAP.get(symbol)
        if number is None:
            raise ValueError(
                "Given atomic symbol {} is invalid and doesn't have a number "
                "associated with it.".format(symbol)
            )
        numbers.append(number)
    return numbers[0] if single_value else np.array(numbers)
项目:Dragonfly    作者:duaneloh    | 项目源码 | 文件源码
def init_list(self):
        if self.fname is '' or not os.path.isfile(self.fname):
            sys.stderr.write('Initializing empty class list\n')
            self.clist = np.zeros((self.num_frames,), dtype=np.str_)
        else:
            self.clist = self.load()
        self.key, self.key_pos, self.key_counts = np.unique(self.clist, return_inverse=True, return_counts=True)
项目:automatic-portrait-tf    作者:Corea    | 项目源码 | 文件源码
def main():
    net = caffe.Net(MODEL_DEF, MODEL_WEIGHT, caffe.TRAIN)

    mat = []
    for i in range(len(net.layers)):
        mat_type = net.layers[i].type
        mat_data = []
        for j in range(len(net.layers[i].blobs)):
            mat_data.append(net.layers[i].blobs[j].data)
        mat.append((mat_type, mat_data))

    dt = np.dtype([('type', np.str_, 16), ('data', np.ndarray)])
    results = np.array(mat, dtype=dt)
    results.dump(MAT_RESULT)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:packaging    作者:blockstack    | 项目源码 | 文件源码
def encode_ascii(s):
        if isinstance(s, str):
            return s.encode('ascii')
        elif isinstance(s, numpy.ndarray) and \
                issubclass(s.dtype.type, numpy.str_):
            ns = numpy.char.encode(s, 'ascii').view(type(s))
            if ns.dtype.itemsize != s.dtype.itemsize / 4:
                ns = ns.astype((numpy.bytes_, s.dtype.itemsize / 4))
            return ns
        return s
项目:packaging    作者:blockstack    | 项目源码 | 文件源码
def decode_ascii(s):
        if isinstance(s, bytes):
            return s.decode('ascii')
        elif (isinstance(s, numpy.ndarray) and
              issubclass(s.dtype.type, numpy.bytes_)):
            # np.char.encode/decode annoyingly don't preserve the type of the
            # array, hence the view() call
            # It also doesn't necessarily preserve widths of the strings,
            # hence the astype()
            ns = numpy.char.decode(s, 'ascii').view(type(s))
            if ns.dtype.itemsize / 4 != s.dtype.itemsize:
                ns = ns.astype((numpy.str_, s.dtype.itemsize))
            return ns
        return s
项目:score_card_base_python    作者:zzstrwolf    | 项目源码 | 文件源码
def regroup(df,column,split_points):
        for i in range(len(split_points)-1):
            df[column][(df[column]>=split_points[i]) & (df[column]<=split_points[i+1])] = '%s-%s' % (split_points[i],split_points[i+1])
        df[column] = df[column].astype(np.str_)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_astype_str(self):
        # GH4405
        digits = string.digits
        s1 = Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)])
        s2 = Series([digits * 10, tm.rands(63), tm.rands(64), nan, 1.0])
        types = (compat.text_type, np.str_)
        for typ in types:
            for s in (s1, s2):
                res = s.astype(typ)
                expec = s.map(compat.text_type)
                assert_series_equal(res, expec)

        # GH9757
        # Test str and unicode on python 2.x and just str on python 3.x
        for tt in set([str, compat.text_type]):
            ts = Series([Timestamp('2010-01-04 00:00:00')])
            s = ts.astype(tt)
            expected = Series([tt('2010-01-04')])
            assert_series_equal(s, expected)

            ts = Series([Timestamp('2010-01-04 00:00:00', tz='US/Eastern')])
            s = ts.astype(tt)
            expected = Series([tt('2010-01-04 00:00:00-05:00')])
            assert_series_equal(s, expected)

            td = Series([Timedelta(1, unit='d')])
            s = td.astype(tt)
            expected = Series([tt('1 days 00:00:00.000000000')])
            assert_series_equal(s, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_constructor_empty_with_string_dtype(self):
        # GH 9428
        expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object)

        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str)
        assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_)
        assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_)
        assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5')
        assert_frame_equal(df, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_numpy_informed(self):

        # np.dtype doesn't know about our new dtype
        def f():
            np.dtype(self.dtype)

        self.assertRaises(TypeError, f)

        self.assertNotEqual(self.dtype, np.str_)
        self.assertNotEqual(np.str_, self.dtype)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_isscalar_numpy_array_scalars(self):
        self.assertTrue(lib.isscalar(np.int64(1)))
        self.assertTrue(lib.isscalar(np.float64(1.)))
        self.assertTrue(lib.isscalar(np.int32(1)))
        self.assertTrue(lib.isscalar(np.object_('foobar')))
        self.assertTrue(lib.isscalar(np.str_('foobar')))
        self.assertTrue(lib.isscalar(np.unicode_(u('foobar'))))
        self.assertTrue(lib.isscalar(np.bytes_(b'foobar')))
        self.assertTrue(lib.isscalar(np.datetime64('2014-01-01')))
        self.assertTrue(lib.isscalar(np.timedelta64(1, 'h')))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:larray-editor    作者:larray-project    | 项目源码 | 文件源码
def set_format(self, data, digits, scientific):
        """data: object with a dtype attribute"""
        type = data.dtype.type
        if type in (np.str, np.str_, np.bool_, np.bool, np.object_):
            fmt = '%s'
        else:
            # XXX: use self.digits_spinbox.getValue() and instead?
            # XXX: use self.digits_spinbox.getValue() instead?
            format_letter = 'e' if scientific else 'f'
            fmt = '%%.%d%s' % (digits, format_letter)
        # this does not call model_data.reset() so it should be called by the caller
        self.model_data._set_format(fmt)
项目:larray-editor    作者:larray-project    | 项目源码 | 文件源码
def to_excel(self):
        """View selection in Excel"""
        if xw is None:
            QMessageBox.critical(self, "Error", "to_excel() is not available because xlwings is not installed")
        data = self._selection_data()
        if data is None:
            return
        # convert (row) generators to lists then array
        # TODO: the conversion to array is currently necessary even though xlwings will translate it back to a list
        #       anyway. The problem is that our lists contains numpy types and especially np.str_ crashes xlwings.
        #       unsure how we should fix this properly: in xlwings, or change _selection_data to return only standard
        #       Python types.
        xw.view(np.array([list(r) for r in data]))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:mxnet_tk1    作者:starimpact    | 项目源码 | 文件源码
def get_data(lst,preproc):
   data = []
   result = []
   for path in lst:
       f = dicom.read_file(path)
       img = preproc(f.pixel_array.astype(float) / np.max(f.pixel_array))
       dst_path = path.rsplit(".", 1)[0] + ".64x64.jpg"
       scipy.misc.imsave(dst_path, img)
       result.append(dst_path)
       data.append(img)
   data = np.array(data, dtype=np.uint8)
   data = data.reshape(data.size)
   data = np.array(data,dtype=np.str_)
   data = data.reshape(data.size)
   return [data,result]
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_structure_format(self):
        dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
        x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
        assert_equal(np.array2string(x),
                "[('Sarah', [ 8.,  7.]) ('John', [ 6.,  7.])]")

        # for issue #5692
        A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
        A[5:].fill(np.nan)
        assert_equal(np.array2string(A),
                "[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) " +
                "('1970-01-01T00:00:00',)\n ('1970-01-01T00:00:00',) " +
                "('1970-01-01T00:00:00',) ('NaT',) ('NaT',)\n " +
                "('NaT',) ('NaT',) ('NaT',)]")

        # See #8160
        struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
        assert_equal(np.array2string(struct_int),
                "[([  1,  -1],) ([123,   1],)]")
        struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
                dtype=[('B', 'i4', (2, 2))])
        assert_equal(np.array2string(struct_2dint),
                "[([[ 0,  1], [ 2,  3]],) ([[12,  0], [ 0,  0]],)]")

        # See #8172
        array_scalar = np.array(
                (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
        assert_equal(np.array2string(array_scalar), "( 1.,  2.12345679,  3.)")
项目:ANI1_dataset    作者:isayev    | 项目源码 | 文件源码
def store_data(self, store_loc, **kwargs):
        """Put arrays to store
        """
        #print(store_loc)
        g = self.store.create_group(store_loc)
        for k, v, in kwargs.items():
            #print(type(v[0]))

            #print(k)
            if type(v) == list:
                if len(v) != 0:
                    if type(v[0]) is np.str_ or type(v[0]) is str:
                        v = [a.encode('utf8') for a in v]

            g.create_dataset(k, data=v, compression=self.clib, compression_opts=self.clev)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def get_datinfo(cutoutid,setupdic):
    """
    Function returning information on file names etc. for both default run and cutout run

    --- INPUT ---
    cutoutid        ID to return information for
    setupdic        Dictionary containing the setup parameters read from the TDOSE setup file

    """
    if cutoutid == -9999:
        cutstr       = None
        imgsize      = setupdic['cutout_sizes']
        refimg       = setupdic['ref_image']
        datacube     = setupdic['data_cube']
        variancecube = setupdic['noise_cube']
        sourcecat    = setupdic['source_catalog']
    else:
        if type(setupdic['cutout_sizes']) == np.str_:
            sizeinfo = np.genfromtxt(setupdic['cutout_sizes'],dtype=None,comments='#')
            objent   = np.where(sizeinfo[:,0] == cutoutid)[0]

            if len(objent) > 1:
                sys.exit(' ---> More than one match in '+setupdic['cutout_sizes']+' for object '+str(cutoutid))
            elif len(objent) == 0:
                sys.exit(' ---> No match in '+setupdic['cutout_sizes']+' for object '+str(cutoutid))
            else:
                imgsize   = sizeinfo[objent,1:][0].astype(float).tolist()
        else:
            imgsize   = setupdic['cutout_sizes']

        cutstr          = ('_id'+str(int(cutoutid))+'_cutout'+str(imgsize[0])+'x'+str(imgsize[1])+'arcsec').replace('.','p')
        img_init_base   = setupdic['ref_image'].split('/')[-1]
        cube_init_base  = setupdic['data_cube'].split('/')[-1]
        var_init_base   = setupdic['variance_cube'].split('/')[-1]

        cut_img         = setupdic['cutout_directory']+img_init_base.replace('.fits',cutstr+'.fits')
        cut_cube        = setupdic['cutout_directory']+cube_init_base.replace('.fits',cutstr+'.fits')
        cut_variance    = setupdic['cutout_directory']+var_init_base.replace('.fits',cutstr+'.fits')
        cut_sourcecat   = setupdic['source_catalog'].replace('.fits',cutstr+'.fits')

        if setupdic['wht_image'] is None:
            refimg          = cut_img
        else:
            wht_init_base   = setupdic['wht_image'].split('/')[-1]
            wht_img         = setupdic['cutout_directory']+wht_init_base.replace('.fits',cutstr+'.fits')
            refimg          = [cut_img,wht_img]

        datacube        = cut_cube
        variancecube    = cut_variance
        sourcecat       = cut_sourcecat


    return cutstr, imgsize, refimg, datacube, variancecube, sourcecat
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _infer_dtype_from_scalar(val):
    """ interpret the dtype from a scalar """

    dtype = np.object_

    # a 1-element ndarray
    if isinstance(val, np.ndarray):
        if val.ndim != 0:
            raise ValueError(
                "invalid ndarray passed to _infer_dtype_from_scalar")

        dtype = val.dtype
        val = val.item()

    elif isinstance(val, compat.string_types):

        # If we create an empty array using a string to infer
        # the dtype, NumPy will only allocate one character per entry
        # so this is kind of bad. Alternately we could use np.repeat
        # instead of np.empty (but then you still don't want things
        # coming out as np.str_!

        dtype = np.object_

    elif isinstance(val, (np.datetime64,
                          datetime)) and getattr(val, 'tzinfo', None) is None:
        val = lib.Timestamp(val).value
        dtype = np.dtype('M8[ns]')

    elif isinstance(val, (np.timedelta64, timedelta)):
        val = tslib.convert_to_timedelta(val, 'ns')
        dtype = np.dtype('m8[ns]')

    elif is_bool(val):
        dtype = np.bool_

    elif is_integer(val):
        if isinstance(val, np.integer):
            dtype = type(val)
        else:
            dtype = np.int64

    elif is_float(val):
        if isinstance(val, np.floating):
            dtype = type(val)
        else:
            dtype = np.float64

    elif is_complex(val):
        dtype = np.complex_

    return dtype, val
项目:PoseNet    作者:bellatoris    | 项目源码 | 文件源码
def make_dataset(dir, train=True):
    paths = None
    poses = None
    # ??? ? ??? ?
    for target in os.listdir(dir):
        target_dir = os.path.join(dir, target)
        # if not os.path.isdir(target_dir) or target == "Street" or target == "GreatCourt":
        # if not os.path.isdir(target_dir):
        if not target == "KingsCollege":
            continue

        # ?? ??? ?? ??? ?? ???? ??? ? ?
        if train:
            path = np.genfromtxt(os.path.join(target_dir, 'dataset_train.txt'),
                                 dtype=np.str_, delimiter=' ', skip_header=3,
                                 usecols=[0])
            pose = np.genfromtxt(os.path.join(target_dir, 'dataset_train.txt'),
                                 dtype=np.float32, delimiter=' ', skip_header=3,
                                 usecols=[1, 2, 3, 4, 5, 6, 7])
        else:
            path = np.genfromtxt(os.path.join(target_dir, 'dataset_test.txt'),
                                 dtype=np.str_, delimiter=' ', skip_header=3,
                                 usecols=[0])
            pose = np.genfromtxt(os.path.join(target_dir, 'dataset_test.txt'),
                                 dtype=np.float32, delimiter=' ', skip_header=3,
                                 usecols=[1, 2, 3, 4, 5, 6, 7])
        # order ? path ? ????? ???
        order = path.argsort()

        # order ? sorting
        path1 = path[order]
        pose1 = pose[order]

        # reverse order ?? sorting
        path2 = path[order[-2::-1]]
        pose2 = pose[order[-2::-1]]

        # concat
        path = np.hstack((path1, path2))
        pose = np.vstack((pose1, pose2))

        path = np.core.defchararray.add(target + '/', path)

        if paths is None:
            paths = path
            poses = pose
        else:
            paths = np.hstack((paths, path))
            poses = np.vstack((poses, pose))

    return paths, poses
项目:larray-editor    作者:larray-project    | 项目源码 | 文件源码
def data(self, index, role=Qt.DisplayRole):
        """Cell content"""
        if not index.isValid():
            return to_qvariant()
        # if role == Qt.DecorationRole:
        #     return ima.icon('editcopy')
        # if role == Qt.DisplayRole:
        #     return ""

        if role == Qt.TextAlignmentRole:
            return to_qvariant(int(Qt.AlignRight | Qt.AlignVCenter))
        elif role == Qt.FontRole:
            return self.font

        value = self.get_value(index)
        if role == Qt.DisplayRole:
            if value is np.ma.masked:
                return ''
            # for headers
            elif isinstance(value, str) and not isinstance(value, np.str_):
                return value
            else:
                return to_qvariant(self._format % value)
        elif role == Qt.BackgroundColorRole:
            if self.bgcolor_possible and self.bg_gradient is not None and value is not np.ma.masked:
                if self.bg_value is None:
                    try:
                        v = self.color_func(value) if self.color_func is not None else value
                        if -np.inf < v < self.vmin:
                            # TODO: this is suboptimal, as it can reset many times (though in practice, it is usually
                            #       ok). When we get buffering, we will need to compute vmin/vmax on the whole buffer
                            #       at once, eliminating this problem (and we could even compute final colors directly
                            #       all at once)
                            self.vmin = v
                            self.reset()
                        elif self.vmax < v < np.inf:
                            self.vmax = v
                            self.reset()
                        v = scale_to_01range(v, self.vmin, self.vmax)
                    except TypeError:
                        v = np.nan
                else:
                    i, j = index.row(), index.column()
                    v = self.bg_value[i, j]
                return self.bg_gradient[v]
        # elif role == Qt.ToolTipRole:
        #     return to_qvariant("{}\n{}".format(repr(value),self.get_labels(index)))
        return to_qvariant()
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('file')
    args = parser.parse_args()
    print("Using file %s" % args.file)

    if not os.path.isfile(args.file):
        raise FileNotFoundError("Couldn't find file at '%s'" % args.file)
    if args.file.split('.')[-1] != 'mat':
        raise ValueError("File '%s' not a valid mat file" % args.file)

    file = args.file
    name = file.split('.')[0]
    outfile = '.'.join([name, 'csv'])

    data = sio.loadmat(file)

    keys = ['classification_id', 'user_name','user_id',\
            'annotation','gold_label','machine_score', \
            'diff','object_id','subject_id','mag','mag_err']

    count = 0

    with open(outfile, 'w') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=keys)
        writer.writeheader()


        for index in range(len(data['classification_id'][0])):
            d = {}

            for key in keys:
                #print(key, data[key], type(data[key][0]))
                if type(data[key][0]) is numpy.str_:
                    d[key] = data[key][index].strip()
                else:
                    d[key] = data[key][0][index]


            writer.writerow(d)

            sys.stdout.write("%d records processed\r" % count)
            sys.stdout.flush()

            count += 1
项目:WellApplication    作者:inkenbrandt    | 项目源码 | 文件源码
def get_wqp_results(self, service, **kwargs):
        """Bring data from WQP site into a Pandas DataFrame for analysis"""

        # set data types
        Rdtypes = {"OrganizationIdentifier": np.str_, "OrganizationFormalName": np.str_, "ActivityIdentifier": np.str_,
                   "ActivityStartTime/Time": np.str_,
                   "ActivityTypeCode": np.str_, "ActivityMediaName": np.str_, "ActivityMediaSubdivisionName": np.str_,
                   "ActivityStartDate": np.str_, "ActivityStartTime/TimeZoneCode": np.str_,
                   "ActivityEndDate": np.str_, "ActivityEndTime/Time": np.str_, "ActivityEndTime/TimeZoneCode": np.str_,
                   "ActivityDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ActivityDepthAltitudeReferencePointText": np.str_,
                   "ActivityTopDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityTopDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ActivityBottomDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityBottomDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ProjectIdentifier": np.str_, "ActivityConductingOrganizationText": np.str_,
                   "MonitoringLocationIdentifier": np.str_, "ActivityCommentText": np.str_,
                   "SampleAquifer": np.str_, "HydrologicCondition": np.str_, "HydrologicEvent": np.str_,
                   "SampleCollectionMethod/MethodIdentifier": np.str_,
                   "SampleCollectionMethod/MethodIdentifierContext": np.str_,
                   "SampleCollectionMethod/MethodName": np.str_, "SampleCollectionEquipmentName": np.str_,
                   "ResultDetectionConditionText": np.str_, "CharacteristicName": np.str_,
                   "ResultSampleFractionText": np.str_,
                   "ResultMeasureValue": np.str_, "ResultMeasure/MeasureUnitCode": np.str_,
                   "MeasureQualifierCode": np.str_,
                   "ResultStatusIdentifier": np.str_, "StatisticalBaseCode": np.str_, "ResultValueTypeName": np.str_,
                   "ResultWeightBasisText": np.str_, "ResultTimeBasisText": np.str_,
                   "ResultTemperatureBasisText": np.str_,
                   "ResultParticleSizeBasisText": np.str_, "PrecisionValue": np.str_, "ResultCommentText": np.str_,
                   "USGSPCode": np.str_, "ResultDepthHeightMeasure/MeasureValue": np.float16,
                   "ResultDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ResultDepthAltitudeReferencePointText": np.str_,
                   "SubjectTaxonomicName": np.str_, "SampleTissueAnatomyName": np.str_,
                   "ResultAnalyticalMethod/MethodIdentifier": np.str_,
                   "ResultAnalyticalMethod/MethodIdentifierContext": np.str_,
                   "ResultAnalyticalMethod/MethodName": np.str_, "MethodDescriptionText": np.str_,
                   "LaboratoryName": np.str_,
                   "AnalysisStartDate": np.str_, "ResultLaboratoryCommentText": np.str_,
                   "DetectionQuantitationLimitTypeName": np.str_,
                   "DetectionQuantitationLimitMeasure/MeasureValue": np.str_,
                   "DetectionQuantitationLimitMeasure/MeasureUnitCode": np.str_, "PreparationStartDate": np.str_,
                   "ProviderName": np.str_}

        # define date field indices
        dt = [6, 56, 61]
        csv = self.get_response(service, **kwargs).url
        print(csv)
        # read csv into DataFrame
        df = pd.read_csv(csv, dtype=Rdtypes, parse_dates=dt)
        return df