Python numpy 模块,fix() 实例源码

我们从Python开源项目中,提取了以下37个代码示例,用于说明如何使用numpy.fix()

项目:wradlib    作者:wradlib    | 项目源码 | 文件源码
def filter_window_cartesian(img, wsize, fun, scale, **kwargs):
    r"""Apply a filter of square window size `fsize` on a given
    cartesian image `img`.

    Parameters
    ----------
    img : :class:`numpy:numpy.ndarray`
        2d array of values to which the filter is to be applied
    wsize : float
        Half size of the window centred on the pixel [m]
    fun : string
        name of the 2d filter from :mod:`scipy:scipy.ndimage`
    scale : tuple of 2 floats
        x and y scale of the cartesian grid [m]

    Returns
    -------
    output : :class:`numpy:numpy.ndarray`
        Array with the same shape as `img`, containing the filter's results.

    """
    fun = getattr(filters, "%s_filter" % fun)
    size = np.fix(wsize / scale + 0.5).astype(int)
    data_filtered = fun(img, size, **kwargs)
    return data_filtered
项目:FaceRecognition    作者:habrman    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride = 2
    cellsize = 12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:, :, 0])
    dy1 = np.transpose(reg[:, :, 1])
    dx2 = np.transpose(reg[:, :, 2])
    dy2 = np.transpose(reg[:, :, 3])
    y, x = np.where(imap >= t)
    if y.shape[0] == 1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y, x)]
    reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
    if reg.size == 0:
        reg = np.empty((0, 3))
    bb = np.transpose(np.vstack([y, x]))
    q1 = np.fix((stride * bb + 1) / scale)
    q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
    return boundingbox, reg
项目:psola    作者:jcreinhold    | 项目源码 | 文件源码
def pitch_strength_all_candidates(f_erbs, L, pc):
    """
    Calculates the pitch ``strength'' of all candidate
    pitches

    Args:
        f_erbs (array): frequencies in ERBs
        L     (matrix): loudness matrix
        pc     (array): pitch candidates array

    Returns:
        S   (array): strength of pitches corresponding to pc's
    """
    # create pitch strength matrix
    S = np.zeros((pc.size, L.shape[1]))

    # define integration regions
    k = np.zeros(pc.size+1)

    for j in range(k.size-1):
        idx = int(k[j])
        f = f_erbs[idx:]
        val = find(f > pc[j] / 4)[0]
        k[j+1] = k[j] + val

    k = k[1:]  # TODO: fix this sloppiness

    # create loudness normalization matrix
    N = np.sqrt(np.flipud(np.cumsum(np.flipud(L * L), 0)))
    for j in range(pc.size):
        # normalize loudness
        n = N[int(k[j]), :]
        n[n == 0] = -np.inf  # to make zero-loudness equal zero after normalization
        nL = L[int(k[j]):] / np.tile(n, (int(L.shape[0] - k[j]), 1))

        # compute pitch strength
        S[j] = pitch_strength_one_candidate(f_erbs[int(k[j]):], nL, pc[j])

    return S
项目:keras-mtcnn    作者:xiangrufan    | 项目源码 | 文件源码
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold):
    in_side = 2*out_side+11
    stride = 0
    if out_side != 1:
        stride = float(in_side-12)/(out_side-1)
    (x,y) = np.where(cls_prob>=threshold)
    boundingbox = np.array([x,y]).T
    bb1 = np.fix((stride * (boundingbox) + 0 ) * scale)
    bb2 = np.fix((stride * (boundingbox) + 11) * scale)
    boundingbox = np.concatenate((bb1,bb2),axis = 1)
    dx1 = roi[0][x,y]
    dx2 = roi[1][x,y]
    dx3 = roi[2][x,y]
    dx4 = roi[3][x,y]
    score = np.array([cls_prob[x,y]]).T
    offset = np.array([dx1,dx2,dx3,dx4]).T
    boundingbox = boundingbox + offset*12.0*scale
    rectangles = np.concatenate((boundingbox,score),axis=1)
    rectangles = rect2square(rectangles)
    pick = []
    for i in range(len(rectangles)):
        x1 = int(max(0     ,rectangles[i][0]))
        y1 = int(max(0     ,rectangles[i][1]))
        x2 = int(min(width ,rectangles[i][2]))
        y2 = int(min(height,rectangles[i][3]))
        sc = rectangles[i][4]
        if x2>x1 and y2>y1:
            pick.append([x1,y1,x2,y2,sc])
    return NMS(pick,0.3,'iou')
项目:mtcnn    作者:daikankan    | 项目源码 | 文件源码
def generateBoundingBox(map, reg, scale, t):
    stride = 2
    cellsize = 12
    map = map.T
    dx1 = reg[0,:,:].T
    dy1 = reg[1,:,:].T
    dx2 = reg[2,:,:].T
    dy2 = reg[3,:,:].T
    (x, y) = np.where(map >= t)

    yy = y
    xx = x


    score = map[x,y]
    reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])

    if reg.shape[0] == 0:
        pass
    boundingbox = np.array([yy, xx]).T

    bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
    bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
    score = np.array([score])

    boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)

    return boundingbox_out.T
项目:mtcnn    作者:daikankan    | 项目源码 | 文件源码
def generateBoundingBox(map, reg, scale, t):
    stride = 2
    cellsize = 12
    map = map.T
    dx1 = reg[0,:,:].T
    dy1 = reg[1,:,:].T
    dx2 = reg[2,:,:].T
    dy2 = reg[3,:,:].T
    (x, y) = np.where(map >= t)

    yy = y
    xx = x


    score = map[x,y]
    reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])

    if reg.shape[0] == 0:
        pass
    boundingbox = np.array([yy, xx]).T

    bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
    bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
    score = np.array([score])

    boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)

    return boundingbox_out.T
项目:tensorflow_face    作者:ZhihengCV    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0] == 1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size == 0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg


# function pick = nms(boxes,threshold,type)
项目:faceNet_RealTime    作者:jack55436001    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:HJW_KL_divergence_estimator    作者:Mathegineer    | 项目源码 | 文件源码
def formalize_sample(samp):
    samp = np.array(samp)
    if np.any(samp != np.fix(samp)):
        raise ValueError('Input sample must only contain integers.')
    if samp.ndim == 1 or samp.ndim == 2 and samp.shape[0] == 1:
        samp = samp.reshape((samp.size, 1))
    return samp
项目:HJW_KL_divergence_estimator    作者:Mathegineer    | 项目源码 | 文件源码
def formalize_sample(samp):
    samp = np.array(samp)
    if np.any(samp != np.fix(samp)):
        raise ValueError('Input sample must only contain integers.')
    if samp.ndim == 1 or samp.ndim == 2 and samp.shape[0] == 1:
        samp = samp.reshape((samp.size, 1))
    return samp
项目:icyface_api    作者:bupticybee    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def float_to_rational(self, a):
        assert np.all(a > 0.0)
        d = 2**16 / np.fix(a+1).astype(int) # Uglier than it used to be: np.int(a + 1)
        n = np.fix(a * d + 1).astype(int)
        return  n, d
项目:real_time_face_recognition    作者:shanren7    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def to_julian_date(self):
        """
        Convert DatetimeIndex to Float64Index of Julian Dates.
        0 Julian date is noon January 1, 4713 BC.
        http://en.wikipedia.org/wiki/Julian_day
        """

        # http://mysite.verizon.net/aesir_research/date/jdalg2.htm
        year = self.year
        month = self.month
        day = self.day
        testarr = month < 3
        year[testarr] -= 1
        month[testarr] += 12
        return Float64Index(day +
                            np.fix((153 * month - 457) / 5) +
                            365 * year +
                            np.floor(year / 4) -
                            np.floor(year / 100) +
                            np.floor(year / 400) +
                            1721118.5 +
                            (self.hour +
                             self.minute / 60.0 +
                             self.second / 3600.0 +
                             self.microsecond / 3600.0 / 1e+6 +
                             self.nanosecond / 3600.0 / 1e+9
                             ) / 24.0)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_getitem_setitem_ellipsis(self):
        s = Series(np.random.randn(10))

        np.fix(s)

        result = s[...]
        assert_series_equal(result, s)

        s[...] = 5
        self.assertTrue((result == 5).all())
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_reindex_corner(self):
        # (don't forget to fix this) I think it's fixed
        self.empty.reindex(self.ts.index, method='pad')  # it works

        # corner case: pad empty series
        reindexed = self.empty.reindex(self.ts.index, method='pad')

        # pass non-Index
        reindexed = self.ts.reindex(list(self.ts.index))
        assert_series_equal(self.ts, reindexed)

        # bad fill method
        ts = self.ts[::2]
        self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo')
项目:face    作者:xpzouying    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:pyEMG    作者:agamemnonc    | 项目源码 | 文件源码
def _segpoints(self, stimulus):
        """Find segmentation points."""
        stim_diff = np.diff(stimulus)
        changepoints = np.nonzero(stim_diff)[0]
        changepoints = np.hstack([0, changepoints, stimulus.size])
        changepoints_diff = np.diff(changepoints)
        segpoints = changepoints[:-1] + np.fix(changepoints_diff/2)
        segpoints = segpoints[0::2] # Sub-sample every 2 points
        return segpoints
项目:prepare-faces-zyf    作者:walkoncross    | 项目源码 | 文件源码
def generate_bboxes(scores_map, reg, scale, t):
    stride = 2
    cellsize = 12

    (y, x) = np.where(scores_map >= t)

    if len(y) < 1:
        return None

    scores = scores_map[y, x]

    dx1, dy1, dx2, dy2 = [reg[i, y, x] for i in range(4)]

    reg = np.array([dx1, dy1, dx2, dy2])

    bbox = np.array([y, x])
#    bb1 = np.fix((stride * bbox) / scale)
#    bb2 = np.fix((stride * bbox + cellsize) / scale)

    # !!! Use fix() for top-left point, and round() for bottom-right point
    # !!! So we can cover a 'whole' face !!! added by zhaoyafei 2017-07-18
    bb1 = np.fix((stride * bbox) / scale)
    bb2 = np.round((stride * bbox + cellsize) / scale)

#    print 'bb1.shape:', bb1.shape
#    print 'bb2.shape:', bb2.shape
#    print 'scores.shape:', scores.shape
#    print 'reg.shape:', reg.shape

    bbox_out = np.vstack((bb1, bb2, scores, reg))
#    print 'bbox_out.shape:', bbox_out.shape

    return bbox_out.T
项目:facenet    作者:davidsandberg    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    """Use heatmap to generate bounding boxes"""
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:Face-Recognition    作者:aswl01    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride = 2
    cellsize = 12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:, :, 0])
    dy1 = np.transpose(reg[:, :, 1])
    dx2 = np.transpose(reg[:, :, 2])
    dy2 = np.transpose(reg[:, :, 3])
    y, x = np.where(imap >= t)

    if y.shape[0] == 1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y, x)]
    reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
    if reg.size == 0:
        reg = np.empty((0, 3))
    bb = np.transpose(np.vstack([y, x]))
    q1 = np.fix((stride * bb + 1) / scale)
    q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
    return boundingbox, reg


# function pick = nms(boxes,threshold,type)
项目:FaceRec    作者:vudung45    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride = 2
    cellsize = 12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:, :, 0])
    dy1 = np.transpose(reg[:, :, 1])
    dx2 = np.transpose(reg[:, :, 2])
    dy2 = np.transpose(reg[:, :, 3])
    y, x = np.where(imap >= t)
    if y.shape[0] == 1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y, x)]
    reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
    if reg.size == 0:
        reg = np.empty((0, 3))
    bb = np.transpose(np.vstack([y, x]))
    q1 = np.fix((stride * bb + 1) / scale)
    q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:mtcnn-caffe    作者:CongWeilin    | 项目源码 | 文件源码
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold):
    in_side = 2*out_side+11
    stride = 0
    if out_side != 1:
        stride = float(in_side-12)/(out_side-1)
    (x,y) = np.where(cls_prob>=threshold)
    boundingbox = np.array([x,y]).T
    bb1 = np.fix((stride * (boundingbox) + 0 ) * scale)
    bb2 = np.fix((stride * (boundingbox) + 11) * scale)
    boundingbox = np.concatenate((bb1,bb2),axis = 1)
    dx1 = roi[0][x,y]
    dx2 = roi[1][x,y]
    dx3 = roi[2][x,y]
    dx4 = roi[3][x,y]
    score = np.array([cls_prob[x,y]]).T
    offset = np.array([dx1,dx2,dx3,dx4]).T
    boundingbox = boundingbox + offset*12.0*scale
    rectangles = np.concatenate((boundingbox,score),axis=1)
    rectangles = rect2square(rectangles)
    pick = []
    for i in range(len(rectangles)):
    x1 = int(max(0     ,rectangles[i][0]))
    y1 = int(max(0     ,rectangles[i][1]))
    x2 = int(min(width ,rectangles[i][2]))
    y2 = int(min(height,rectangles[i][3]))
    sc = rectangles[i][4]
    if x2>x1 and y2>y1:
        pick.append([x1,y1,x2,y2,sc])
    return NMS(pick,0.5,'iou')
项目:real-time-face-recognition    作者:iwantooxxoox    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:273project    作者:zacharyzhong1116    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:273project    作者:zacharyzhong1116    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:273project    作者:zacharyzhong1116    | 项目源码 | 文件源码
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg

# function pick = nms(boxes,threshold,type)
项目:psola    作者:jcreinhold    | 项目源码 | 文件源码
def pitch_strength_one_candidate(f_erbs, nL, pc):
    """
    Calculates the pitch ``strength'' for a single
    candidate

    Args:
        f_erbs (array):
        nL           : normalized loudness
        pc           : pitch candidate

    Returns:
        s     (float): value of strength for a pitch
    """

    # fix rounds a number *towards* zero
    n = int(np.fix(f_erbs[-1] / pc - 0.75))  # number of harmonics
    if n == 0:
        return np.nan
    k = np.zeros(f_erbs.shape)  # kernel

    # normalize freq w.r.t. candidate
    q = f_erbs / pc

    # create kernel
    primes = np.concatenate((np.ones(1), primes_2_to_n(n)))
    for i in primes:
        a = np.abs(q - i)

        # peak's weight
        p = a < 0.25
        k[p] = np.cos(2 * np.pi * q[p])

        # valley's weight
        v = np.logical_and(0.25 < a, a < 0.75)
        k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2

    # apply envelope
    k = k * np.sqrt(1 / f_erbs)

    # K+-normalized kernel
    k = k / np.linalg.norm(k[k>0])

    # strength value of pitch
    s = np.dot(k, nL)

    return s
项目:Parallel.GAMIT    作者:demiangomez    | 项目源码 | 文件源码
def __init__(self, cnn=None, NetworkCode=None, StationCode=None, t=None):

        if t is None:
            ppp_soln = PPP_soln(cnn, NetworkCode, StationCode)
            t = ppp_soln.t

        # wrap around the solutions
        wt = np.sort(np.unique(t - np.fix(t)))

        # analyze the gaps in the data
        dt = np.diff(wt)

        # max dt (internal)
        dtmax = np.max(dt)

        # dt wrapped around
        dt_interyr = 1 - wt[-1] + wt[0]

        if dt_interyr > dtmax:
            dtmax = dt_interyr

        # save the value of the max wrapped delta time
        self.dt_max = dtmax

        # if dtmax < 3 months (90 days = 0.1232), then we can fit the annual
        # if dtmax < 1.5 months (45 days = 0.24657), then we can fit the semi-annual too

        if dtmax <= 0.1232:
            # all components (annual and semi-annual)
            self.A = np.array([sin(2 * pi * t), cos(2 * pi * t), sin(4 * pi * t), cos(4 * pi * t)]).transpose()
            self.frequencies = 2

        elif dtmax <= 0.2465:
            # only annual
            self.A = np.array([sin(2 * pi * t), cos(2 * pi * t)]).transpose()
            self.frequencies = 1

        else:
            # no periodic terms
            self.A = np.array([])
            self.frequencies = 0

        self.terms = self.frequencies * 2

        return
项目:Parallel.GAMIT    作者:demiangomez    | 项目源码 | 文件源码
def __init__(self, cnn=None, NetworkCode=None, StationCode=None, t=None):

        if t is None:
            ppp_soln = PPP_soln(cnn, NetworkCode, StationCode)
            t = ppp_soln.t

        # wrap around the solutions
        wt = np.sort(np.unique(t - np.fix(t)))

        # analyze the gaps in the data
        dt = np.diff(wt)

        # max dt (internal)
        dtmax = np.max(dt)

        # dt wrapped around
        dt_interyr = 1 - wt[-1] + wt[0]

        if dt_interyr > dtmax:
            dtmax = dt_interyr

        # save the value of the max wrapped delta time
        self.dt_max = dtmax

        # if dtmax < 3 months (90 days = 0.1232), then we can fit the annual
        # if dtmax < 1.5 months (45 days = 0.24657), then we can fit the semi-annual too

        if dtmax <= 0.1232:
            # all components (annual and semi-annual)
            self.A = np.array([sin(2 * pi * t), cos(2 * pi * t), sin(4 * pi * t), cos(4 * pi * t)]).transpose()
            self.frequencies = 2

        elif dtmax <= 0.2465:
            # only annual
            self.A = np.array([sin(2 * pi * t), cos(2 * pi * t)]).transpose()
            self.frequencies = 1

        else:
            # no periodic terms
            self.A = np.array([])
            self.frequencies = 0

        # variables to store the periodic amplitudes
        self.sin = np.array([])
        self.cos = np.array([])

        self.params = self.frequencies * 2
项目:IJCAI17_Tianchi_Rank4    作者:Jessicamidi    | 项目源码 | 文件源码
def eemd(data, noise_std=0.2, num_ensembles=100, num_sifts=10):
    """
    Ensemble Empirical Mode Decomposition (EEMD)

    *** Must still add in post-processing with EMD ***
    """
    # get modes to generate
    num_samples = len(data)
    num_modes = int(np.fix(np.log2(num_samples)))-1

    # normalize incomming data
    dstd = data.std()
    y = data/dstd

    # allocate for starting value
    all_modes = np.zeros((num_modes+2,num_samples))

    # loop over num_ensembles
    for e in range(num_ensembles):
        # perturb starting data
        x0 = y + np.random.randn(num_samples)*noise_std

        # save the starting value
        all_modes[0] += x0

        # loop over modes
        for m in range(num_modes):
            # do the sifts
            imf = x0
            for s in range(num_sifts):
                imf = _do_one_sift(imf)

            # save the imf
            all_modes[m+1] += imf

            # set the residual
            x0 = x0 - imf

        # save the final residual
        all_modes[-1] += x0

    # average everything out and renormalize
    return all_modes*dstd/np.float64(num_ensembles)
项目:mtcnn    作者:DuinoDu    | 项目源码 | 文件源码
def generateBoundingBox(map, reg, scale, t):
    stride = 2
    cellsize = 12
    map = map.T
    dx1 = reg[0,:,:].T
    dy1 = reg[1,:,:].T
    dx2 = reg[2,:,:].T
    dy2 = reg[3,:,:].T
    (x, y) = np.where(map >= t)

    yy = y
    xx = x

    '''
    if y.shape[0] == 1: # only one point exceed threshold
        y = y.T
        x = x.T
        score = map[x,y].T
        dx1 = dx1.T
        dy1 = dy1.T
        dx2 = dx2.T
        dy2 = dy2.T
        # a little stange, when there is only one bb created by PNet

        #print "1: x,y", x,y
        a = (x*map.shape[1]) + (y+1)
        x = a/map.shape[0]
        y = a%map.shape[0] - 1
        #print "2: x,y", x,y
    else:
        score = map[x,y]
    '''
    #print "dx1.shape", dx1.shape
    #print 'map.shape', map.shape


    score = map[x,y]
    reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])

    if reg.shape[0] == 0:
        pass
    boundingbox = np.array([yy, xx]).T

    bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
    bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
    score = np.array([score])

    boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)

    #print '(x,y)',x,y
    #print 'score', score
    #print 'reg', reg

    return boundingbox_out.T
项目:jrm_ssl    作者:Fhrozen    | 项目源码 | 文件源码
def STFT(x, wlen, h, nfft, fs): 
    ########################################################
    #              Short-Time Fourier Transform            %
    #               with MATLAB Implementation             %
    #                  For Python                          %
    # Copier: Nelson Yalta                       11/03/15  %
    ########################################################
    # function: [stft, f, t] = stft(x, wlen, h, nfft, fs)
    # x - signal in the time domain
    # wlen - length of the hamming window
    # h - hop size
    # nfft - number of FFT points
    # fs - sampling frequency, Hz
    # f - frequency vector, Hz
    # t - time vector, s
    # stft - STFT matrix (only unique points, time across columns, freq across rows)
    # represent x as column-vector if it is not

    if (len(x.shape) > 1) and (x.shape[1] > 1):
            x = x.transpose()

    # length of the signal
    xlen = x.shape[0]

    # form a periodic hamming window
    win = hamming(wlen, False)
    # form the stft matrix
    rown = int(np.ceil((1.0+nfft)/2))
    coln = int(np.fix((xlen-wlen)/h) + 1)
    short_tft = np.zeros((rown,coln)).astype('complex64')

    # initialize the indexes
    indx = 0
    col = 0

    # perform STFT
    while (indx + wlen <= xlen):
        # windowing

        xw =x[indx:indx+wlen]*win

        # FFT
        X = np.fft.fft(xw,nfft)

        # update the stft matrix
        short_tft[:,col] = X[0:rown]

        # update the indexes
        indx +=  h
        col += 1

    # calculate the time and frequency vectors

    t = np.linspace(wlen/2,wlen/2+(coln-1)*h,coln)/fs
    f = np.arange(0,rown,dtype= np.float32)*fs/nfft   

    return short_tft, f, t
项目:pyEMG    作者:agamemnonc    | 项目源码 | 文件源码
def balanced_accuracy_score(y_true, y_pred, method = 'edges', random_state=None):
    """Balanced classification accuracy metric (multi-class).
    Keeps only a subset of the data instances corresponding to the rest class.
    The size of the subset is equal to the median group size of the other 
    classes."""

    _check_x_y(y_true,y_pred)
    classes, n_instances = np.unique(y_true, return_counts=True)
    median_instances = np.median(n_instances[1:])
    n_classes = classes.size

    idx_rest = np.where(y_true == 0)[0] # Find rest instances
    idx_else = np.where(y_true != 0)[0] # Find all other instances

    if method == 'random':
        if random_state is not None:
            np.random.seed(random_state)
        idx_keep = np.random.choice(idx_rest,median_instances, replace=False) # Keep a random subset
        idx_final = np.sort(np.hstack((idx_keep, idx_else)))


    if method == 'edges':
        samples_per_rest_repetition = np.fix(median_instances / (2*n_classes - 1)).astype('int'); # How many we want to keep for each rest repetition
        if samples_per_rest_repetition < 1:
            samples_per_rest_repetition = 1;

        changes = np.diff(y_true) # Stimulus change
        idx_changes = np.nonzero(changes)[0] # Stimulus change
        idx_from_rest = idx_changes[np.arange(start=0,stop=idx_changes.size,step=2)] # Changing from rest to movement
        idx_to_rest = idx_changes[np.arange(start=1,stop=idx_changes.size,step=2)] # Changing from rest to movement
        idx_to_rest = np.hstack(([0], idx_to_rest))

        idx_keep = []
        for ii,jj in zip(idx_to_rest,idx_from_rest):
            center = np.fix(ii + (jj-ii)/2)
            idx_keep.extend(np.arange(center,center+samples_per_rest_repetition))
        idx_keep = np.asarray(idx_keep, dtype='int')
        idx_final = np.sort(np.hstack((idx_keep, idx_else)))

    true_new = y_true[idx_final]
    pred_new = y_pred[idx_final]

    return accuracy_score(true_new, pred_new)
项目:pyEMG    作者:agamemnonc    | 项目源码 | 文件源码
def balanced_log_loss(y_true, y_pred, method = 'edges', random_state=None):
    """Balanced log-loss metric (multi-class).
    Keeps only a subset of the data instances corresponding to the rest class.
    The size of the subset is equal to the median group size of the other 
    classes."""

#    y_true = np.asarray(y_true)
#    y_pred = np.asarray(y_pred)
    classes, n_instances = np.unique(y_true, return_counts=True)
    median_instances = np.median(n_instances[1:])
    n_classes = classes.size

    idx_rest = np.where(y_true == 0)[0] # Find rest instances
    idx_else = np.where(y_true != 0)[0] # Find all other instances

    if method == 'random':
        if random_state is not None:
            np.random.seed(random_state)
        idx_keep = np.random.choice(idx_rest,median_instances, replace=False) # Keep a random subset
        idx_final = np.sort(np.hstack((idx_keep, idx_else)))


    if method == 'edges':
        samples_per_rest_repetition = np.fix(median_instances / (2*n_classes - 1)).astype('int'); # How many we want to keep for each rest repetition
        if samples_per_rest_repetition < 1:
            samples_per_rest_repetition = 1;

        changes = np.diff(y_true) # Stimulus change
        idx_changes = np.nonzero(changes)[0] # Stimulus change
        idx_from_rest = idx_changes[np.arange(start=0,stop=idx_changes.size,step=2)] # Changing from rest to movement
        idx_to_rest = idx_changes[np.arange(start=1,stop=idx_changes.size,step=2)] # Changing from rest to movement
        idx_to_rest = np.hstack(([0], idx_to_rest))

        idx_keep = []
        for ii,jj in zip(idx_to_rest,idx_from_rest):
            center = np.fix(ii + (jj-ii)/2)
            idx_keep.extend(np.arange(center,center+samples_per_rest_repetition))
        idx_keep = np.asarray(idx_keep, dtype='int')
        idx_final = np.sort(np.hstack((idx_keep, idx_else)))

    true_new = y_true[idx_final]
    pred_new = y_pred[idx_final]

    return log_loss(true_new, pred_new)
项目:Fingerprint-Enhancement-Python    作者:Utkarsh-Deshmukh    | 项目源码 | 文件源码
def frequest(im,orientim,windsze,minWaveLength,maxWaveLength):
    rows,cols = np.shape(im);

    # Find mean orientation within the block. This is done by averaging the
    # sines and cosines of the doubled angles before reconstructing the
    # angle again.  This avoids wraparound problems at the origin.


    cosorient = np.mean(np.cos(2*orientim));
    sinorient = np.mean(np.sin(2*orientim));    
    orient = math.atan2(sinorient,cosorient)/2;

    # Rotate the image block so that the ridges are vertical    

    #ROT_mat = cv2.getRotationMatrix2D((cols/2,rows/2),orient/np.pi*180 + 90,1)    
    #rotim = cv2.warpAffine(im,ROT_mat,(cols,rows))
    rotim = scipy.ndimage.rotate(im,orient/np.pi*180 + 90,axes=(1,0),reshape = False,order = 3,mode = 'nearest');

    # Now crop the image so that the rotated image does not contain any
    # invalid regions.  This prevents the projection down the columns
    # from being mucked up.

    cropsze = int(np.fix(rows/np.sqrt(2)));
    offset = int(np.fix((rows-cropsze)/2));
    rotim = rotim[offset:offset+cropsze][:,offset:offset+cropsze];

    # Sum down the columns to get a projection of the grey values down
    # the ridges.

    proj = np.sum(rotim,axis = 0);
    dilation = scipy.ndimage.grey_dilation(proj, windsze,structure=np.ones(windsze));

    temp = np.abs(dilation - proj);

    peak_thresh = 2;    

    maxpts = (temp<peak_thresh) & (proj > np.mean(proj));
    maxind = np.where(maxpts);

    rows_maxind,cols_maxind = np.shape(maxind);

    # Determine the spatial frequency of the ridges by divinding the
    # distance between the 1st and last peaks by the (No of peaks-1). If no
    # peaks are detected, or the wavelength is outside the allowed bounds,
    # the frequency image is set to 0    

    if(cols_maxind<2):
        freqim = np.zeros(im.shape);
    else:
        NoOfPeaks = cols_maxind;
        waveLength = (maxind[0][cols_maxind-1] - maxind[0][0])/(NoOfPeaks - 1);
        if waveLength>=minWaveLength and waveLength<=maxWaveLength:
            freqim = 1/np.double(waveLength) * np.ones(im.shape);
        else:
            freqim = np.zeros(im.shape);

    return(freqim);
项目:wradlib    作者:wradlib    | 项目源码 | 文件源码
def filter_window_polar(img, wsize, fun, rscale, random=False):
    r"""Apply a filter of an approximated square window of half size `fsize`
    on a given polar image `img`.

    Parameters
    ----------
    img : :class:`numpy:numpy.ndarray`
        2d array of values to which the filter is to be applied
    wsize : float
        Half size of the window centred on the pixel [m]
    fun : string
        name of the 1d filter from :mod:`scipy:scipy.ndimage`
    rscale : float
        range [m] scale of the polar grid
    random: bool
        True to use random azimuthal size to avoid long-term biases.

    Returns
    -------
    output : :class:`numpy:numpy.ndarray`
        Array with the same shape as `img`, containing the filter's results.

    """
    ascale = 2 * np.pi / img.shape[0]
    data_filtered = np.empty(img.shape, dtype=img.dtype)
    fun = getattr(filters, "%s_filter1d" % fun)
    nbins = img.shape[-1]
    ranges = np.arange(nbins) * rscale + rscale / 2
    asize = ranges * ascale
    if random:
        na = prob_round(wsize / asize).astype(int)
    else:
        na = np.fix(wsize / asize + 0.5).astype(int)
    # Maximum of adjacent azimuths (higher close to the origin) to
    # increase performance
    na[na > 20] = 20
    sr = np.fix(wsize / rscale + 0.5).astype(int)
    for sa in np.unique(na):
        imax = np.where(na >= sa)[0][-1] + 1
        imin = np.where(na <= sa)[0][0]
        if sa == 0:
            data_filtered[:, imin:imax] = img[:, imin:imax]
        imin2 = max(imin - sr, 0)
        imax2 = min(imax + sr, nbins)
        temp = img[:, imin2:imax2]
        temp = fun(temp, size=2 * sa + 1, mode='wrap', axis=0)
        temp = fun(temp, size=2 * sr + 1, axis=1)
        imin3 = imin - imin2
        imax3 = imin3 + imax - imin
        data_filtered[:, imin:imax] = temp[:, imin3:imax3]
    return data_filtered