Python numpy 模块,float128() 实例源码

我们从Python开源项目中,提取了以下32个代码示例,用于说明如何使用numpy.float128()

项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
项目:exact_binary_dynamics    作者:laurencee9    | 项目源码 | 文件源码
def watts_threshold(self, m):
        """
        The watts threshold function.

        Input
        ---------------
        m [number] :  Number of active neigbors

        Return
        ---------------
        [float] : Probability of activation

        """
        if m >= self.params["params"]["threshold"]:
            return np.float128(self.params["params"]["p"])
        else:
            return np.float128(0.0)
        return
项目:exact_binary_dynamics    作者:laurencee9    | 项目源码 | 文件源码
def bond_percolation(self, m):
        """
        The bond percolation response function

        Input
        ---------------
        m [number] :  Number of active neigbors

        Return
        ---------------
        [float] : Probability of activation

        """
        if m > 0:
            return (np.float128(1.0) - np.float128((1.0 - self.params["params"]["p"]) ** m)*(1.0-np.float128(self.params["params"]["p_spontaneous"])))
        else:
            return np.float128(self.params["params"]["p_spontaneous"])
项目:tensorlm    作者:batzner    | 项目源码 | 文件源码
def json_encode(obj):
    try:
        serial = obj.to_json()
        serial['classname'] = obj.__class__.__qualname__
        return serial
    except AttributeError:
        pass

    # Convert numpy types:
    if type(obj) in [np.int8, np.int16, np.int32, np.int64]:
        return int(obj)
    elif type(obj) in [np.float16, np.float32, np.float64, np.float128]:
        return float(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()

    if isinstance(obj, datetime.datetime):
        return obj.isoformat()
    raise TypeError('Type not serialisable')
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_returned_dtype(self):

        dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64]
        if hasattr(np, 'float128'):
            dtypes.append(np.float128)

        for dtype in dtypes:
            s = Series(range(10), dtype=dtype)
            group_a = ['mean', 'std', 'var', 'skew', 'kurt']
            group_b = ['min', 'max']
            for method in group_a + group_b:
                result = getattr(s, method)()
                if is_integer_dtype(dtype) and method in group_a:
                    self.assertTrue(
                        result.dtype == np.float64,
                        "return dtype expected from %s is np.float64, "
                        "got %s instead" % (method, result.dtype))
                else:
                    self.assertTrue(
                        result.dtype == dtype,
                        "return dtype expected from %s is %s, "
                        "got %s instead" % (method, dtype, result.dtype))
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def hashint64(x,N):
    '''
    Convert a bit vector to a float128
    Not to be confused with `pylab.packbits`

    Parameters
    ----------
    x : boolean or binary vector
    N : positive integer, number of bits in each vector
    Returns
    -------
    int64 : integer, stored in int64, whose binary bits match x
    '''
    if N>63:
        raise ValueError('No more than 63 bits can be safely stored in int64')
    return x.dot(2**np.int64(np.arange(N)))
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def hashfloat128(x,N):
    '''
    Convert a bit vector to a float128
    Not to be confused with `pylab.packbits`

    Parameters
    ----------
    x : boolean or binary vector
    N : positive integer, number of bits in each vector
    Returns
    -------
    float128 : integer, stored in float128, whose binary bits match x
    '''
    x = (np.array(x)!=0)
    if not x.shape[-1]==N:
        raise ValueError('The last dimension of x should match the bit vector length N')
    if N>63:
        raise ValueError('No more than 63 bits are safe at the moment')
    return x.dot(2**np.float128(np.arange(N)))
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def unhashfloat128(x,N):
    '''
    Unpack bits from number b; inverse of `hashbits()`
    Not to be confused with `pylab.unpackbits`

    Parameters
    ----------
    x : float128 
        integer stored in float128, whose binary bits match x
    N : positive integer, number of bits in each vector

    Returns
    -------
    b : boolean or binary vector, unpacked
    '''
    if not x.dtype==np.float128:
        raise ValueError('Expected to unpack bit data from np.float128')
    x = x.copy()
    b = []
    for i in range(N):
        b.append(x%2)
        x = np.floor(x*0.5)
    b = (np.uint8(b)==1)
    return b.T
项目:xpandas    作者:alan-turing-institute    | 项目源码 | 文件源码
def _is_class_a_primitive(cls):
    '''
    Check if class is a number or string including numpy numbers
    :param cls: any class
    :return: True if class is a primitive class, else False
    '''
    primitives = [
        np.float16, np.float32, np.float64, np.float128,
        np.int8, np.int16, np.int32, np.int64,
        bool, str, np.uint8, np.uint16, np.uint32, np.uint64,
        int, float
    ]
    return cls in primitives
项目:CNN-from-Scratch    作者:zishansami102    | 项目源码 | 文件源码
def softmax_cost(out,y, theta3, filt1, filt2):
    eout = np.exp(out, dtype=np.float128)
    probs = eout/sum(eout)

    p = sum(y*probs)
    cost = -np.log(p)   ## (Only data loss. No regularised loss)
    return cost,probs   

## Returns gradient for all the paramaters in each iteration
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def name_nbit2numpy(name, nbit):
    if   name == 'i':
        if   nbit == 8:   return np.int8
        elif nbit == 16:  return np.int16
        elif nbit == 32:  return np.int32
        elif nbit == 64:  return np.int64
        else: raise TypeError("Invalid signed integer type size: %i" % nbit)
    elif name == 'u':
        if   nbit == 8:   return np.uint8
        elif nbit == 16:  return np.uint16
        elif nbit == 32:  return np.uint32
        elif nbit == 64:  return np.uint64
        else: raise TypeError("Invalid unsigned integer type size: %i" % nbit)
    elif name == 'f':
        if   nbit == 16:  return np.float16
        elif nbit == 32:  return np.float32
        elif nbit == 64:  return np.float64
        elif nbit == 128: return np.float128
        else: raise TypeError("Invalid floating-point type size: %i" % nbit)
    elif name == 'ci':
        if   nbit == 8:   return ci8
        elif nbit == 16:  return ci16
        elif nbit == 32:  return ci32
    # elif name in set(['ci', 'cu']):
        # Note: This gives integer types in place of proper complex types
        # return name_nbit2numpy(name[1:], nbit*2)
    elif name == 'cf':
        if   nbit == 16:  return cf16
        elif nbit == 32:  return np.complex64
        elif nbit == 64:  return np.complex128
        elif nbit == 128: return np.complex256
        else: raise TypeError("Invalid complex floating-point type size: %i" %
                              nbit)
    else:
        raise TypeError("Invalid type name: " + name)
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def test_16byte(self):
        self.run_simple_test_shmoo(np.float128)
项目:transmutagen    作者:ergs    | 项目源码 | 文件源码
def _print_Float(self, expr):
        super_float = super()._print_Float(expr)
        if self._settings['float128']:
            super_float = 'float128(%r)' % super_float
        if self._settings['use_autoeye']:
            return 'autoeye(%s)' % super_float
        return super_float
项目:ml_implementation    作者:tobegit3hub    | 项目源码 | 文件源码
def print_features_info(dataset):
  features_and_types = dataset.dtypes

  print("\n[Debug] Print the feature number: ")
  numberic_feature_number = 0
  not_numberic_feature_number = 0
  for feature_type in features_and_types:
    if feature_type == np.int16 or feature_type == np.int32 or feature_type == np.int64 or feature_type == np.float16 or feature_type == np.float32 or feature_type == np.float64 or feature_type == np.float128 or feature_type == np.double:
      numberic_feature_number += 1
    else:
      not_numberic_feature_number += 1
  print("Total feature number: {}".format(len(features_and_types)))
  print("Numberic feature number: {}".format(numberic_feature_number))
  print("Not numberic feature number: {}".format(not_numberic_feature_number))

  print("\n[Debug] Print the feature list of the dataset: ")
  print(features_and_types)

  print("\n[Debug] Print the feature presence: ")
  example_number = len(dataset)
  features_array = list(dataset.columns.values)
  for feature_name in features_array:
    feature_presence_number = len(dataset[feature_name][dataset[feature_name].notnull()])
    feature_presence_percentage = 100.0 * feature_presence_number / example_number
    # Example: "Age: 80.1346801347% (714 / 891)"
    print("{}: {}% ({} / {})".format(feature_name, feature_presence_percentage, feature_presence_number, example_number))

  print("\n[Debug] For numberic features, print the feature statistics: ")
  feature_statistics = dataset.describe()
  print(feature_statistics)

  top_k_number = 5
  print("\n[Debug] For all features, print the top {} values: ".format(top_k_number))
  for i in range(len(features_array)):
    feature_name = features_array[i]
    top_k_feature_info = dataset[feature_name].value_counts()[:top_k_number]
    print("\nFeature {} and the top {} values:".format(feature_name, top_k_number))
    print(top_k_feature_info)
项目:tensorboard-pytorch    作者:lanpa    | 项目源码 | 文件源码
def test_scalar():
    res = x2num.makenp(1.1)
    assert isinstance(res, np.ndarray) and res.shape == (1,)
    res = x2num.makenp(1000000000000000000000)
    assert isinstance(res, np.ndarray) and res.shape == (1,)
    res = x2num.makenp(np.float16(1.00000087))
    assert isinstance(res, np.ndarray) and res.shape == (1,)
    res = x2num.makenp(np.float128(1.00008+9))
    assert isinstance(res, np.ndarray) and res.shape == (1,)
    res = x2num.makenp(np.int64(100000000000))
    assert isinstance(res, np.ndarray) and res.shape == (1,)
项目:trainer    作者:nutszebra    | 项目源码 | 文件源码
def _float(value):
    t = type(value)
    floats = [np.float, np.float32, np.float64, np.float128, np.float16, float]

    return bool(np.sum([t is f for f in floats]))
项目:graph-lstm    作者:ML-on-structures    | 项目源码 | 文件源码
def test_numpy_float128(self):
        x = numpy.float128(55.3)
        s = Serializable.dumps(x)
        y = Serializable.from_json(s)
        self.assertAlmostEqual(x, y, 5)
        self.assertEqual(str(x.dtype), 'float128')
        self.assertEqual(str(y.dtype), 'float128')
项目:topicModelling    作者:balikasg    | 项目源码 | 文件源码
def get_full_conditional(self, sentence, m, z, n_z, n_m_z):
        prod_nom, prod_den = [] , []
        words = Counter(sentence)
        for key, val in words.iteritems():
            for x in range(val):
                quantity = self.n_z_t[:,key] + self.beta + x
                prod_nom.append(quantity)
#                prod_nom *= (quantity)
        prod_nom = np.array(prod_nom, dtype=np.float128)
        left_denominator = n_z + self.beta*self.V
        for x in range(len(sentence)):
            quantity = left_denominator + x
            prod_den.append(quantity)
#            prod_den *= (quantity)
        prod_den = np.array(prod_den, dtype=np.float128)
#        print "Shapes of interest:", prod_den.shape, prod_nom.shape
        prodall1 = np.divide(prod_nom,prod_den)
#        print "After division:", prodall.shape
        prodall = np.prod(prodall1, axis=0)
#        print "After multiplication", prodall.shape
#        prod_nom = np.prod(prod_nom, axis=0, dtype=np.float128)
#        prod_den = np.prod(prod_den, axis=0, dtype=np.float128)

#        left = prod_nom/prod_den
        right = (n_m_z[m,:] + self.alpha)
        p_z = prodall*right
#        try:    
#            p_z /= np.sum(p_z)
#        except:
#            print p_z
#            print prodall1
#            print prodall
        p_z /= np.sum(p_z)
#        except RuntimeWarning:
#            print 'Exception'
#            print prodall 
#            print right
#            print self.n_z_t[:,key]
        return p_z.astype(np.float64)
项目:exact_binary_dynamics    作者:laurencee9    | 项目源码 | 文件源码
def test_response_function(self):

        """
        Verify the response functions
        """
        for node in self.solver.G.nodes():

            self.assertIn("rf", self.solver.G.node[node])
            self.assertIsInstance(self.solver.G.node[node]["rf"], ResponseFunction )
            self.assertIs(type(self.solver.G.node[node]["rf"].resp_func(0.0)), np.float128)
            self.assertIs(type(self.solver.G.node[node]["rf"].resp_func(20.0)), np.float128)
项目:exact_binary_dynamics    作者:laurencee9    | 项目源码 | 文件源码
def get_probabilities_Q_possible(self, possible_configs):
        """
        Get the probability Q(l;n) for each configuration in the possible_configs dictionnary.
        The implementation is based on the recursive equation of the paper.

        Input
        ----------------------
        possible_configs: Dictionnary where keys are the config as a string (i.e. "0101011011") and value are sets of the parent configurations.

        Return 
        ----------------------
        Dictionnary of probabilities where the key is the configuration as a string (e.g. "10101110") and the value is Q(l;n)

        """
        #the master dictionnary
        dict_config = {}
        prob_tot = 1.0
        #order by size to simplify the calculation
        possible_config_ordered_by_size = self.regroup_config_by_size(possible_configs)

        N = len(self.G.nodes())

        #Initial configuration
        initial_config = [0]*N
        if self.symbolic_:
            dict_config[self.list_to_string(initial_config)] = "<prod>"+";".join(["G("+str(node)+","+str(0)+")" for node in self.G.nodes()])+"</prod>"
        else:
            dict_config[self.list_to_string(initial_config)] = np.float128(np.product([(1.0-self.G.nodes[node]["rf"].resp_func(0)) for node in self.G.nodes()]))
            prob_tot -= dict_config[self.list_to_string(initial_config)]

        for size in range(1,N+1):
            if size in possible_config_ordered_by_size:
                for config_str in possible_config_ordered_by_size[size]:

                    Q_ln = self.solve_specific_configuration(config_str, dict_config, possible_configs)
                    dict_config[config_str] = Q_ln
                    prob_tot -= Q_ln

        dict_config["1"*N] = prob_tot
        return dict_config
项目:Bayesian_Network    作者:manonverdier    | 项目源码 | 文件源码
def jk(D,Bs,i,j,frac,possible,ri):     

    Num=factorial(ri-1)
    Den=factorial(N_ij(D,Bs,i,j,ri)+ri-1)
    frac*=np.float128(Num)/np.float128(Den)

    for k in range(0,ri):
        frac*=factorial(N_ijk(D,Bs,i,j,k,ri))       
        if N_ijk(D,Bs,i,j,k,ri)!=0 :
            possible=1   

    return frac,possible
项目:qtpandas    作者:draperjames    | 项目源码 | 文件源码
def getCsvData():
    dtypes = {
        "int8_value": numpy.int8,
        "int16_value": numpy.int16,
        "int32_value": numpy.int32,
        # "int64_value": numpy.int64, # OverFlowError
        "uint8_value": numpy.uint8,
        "uint16_value": numpy.uint16,
        "uint32_value": numpy.uint32,
        # "uint64_value": numpy.uint64, # OverFlowError
        "float16_value": numpy.float16,
        "float32_value": numpy.float32,
        "float64_value": numpy.float64,
        # "float128_value": numpy.float128,
        "bool_value": numpy.bool_
    }
    delimiter = ","
    encoding = "utf-8"
    parse_dates = ["timestamp_value"]

    path = os.path.join(os.getcwdu(), "examples/testData/test1.csv")
    if not os.path.exists(path):
        path = os.path.join(os.getcwdu(), "testData/test1.csv")

    df = pandas.read_csv(
        path,
        dtype=dtypes,
        delimiter=delimiter,
        encoding=encoding,
        parse_dates=parse_dates
    )

    try:
        df["int64_value"] = df["int64_value"].astype(numpy.int64)
        df["uint64_value"] = df["uint64_value"].astype(numpy.uint64)
    except:
        raise

    return df
项目:cpnest    作者:johnveitch    | 项目源码 | 文件源码
def get_worst_live_point(self):
        """
        selects the lowest likelihood live point
        """
        logL_array = np.array([p.logL for p in self.params])
        self.worst = logL_array.argmin()
        self.logLmin.value = logL_array[self.worst]
        self.logLmax = np.max(logL_array)
        return np.float128(self.logLmin.value)
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def poisson_logpdf(k,l):
    '''
    Gives the log-pdf for a poisson distribution with rate l 
    evaluated at points k. k should be a vector of integers.

    Parameters
    ----------

    Returns
    -------
    '''
    # k,l = map(np.float128,(k,l))
    return k*slog(l)-l-np.array([scipy.special.gammaln(x+1) for x in k])
    #return k*slog(l)-l-np.array([log_factorial(x) for x in k])
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def gaussian_logpdf(mu,sigma,x):
    '''
    Non-positive standar deviations will be clipped

    Parameters
    ----------

    Returns
    -------
    '''
    mu,sigma,x = map(np.float128,(mu,sigma,x))
    x = (x-mu)/sigma
    return -0.5*x*x - slog(sigma) - logsqrt2pi
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def sigmoid(x,returntype=LINALGMAXFLOAT):
    '''
    Soft-threshold function (rescaled hyperbolic tangent)
    More numerically stable version 
    '''
    return returntype(sexp(-np.logaddexp(ZERO128,-np.float128(x))))

# Sigmoid and derivatives
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def g(x,returntype=LINALGMAXFLOAT): 
    '''
    Evaluates g(x)=log(1+exp(x)) as accurately as possible. 
    '''
    return returntype(np.logaddexp(ZERO128,np.float128(x)))
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def f(x,returntype=LINALGMAXFLOAT): 
    '''
    evaluates f(x)=1/(1+exp(-x)) as accurately as possible
    '''
    return returntype(sexp(-np.logaddexp(ZERO128,-np.float128(x))))
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def f1(x,returntype=LINALGMAXFLOAT): 
    '''
    Fist derivative of sigmoid
    '''
    x = np.float128(x)
    return sexp(\
        -np.logaddexp(ZERO128,-x)\
        -np.logaddexp(ZERO128,x),
        returntype=returntype)
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def f2(x,returntype=LINALGMAXFLOAT):
    '''
    Second derivative of sigmoid

    (q - p) p q
    '''
    x = np.float128(x)
    logp = -np.logaddexp(ZERO128,-x)
    logq = -np.logaddexp(ZERO128, x)
    p  = np.exp(np.minimum(F128EMAX,logp))
    q  = np.exp(np.minimum(F128EMAX,logq))
    return returntype((q-p)*q*p);
项目:vsi_common    作者:VisionSystemsInc    | 项目源码 | 文件源码
def sample_patch_projective(image, inv_xform_3x3, patch_shape):
  """ return a warped image as a numpy array with dtype float64 of size patch_size.
    if input image is not already of type float64, it will be converted """
  P = skimage.transform.ProjectiveTransform(inv_xform_3x3)
  # skimage clips values to range [0,1] for floating point images.  do scale and unscale here.
  do_scale = False
  og_dtype = image.dtype
  if image.dtype in (np.float32, np.float64, np.float128, np.float16):
    minval = np.nanmin(image)
    maxval = np.nanmax(image)
    # if range is good, no need to rescale
    if minval < 0.0 or maxval > 1.0:
      do_scale = True
      # make a copy of image so as not to corrupt original data
      image = image.copy()
      scale_factor = maxval - minval
      image -= minval
      if scale_factor != 0:
        image /= scale_factor

  # do the warping
  patch = skimage.transform.warp(image, P, output_shape=patch_shape, mode='constant', cval=np.nan)

  # revert to original type if necessary
  if og_dtype != patch.dtype:
    if og_dtype == np.uint8:
      patch = skimage.img_as_ubyte(patch)
    elif og_dtype == np.bool:
      patch = skimage.img_as_bool(patch)
    elif og_dtype == np.uint16:
      patch = skimage.img_as_uint(patch)
    elif og_dtype == np.int16:
      patch = skimage.img_as_int(patch)
    else:
      # just to straight cast, hope for the best
      patch_out = np.zeros(patch.shape, og_dtype)
      np.copyto(patch_out,patch)
      patch = patch_out
  # unscale if necessary
  if do_scale:
    patch *= scale_factor
    patch += minval

  return patch