Python numpy 模块,testing() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.testing()

项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_sort_tensor_by_length(self):
        tensor = torch.rand([5, 7, 9])
        tensor[0, 3:, :] = 0
        tensor[1, 4:, :] = 0
        tensor[2, 1:, :] = 0
        tensor[3, 5:, :] = 0

        tensor = Variable(tensor)
        sequence_lengths = Variable(torch.LongTensor([3, 4, 1, 5, 7]))
        sorted_tensor, sorted_lengths, reverse_indices, _ = util.sort_batch_by_length(tensor, sequence_lengths)

        # Test sorted indices are padded correctly.
        numpy.testing.assert_array_equal(sorted_tensor[1, 5:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[2, 4:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[3, 3:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[4, 1:, :].data.numpy(), 0.0)

        assert sorted_lengths.data.equal(torch.LongTensor([7, 5, 4, 3, 1]))

        # Test restoration indices correctly recover the original tensor.
        assert sorted_tensor.index_select(0, reverse_indices).data.equal(tensor.data)
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self):
        batch_size = 1
        length_1 = 5
        length_2 = 2
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim)
        attention_array = numpy.random.rand(batch_size, length_1, length_2)
        sentence_tensor = Variable(torch.from_numpy(sentence_array).float())
        attention_tensor = Variable(torch.from_numpy(attention_array).float())
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, length_1, embedding_dim)
        for i in range(length_1):
            expected_array = (attention_array[0, i, 0] * sentence_array[0, 0] +
                              attention_array[0, i, 1] * sentence_array[0, 1])
            numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array,
                                              decimal=5)
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_batched_index_select(self):
        indices = numpy.array([[[1, 2],
                                [3, 4]],
                               [[5, 6],
                                [7, 8]]])
        # Each element is a vector of it's index.
        targets = torch.ones([2, 10, 3]).cumsum(1) - 1
        # Make the second batch double it's index so they're different.
        targets[1, :, :] *= 2
        indices = Variable(torch.LongTensor(indices))
        targets = Variable(targets)
        selected = util.batched_index_select(targets, indices)

        assert list(selected.size()) == [2, 2, 2, 3]
        ones = numpy.ones([3])
        numpy.testing.assert_array_equal(selected[0, 0, 0, :].data.numpy(), ones)
        numpy.testing.assert_array_equal(selected[0, 0, 1, :].data.numpy(), ones * 2)
        numpy.testing.assert_array_equal(selected[0, 1, 0, :].data.numpy(), ones * 3)
        numpy.testing.assert_array_equal(selected[0, 1, 1, :].data.numpy(), ones * 4)

        numpy.testing.assert_array_equal(selected[1, 0, 0, :].data.numpy(), ones * 10)
        numpy.testing.assert_array_equal(selected[1, 0, 1, :].data.numpy(), ones * 12)
        numpy.testing.assert_array_equal(selected[1, 1, 0, :].data.numpy(), ones * 14)
        numpy.testing.assert_array_equal(selected[1, 1, 1, :].data.numpy(), ones * 16)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_process_image(compress, out_dir):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    meta = {
        "DNA": "/User/jcaciedo/LUAD/dna.tiff",
        "ER": "/User/jcaciedo/LUAD/er.tiff",
        "Mito": "/User/jcaciedo/LUAD/mito.tiff"
    }
    compress.stats["illum_correction_function"] = numpy.ones((16,16,3))
    compress.stats["upper_percentiles"] = [255, 255, 255]
    compress.stats["lower_percentiles"] = [0, 0, 0]

    compress.process_image(0, image, meta)

    filenames = glob.glob(os.path.join(out_dir,"*"))
    real_filenames = [os.path.join(out_dir, x) for x in ["dna.png", "er.png", "mito.png"]]
    filenames.sort()

    assert real_filenames == filenames

    for i in range(3):
        data = scipy.misc.imread(filenames[i])
        numpy.testing.assert_array_equal(image[:,:,i], data)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_apply(corrector):
    image = numpy.random.randint(256, size=(24, 24, 3), dtype=numpy.uint16)

    illum_corr_func = numpy.random.rand(24, 24, 3)

    illum_corr_func /= illum_corr_func.min()

    corrector.illum_corr_func = illum_corr_func

    corrected = corrector.apply(image)

    expected = image / illum_corr_func

    assert corrected.shape == (24, 24, 3)

    numpy.testing.assert_array_equal(corrected, expected)
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:nway    作者:JohannesBuchner    | 项目源码 | 文件源码
def test_log_bf():
    import numpy.testing as test
    sep = numpy.array([0., 0.1, 0.2, 0.3, 0.4, 0.5])
    for psi in sep:
        print(psi)
        print('  ', log_bf2(psi, 0.1, 0.2), )
        print('  ', log_bf([[None, psi]], [0.1, 0.2]), )
        test.assert_almost_equal(log_bf2(psi, 0.1, 0.2), log_bf([[None, psi]], [0.1, 0.2]))
    for psi in sep:
        print(psi)
        bf3 = log_bf3(psi, psi, psi, 0.1, 0.2, 0.3)
        print('  ', bf3)
        g = log_bf([[None, psi, psi], [psi, None, psi], [psi, psi, None]], [0.1, 0.2, 0.3])
        print('  ', g)
        test.assert_almost_equal(bf3, g)
    q = numpy.zeros(len(sep))
    print(log_bf(numpy.array([[numpy.nan + sep, sep, sep], [sep, numpy.nan + sep, sep], [sep, sep, numpy.nan + sep]]), 
        [0.1 + q, 0.2 + q, 0.3 + q]))
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_warning_calls():
        # combined "ignore" and stacklevel error
        base = Path(numpy.__file__).parent

        for path in base.rglob("*.py"):
            if base / "testing" in path.parents:
                continue
            if path == base / "__init__.py":
                continue
            if path == base / "random" / "__init__.py":
                continue
            # use tokenize to auto-detect encoding on systems where no
            # default encoding is defined (e.g. LANG='C')
            with tokenize.open(str(path)) as file:
                tree = ast.parse(file.read())
                FindFuncs(path).visit(tree)
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:Theano-Deep-learning    作者:GeekLiB    | 项目源码 | 文件源码
def test_diag(self):
        # test that it builds a matrix with given diagonal when using
        # vector inputs
        x = theano.tensor.vector()
        y = diag(x)
        assert y.owner.op.__class__ == AllocDiag

        # test that it extracts the diagonal when using matrix input
        x = theano.tensor.matrix()
        y = extract_diag(x)
        assert y.owner.op.__class__ == ExtractDiag

        # other types should raise error
        x = theano.tensor.tensor3()
        ok = False
        try:
            y = extract_diag(x)
        except TypeError:
            ok = True
        assert ok

    # not testing the view=True case since it is not used anywhere.
项目:Theano-Deep-learning    作者:GeekLiB    | 项目源码 | 文件源码
def test_cholesky_and_cholesky_grad_shape():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the Cholesky op.")

    rng = numpy.random.RandomState(utt.fetch_seed())
    x = tensor.matrix()
    for l in (cholesky(x), Cholesky(lower=True)(x), Cholesky(lower=False)(x)):
        f_chol = theano.function([x], l.shape)
        g = tensor.grad(l.sum(), x)
        f_cholgrad = theano.function([x], g.shape)
        topo_chol = f_chol.maker.fgraph.toposort()
        topo_cholgrad = f_cholgrad.maker.fgraph.toposort()
        if config.mode != 'FAST_COMPILE':
            assert sum([node.op.__class__ == Cholesky
                        for node in topo_chol]) == 0
            assert sum([node.op.__class__ == CholeskyGrad
                        for node in topo_cholgrad]) == 0
        for shp in [2, 3, 5]:
            m = numpy.cov(rng.randn(shp, shp + 10)).astype(config.floatX)
            yield numpy.testing.assert_equal, f_chol(m), (shp, shp)
            yield numpy.testing.assert_equal, f_cholgrad(m), (shp, shp)
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_anchor():
    x = numpy.array(
        [[-84., -40., 99., 55.],
         [-176., -88., 191., 103.],
         [-360., -184., 375., 199.],
         [-56., -56., 71., 71.],
         [-120., -120., 135., 135.],
         [-248., -248., 263., 263.],
         [-36., -80., 51., 95.],
         [-80., -168., 95., 183.],
         [-168., -344., 183., 359.]]
    )

    y = keras_rcnn.backend.anchor(
        scales=keras.backend.cast([8, 16, 32], keras.backend.floatx()))
    y = keras.backend.eval(y)
    numpy.testing.assert_array_almost_equal(x, y)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_clip():
    boxes = numpy.array(
        [[0, 0, 0, 0], [1, 2, 3, 4], [-4, 2, 1000, 6000], [3, -10, 223, 224]])
    shape = [224, 224]
    boxes = keras.backend.variable(boxes)
    results = keras_rcnn.backend.clip(boxes, shape)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[0, 0, 0, 0], [1, 2, 3, 4], [0, 2, 223, 223], [3, 0, 223, 223]])
    numpy.testing.assert_array_almost_equal(results, expected)

    boxes = numpy.reshape(numpy.arange(200, 200 + 12 * 5), (-1, 12))
    shape = [224, 224]
    boxes = keras.backend.variable(boxes)
    results = keras_rcnn.backend.clip(boxes, shape)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211],
         [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223]])
    numpy.testing.assert_array_almost_equal(results, expected, 0)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_bbox_transform():
    gt_rois = numpy.array([[-84., -40., 99., 55.], [-176., -88., 191., 103.],
                           [-360., -184., 375., 199.], [-56., -56., 71., 71.],
                           [-120., -120., 135., 135.],
                           [-248., -248., 263., 263.], [-36., -80., 51., 95.],
                           [-80., -168., 95., 183.],
                           [-168., -344., 183., 359.]])
    ex_rois = 2 * gt_rois
    gt_rois = keras.backend.variable(gt_rois)
    ex_rois = keras.backend.variable(ex_rois)
    results = keras_rcnn.backend.bbox_transform(ex_rois, gt_rois)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[-0.02043597, -0.03926702, -0.69042609, -0.68792524],
         [-0.01020408, -0.01958225, -0.69178756, -0.69053962],
         [-0.00509857, -0.00977836, -0.6924676, -0.69184425],
         [-0.02941176, -0.02941176, -0.68923328, -0.68923328],
         [-0.0146771, -0.0146771, -0.69119215, -0.69119215],
         [-0.00733138, -0.00733138, -0.69217014, -0.69217014],
         [-0.04285714, -0.02136752, -0.68744916, -0.69030223],
         [-0.02136752, -0.01066856, -0.69030223, -0.69172572],
         [-0.01066856, -0.00533049, -0.69172572, -0.6924367]])
    numpy.testing.assert_array_almost_equal(results, expected)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_scale_enum():
    anchor = numpy.expand_dims(numpy.array([0, 0, 0, 0]), 0)
    scales = numpy.array([1, 2, 3])
    anchor = keras.backend.variable(anchor)
    scales = keras.backend.variable(scales)
    results = keras_rcnn.backend.common._scale_enum(anchor, scales)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[0, 0, 0, 0], [-0.5, -0.5, 0.5, 0.5], [-1., -1., 1., 1.]])
    numpy.testing.assert_array_equal(results, expected)
    anchor = keras.backend.cast(
        numpy.expand_dims(numpy.array([2, 3, 100, 100]), 0), 'float32')
    anchor = keras.backend.variable(anchor)
    results = keras_rcnn.backend.common._scale_enum(anchor, scales)
    results = keras.backend.eval(results)
    expected = numpy.array([[2., 3., 100., 100.], [-47.5, -46., 149.5, 149.],
                            [-97., -95., 199., 198.]])
    numpy.testing.assert_array_equal(results, expected)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_whctrs():
    anchor = keras.backend.cast(keras.backend.expand_dims([0, 0, 0, 0], 0),
                                'float32')
    results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs(
        anchor)
    results = numpy.array(
        [keras.backend.eval(results0), keras.backend.eval(results1),
         keras.backend.eval(results2), keras.backend.eval(results3)])
    expected = numpy.expand_dims([1, 1, 0, 0], 1)
    numpy.testing.assert_array_equal(results, expected)
    anchor = keras.backend.cast(keras.backend.expand_dims([2, 3, 100, 100], 0),
                                'float32')
    results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs(
        anchor)
    results = numpy.array(
        [keras.backend.eval(results0), keras.backend.eval(results1),
         keras.backend.eval(results2), keras.backend.eval(results3)])
    expected = numpy.expand_dims([99, 98, 51, 51.5], 1)
    numpy.testing.assert_array_equal(results, expected)
项目:keras-rcnn    作者:broadinstitute    | 项目源码 | 文件源码
def test_smooth_l1():
    output = keras.backend.variable(
        [[[2.5, 0.0, 0.4, 0.0],
          [0.0, 0.0, 0.0, 0.0],
          [0.0, 2.5, 0.0, 0.4]],
         [[3.5, 0.0, 0.0, 0.0],
          [0.0, 0.4, 0.0, 0.9],
          [0.0, 0.0, 1.5, 0.0]]]
    )

    target = keras.backend.zeros_like(output)

    x = keras_rcnn.backend.smooth_l1(output, target)

    numpy.testing.assert_approx_equal(keras.backend.eval(x), 8.645)

    weights = keras.backend.variable(
        [[2, 1, 1],
         [0, 3, 0]]
    )

    x = keras_rcnn.backend.smooth_l1(output, target, weights=weights)

    numpy.testing.assert_approx_equal(keras.backend.eval(x), 7.695)
项目:MetaXcan    作者:hakyimlab    | 项目源码 | 文件源码
def assert_gwas_1(unit_test, gwas):
    expected_snp = pandas.Series(["rs1666", "rs1", "rs2", "rs3", "rs4", "rs6", "rs7", "rs7666", "rs8", "rs9"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[SNP], expected_snp)

    expected_effect = pandas.Series(["A", "C", "C", "G", "A", "G", "T", "A", "A", "A"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[EFFECT_ALLELE], expected_effect)

    expected_non_effect = pandas.Series(["G", "T", "T", "A", "G", "A", "C", "G", "G", "G"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[NON_EFFECT_ALLELE], expected_non_effect)

    expected_zscore = pandas.Series([0.3, -0.2, 0.5, 1.3, -0.3, 2.9, 4.35, 1.3, 0.09, 0.09], dtype=numpy.float32)
    numpy.testing.assert_allclose(gwas[ZSCORE], expected_zscore, rtol=0.001)

    expected_chromosome = pandas.Series(["chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[CHROMOSOME], expected_chromosome)

    expected_position = pandas.Series([0, 1, 5, 20, 30, 42, 43, 45, 50, 70])
    numpy.testing.assert_array_equal(gwas[POSITION], expected_position)
项目:MetaXcan    作者:hakyimlab    | 项目源码 | 文件源码
def assert_gwas_2(unit_test, gwas):
    expected_snp = pandas.Series(["rsC", "rs1666", "rs1", "rs2",  "rs4", "rsB", "rsA", "rs7666", "rs8", "rs9"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[SNP], expected_snp)

    expected_effect = pandas.Series(["T", "A", "C", "C", "A", "G", "G", "A", "A", "A"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[EFFECT_ALLELE], expected_effect)

    expected_non_effect = pandas.Series(["C", "G", "T", "T", "G", "A", "A", "G", "G", "G"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[NON_EFFECT_ALLELE], expected_non_effect)

    expected_zscore = pandas.Series([4.35, 0.3, -0.2, 1.3, -0.3, 2.9, 1.3, 1.3, 0.09, 0.09], dtype=numpy.float32)
    numpy.testing.assert_allclose(gwas[ZSCORE], expected_zscore, rtol=0.001)

    expected_chromosome = pandas.Series(["chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1"], dtype=numpy.str)
    numpy.testing.assert_array_equal(gwas[CHROMOSOME], expected_chromosome)

    expected_position = pandas.Series([None, None, None, None, None, None, None, None, None, None])
    numpy.testing.assert_array_equal(gwas[POSITION], expected_position)
项目:MetaXcan    作者:hakyimlab    | 项目源码 | 文件源码
def test_load_model(self):
        snp_model = PredictionModel.load_model("tests/_td/dbs/test_1.db")

        e_e = SampleData.dataframe_from_extra(SampleData.sample_extra_2())
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_GENE], e_e[PredictionModel.WDBEQF.K_GENE])
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_GENE_NAME], e_e[PredictionModel.WDBEQF.K_GENE_NAME])
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_N_SNP_IN_MODEL], e_e[PredictionModel.WDBEQF.K_N_SNP_IN_MODEL])
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_R2], e_e[PredictionModel.WDBEQF.K_PRED_PERF_R2])
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_PVAL], e_e[PredictionModel.WDBEQF.K_PRED_PERF_PVAL])
        numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_QVAL], e_e[PredictionModel.WDBEQF.K_PRED_PERF_QVAL])

        e_w = SampleData.dataframe_from_weights(SampleData.sample_weights_2())
        numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_RSID], e_w[PredictionModel.WDBQF.K_RSID])
        numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_GENE], e_w[PredictionModel.WDBQF.K_GENE])
        numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_WEIGHT], e_w[PredictionModel.WDBQF.K_WEIGHT])
        numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_NON_EFFECT_ALLELE], e_w[PredictionModel.WDBQF.K_NON_EFFECT_ALLELE])
        numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_EFFECT_ALLELE], e_w[PredictionModel.WDBQF.K_EFFECT_ALLELE])
项目:MetaXcan    作者:hakyimlab    | 项目源码 | 文件源码
def test_from_load(self):
        m = MatrixManager.load_matrix_manager("tests/_td/cov/cov.txt.gz")
        snps, cov = m.get("ENSG00000239789.1")
        self.assertEqual(snps, cov_data.SNPS_ENSG00000239789_1)
        numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000239789_1)

        n = m.n_snps("ENSG00000239789.1")
        self.assertEqual(n, len(cov_data.SNPS_ENSG00000239789_1))

        with self.assertRaises(Exceptions.InvalidArguments) as ctx:
            snps, cov = m.get("ENSG00000183742.8", ["rs7806506", "rs12718973"])

        self.assertTrue("whitelist" in ctx.exception.message) #?

        whitelist = ["rs3094989", "rs7806506", "rs12536095", "rs10226814"]
        snps, cov = m.get("ENSG00000183742.8", whitelist)
        self.assertEqual(snps, cov_data.SNPS_ENSG00000183742_8_w)
        numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000183742_8_w)

        snps, cov = m.get("ENSG00000004766.11")
        self.assertEqual(snps, cov_data.SNPS_ENSG00000004766_11)
        numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000004766_11)

        n = m.n_snps("ENSG00000004766.11")
        self.assertEqual(n, len(cov_data.COV_ENSG00000004766_11))
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_get_sequence_lengths_from_binary_mask(self):
        binary_mask = torch.ByteTensor([[1, 1, 1, 0, 0, 0],
                                        [1, 1, 0, 0, 0, 0],
                                        [1, 1, 1, 1, 1, 1],
                                        [1, 0, 0, 0, 0, 0]])
        lengths = util.get_lengths_from_binary_sequence_mask(binary_mask)
        numpy.testing.assert_array_equal(lengths.numpy(), numpy.array([3, 2, 6, 1]))
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_get_sequence_lengths_converts_to_long_tensor_and_avoids_variable_overflow(self):
        # Tests the following weird behaviour in Pytorch 0.1.12
        # doesn't happen for our sequence masks:
        #
        # mask = torch.ones([260]).byte()
        # mask.sum() # equals 260.
        # var_mask = torch.autograd.Variable(mask)
        # var_mask.sum() # equals 4, due to 8 bit precision - the sum overflows.
        binary_mask = Variable(torch.ones(2, 260).byte())
        lengths = util.get_lengths_from_binary_sequence_mask(binary_mask)
        numpy.testing.assert_array_equal(lengths.data.numpy(), numpy.array([260, 260]))
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_weighted_sum_works_on_simple_input(self):
        batch_size = 1
        sentence_length = 5
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, sentence_length, embedding_dim)
        sentence_tensor = Variable(torch.from_numpy(sentence_array).float())
        attention_tensor = Variable(torch.FloatTensor([[.3, .4, .1, 0, 1.2]]))
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, embedding_dim)
        expected_array = (0.3 * sentence_array[0, 0] +
                          0.4 * sentence_array[0, 1] +
                          0.1 * sentence_array[0, 2] +
                          0.0 * sentence_array[0, 3] +
                          1.2 * sentence_array[0, 4])
        numpy.testing.assert_almost_equal(aggregated_array, [expected_array], decimal=5)
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_weighted_sum_handles_higher_order_input(self):
        batch_size = 1
        length_1 = 5
        length_2 = 6
        length_3 = 2
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, length_1, length_2, length_3, embedding_dim)
        attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3)
        sentence_tensor = Variable(torch.from_numpy(sentence_array).float())
        attention_tensor = Variable(torch.from_numpy(attention_array).float())
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim)
        expected_array = (attention_array[0, 3, 2, 0] * sentence_array[0, 3, 2, 0] +
                          attention_array[0, 3, 2, 1] * sentence_array[0, 3, 2, 1])
        numpy.testing.assert_almost_equal(aggregated_array[0, 3, 2], expected_array, decimal=5)
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_flatten_and_batch_shift_indices(self):
        indices = numpy.array([[[1, 2, 3, 4],
                                [5, 6, 7, 8],
                                [9, 9, 9, 9]],
                               [[2, 1, 0, 7],
                                [7, 7, 2, 3],
                                [0, 0, 4, 2]]])
        indices = Variable(torch.LongTensor(indices))
        shifted_indices = util.flatten_and_batch_shift_indices(indices, 10)
        numpy.testing.assert_array_equal(shifted_indices.data.numpy(),
                                         numpy.array([1, 2, 3, 4, 5, 6, 7, 8, 9,
                                                      9, 9, 9, 12, 11, 10, 17, 17,
                                                      17, 12, 13, 10, 10, 14, 12]))
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_flattened_index_select(self):
        indices = numpy.array([[1, 2],
                               [3, 4]])
        targets = torch.ones([2, 6, 3]).cumsum(1) - 1
        # Make the second batch double it's index so they're different.
        targets[1, :, :] *= 2
        indices = Variable(torch.LongTensor(indices))
        targets = Variable(targets)

        selected = util.flattened_index_select(targets, indices)

        assert list(selected.size()) == [2, 2, 2, 3]

        ones = numpy.ones([3])
        numpy.testing.assert_array_equal(selected[0, 0, 0, :].data.numpy(), ones)
        numpy.testing.assert_array_equal(selected[0, 0, 1, :].data.numpy(), ones * 2)
        numpy.testing.assert_array_equal(selected[0, 1, 0, :].data.numpy(), ones * 3)
        numpy.testing.assert_array_equal(selected[0, 1, 1, :].data.numpy(), ones * 4)

        numpy.testing.assert_array_equal(selected[1, 0, 0, :].data.numpy(), ones * 2)
        numpy.testing.assert_array_equal(selected[1, 0, 1, :].data.numpy(), ones * 4)
        numpy.testing.assert_array_equal(selected[1, 1, 0, :].data.numpy(), ones * 6)
        numpy.testing.assert_array_equal(selected[1, 1, 1, :].data.numpy(), ones * 8)

        # Check we only accept 2D indices.
        with pytest.raises(ConfigurationError):
            util.flattened_index_select(targets, torch.ones([3, 4, 5]))
项目:allennlp    作者:allenai    | 项目源码 | 文件源码
def test_bucket_values(self):
        indices = torch.LongTensor([1, 2, 7, 1, 56, 900])
        bucketed_distances = util.bucket_values(indices)
        numpy.testing.assert_array_equal(bucketed_distances.numpy(),
                                         numpy.array([1, 2, 5, 1, 8, 9]))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def get_package_name(filepath):
    """
    Given a path where a package is installed, determine its name.

    Parameters
    ----------
    filepath : str
        Path to a file. If the determination fails, "numpy" is returned.

    Examples
    --------
    >>> np.testing.nosetester.get_package_name('nonsense')
    'numpy'

    """

    fullpath = filepath[:]
    pkg_name = []
    while 'site-packages' in filepath or 'dist-packages' in filepath:
        filepath, p2 = os.path.split(filepath)
        if p2 in ('site-packages', 'dist-packages'):
            break
        pkg_name.append(p2)

    # if package name determination failed, just default to numpy/scipy
    if not pkg_name:
        if 'scipy' in fullpath:
            return 'scipy'
        else:
            return 'numpy'

    # otherwise, reverse to get correct order and return
    pkg_name.reverse()

    # don't include the outer egg directory
    if pkg_name[0].endswith('.egg'):
        pkg_name.pop(0)

    return '.'.join(pkg_name)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def __init__(self, package=None, raise_warnings="release", depth=0):
        # Back-compat: 'None' used to mean either "release" or "develop"
        # depending on whether this was a release or develop version of
        # numpy. Those semantics were fine for testing numpy, but not so
        # helpful for downstream projects like scipy that use
        # numpy.testing. (They want to set this based on whether *they* are a
        # release or develop version, not whether numpy is.) So we continue to
        # accept 'None' for back-compat, but it's now just an alias for the
        # default "release".
        if raise_warnings is None:
            raise_warnings = "release"

        package_name = None
        if package is None:
            f = sys._getframe(1 + depth)
            package_path = f.f_locals.get('__file__', None)
            if package_path is None:
                raise AssertionError
            package_path = os.path.dirname(package_path)
            package_name = f.f_locals.get('__name__', None)
        elif isinstance(package, type(os)):
            package_path = os.path.dirname(package.__file__)
            package_name = getattr(package, '__name__', None)
        else:
            package_path = str(package)

        self.package_path = package_path

        # Find the package name under test; this name is used to limit coverage
        # reporting (if enabled).
        if package_name is None:
            package_name = get_package_name(package_path)
        self.package_name = package_name

        # Set to "release" in constructor in maintenance branches.
        self.raise_warnings = raise_warnings
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_init(illumination_stats):
    histogram = numpy.zeros((3, 2**16), dtype=numpy.float64)

    assert illumination_stats.depth == 2 ** 16
    assert illumination_stats.channels == ["DNA", "ER", "Mito"]
    assert illumination_stats.name == ""
    assert illumination_stats.down_scale_factor == 2
    assert illumination_stats.median_filter_size == 3
    numpy.testing.assert_array_equal(illumination_stats.hist, histogram)
    assert illumination_stats.count == 0
    assert illumination_stats.expected == 1
    assert illumination_stats.mean_image is None
    assert illumination_stats.original_image_size is None
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_add_to_mean_no_scaling(illumination_stats):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    illumination_stats.down_scale_factor = 1
    illumination_stats.addToMean(image)

    assert illumination_stats.mean_image.shape == (16, 16, 3)
    # This method rescales the input image and normalizes pixels according to
    # the data type. We restore the values in this test to match the input for comparison.
    result_mean = illumination_stats.mean_image #* (2 ** 16)
    numpy.testing.assert_array_equal(numpy.round(result_mean).astype(numpy.uint16), image)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_add_to_mean_with_scaling(illumination_stats):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    illumination_stats.addToMean(image)

    assert illumination_stats.mean_image.shape == (8, 8, 3)
    result_mean = illumination_stats.mean_image
    assert result_mean.sum() > 0
    #numpy.testing.assert_array_equal(result_mean.astype(numpy.uint16), image)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_process_image(illumination_stats):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    illumination_stats.processImage(0, image, None)

    histogram1 = numpy.histogram(image[:, :, 0], bins=2 ** 16, range=(0, 2 ** 16))[0]
    histogram2 = numpy.histogram(image[:, :, 1], bins=2 ** 16, range=(0, 2 ** 16))[0]
    histogram3 = numpy.histogram(image[:, :, 2], bins=2 ** 16, range=(0, 2 ** 16))[0]

    assert illumination_stats.count == 1
    numpy.testing.assert_array_equal(illumination_stats.hist[0], histogram1)
    numpy.testing.assert_array_equal(illumination_stats.hist[1], histogram2)
    numpy.testing.assert_array_equal(illumination_stats.hist[2], histogram3)
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_init(compress, out_dir):
    stats = {"original_size": [16, 16]}
    channels = ["DNA", "ER", "Mito"]
    control_distribution = numpy.zeros((3, 2 ** 8), dtype=numpy.float64)

    assert compress.stats == stats
    assert compress.channels == channels
    assert compress.out_dir == out_dir
    assert compress.count == 0
    assert compress.expected == 1
    assert not compress.metadata_control_filter("x")
    numpy.testing.assert_array_equal(compress.controls_distribution, control_distribution)
    assert compress.source_format == "tiff"
    assert compress.target_format == "png"
    assert compress.output_shape == [16, 16]
项目:DeepProfiler    作者:jccaicedo    | 项目源码 | 文件源码
def test_set_control_samples_filter(compress):
    test_filter = lambda x: True
    control_distribution = numpy.zeros((3, 2 ** 8), dtype=numpy.float64)

    compress.set_control_samples_filter(test_filter)

    assert compress.metadata_control_filter(1)
    numpy.testing.assert_array_equal(compress.controls_distribution, control_distribution)