Python numpy 模块,fmax() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.fmax()

项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def imax(arrays, axis, ignore_nan = False):
    """ 
    Maximum of a stream of arrays along an axis.

    Parameters
    ----------
    arrays : iterable
        Arrays to be reduced.
    axis : int or None, optional
        Axis along which the maximum is found. The default
        is to find the maximum along the 'stream axis', as if all arrays in ``array``
        were stacked along a new dimension. If ``axis = None``, arrays in ``arrays`` are flattened
        before reduction.
    ignore_nan : bool, optional
        If True, NaNs are ignored. Default is propagation of NaNs.

    Yields
    ------
    online_max : ndarray
        Cumulative maximum.
    """
    ufunc = np.fmax if ignore_nan else np.maximum
    yield from ireduce_ufunc(arrays, ufunc, axis)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:trend_ml_toolkit_xgboost    作者:raymon-tian    | 项目源码 | 文件源码
def fea_plot(xg_model, feature, label, type = 'weight', max_num_features = None):
    fig, AX = plt.subplots(nrows=1, ncols=2)
    xgb.plot_importance(xg_model, xlabel=type, importance_type='weight', ax=AX[0], max_num_features=max_num_features)

    fscore = xg_model.get_score(importance_type=type)
    fscore = sorted(fscore.items(), key=itemgetter(1), reverse=True) # sort scores
    fea_index = get_fea_index(fscore, max_num_features)
    feature = feature[:, fea_index]
    dimension = len(fea_index)
    X = range(1, dimension+1)
    Yp = np.mean(feature[np.where(label==1)[0]], axis=0)
    Yn = np.mean(feature[np.where(label!=1)[0]], axis=0)
    for i in range(0, dimension):
        param = np.fmax(Yp[i], Yn[i])
        Yp[i] /= param
        Yn[i] /= param
    p1 = AX[1].bar(X, +Yp, facecolor='#ff9999', edgecolor='white')
    p2 = AX[1].bar(X, -Yn, facecolor='#9999ff', edgecolor='white')
    AX[1].legend((p1,p2), ('Malware', 'Normal'))
    AX[1].set_title('Comparison of selected features by their means')
    AX[1].set_xlabel('Feature Index')
    AX[1].set_ylabel('Mean Value')
    AX[1].set_ylim(-1.1, 1.1)
    plt.xticks(X, fea_index+1, rotation=80)
    plt.suptitle('Feature Selection results')
项目:primal_svm    作者:ksopyla    | 项目源码 | 文件源码
def test_obj_value_points_correctly_class_far_from_hyperplane(self):
        bias = 0.0

        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[5, 0.3], [1, -0.8], [1, 6], [-0.6, 3]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expectedObj = 1.0

        result, _ = self.svm._obj_func(w, X, Y, out)

        self.assertAlmostEqual(expectedObj, result)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:rio-cloudmask    作者:mapbox    | 项目源码 | 文件源码
def variability_prob(ndvi, ndsi, whiteness):
    """Use the probability of the spectral variability
    to identify clouds over land.

    Equation 15 (Zhu and Woodcock, 2012)

    Parameters
    ----------
    ndvi: ndarray
    ndsi: ndarray
    whiteness: ndarray

    Output
    ------
    ndarray :
        probability of cloud over land based on variability
    """
    ndi_max = np.fmax(np.absolute(ndvi), np.absolute(ndsi))
    f_max =  1.0 - np.fmax(ndi_max, whiteness)
    return f_max


# Eq 16, land_cloud_prob
# lCloud_Prob = lTemperature_Prob x Variability_Prob
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:primal_svm    作者:ksopyla    | 项目源码 | 文件源码
def _obj_func(self, w, X, Y, out):
        """
        Computes primal value end gradient
        Parameters
        ----------
        w : {array-like} - hyperplane normal vector
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        Y : array-like, shape = [n_samples]
            Target vector relative to X
        out: loss function values
        Returns
        -------
        (obj,grad) : tuple, obj - function value, grad - gradient

        """

        l2reg = self.l2reg

        # we remember bias, to recover it after gradient computation
        bias = w[-1]
        # set bias to zero, don't penalize b
        w[-1] = 0

        max_out = np.fmax(0, out)
        obj = np.sum(max_out ** 2) / 2 + l2reg * w.dot(w) / 2

        grad = l2reg * w - np.append([np.dot(max_out * Y, X)], [np.sum(max_out * Y)])

        w[-1] = bias

        return (obj, grad)
项目:primal_svm    作者:ksopyla    | 项目源码 | 文件源码
def test_obj_value_points_correctly_class_close_to_hyperplane(self):
        bias = 0.0
        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[0.5, 0.3], [1, 0.8], [1, 1.4], [0.6, 0.9]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expectedObj = 2.0650000000000004

        result, _ = self.svm._obj_func(w, X, Y, out)

        self.assertAlmostEqual(expectedObj, result)
项目:primal_svm    作者:ksopyla    | 项目源码 | 文件源码
def test_obj_grad_points(self):
        bias = 0.0
        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[0.5, 0.3], [1, 0.8], [1, 1.4], [0.6, 0.9]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expected = np.array([-0.82, 0.41, 0.3])

        (obj, grad) = self.svm._obj_func(w, X, Y, out)

        np.testing.assert_array_almost_equal(expected, grad)
项目:FreeDiscovery    作者:FreeDiscovery    | 项目源码 | 文件源码
def _scale_cosine_similarity(x, metric='cosine', inverse=False):
    """ Given a cosine similarity on L2 normalized data,
    appriximately convert it to Jaccard similarity, and/or
    normalize it to the [0, 1] interval

    Parameters
    ----------
    x : {float, ndarray}
      the cosine similarity value
    metric : str
      the conversion to apply one of ['cosine', 'jaccard']
    inverse : bool
      perform the inverse de-normalization operation
    """
    valid_metrics = ['cosine', 'jaccard', 'cosine_norm', 'jaccard_norm',
                     'cosine-positive']
    if metric not in valid_metrics:
        raise ValueError('metric {} not supported, must be in {}'
                         .format(metric, valid_metrics))
    if metric == 'cosine':
        return x
    elif metric == 'cosine-positive':
        if isinstance(x, (int, float)):
            return max(x, 0.0)
        else:
            return np.fmax(x, 0.0)

    if metric.startswith('jaccard'):
        if not inverse:
            x = cosine2jaccard_similarity(x)
        else:
            x = jaccard2cosine_similarity(x)

    if metric.endswith('norm'):
        x = _normalize_similarity(x, metric=metric.split('_')[0],
                                  inverse=inverse)

    return x
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:chainer-deconv    作者:germanRos    | 项目源码 | 文件源码
def forward_cpu(self, inputs):
        x, = inputs
        # y = log(1 + exp(beta * x)) / beta
        bx = self.beta * x
        y = (numpy.fmax(bx, 0) +
             numpy.log1p(numpy.exp(-numpy.fabs(bx)))) * self.beta_inv
        return utils.force_array(y.astype(x.dtype)),
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:mimclib    作者:StochasticNumerics    | 项目源码 | 文件源码
def twoFactorGaussianExample(inds,t_max=1.0,tau_max=3.0,b0=0.0759,b1=-0.0439,k=0.4454,a2=0.5,s1=0.02,s2=0.01,K=0.5,verbose=False):

    '''
    Compute the two factor Gaussian Example in Beck-Tempone-Szepessy-Zouraris
    '''


    f0 = lambda tau: b0+b1*np.exp(-1.0*k*tau)

    F = lambda x: np.exp(-1.0*x)
    G = lambda x: np.fmax(np.exp(-1.0*x)-K)
    Psi = lambda x: 1.0*x
    U = lambda x: 0.0*x

    d1 = lambda s: s1*s1*s
    d20 = lambda s: np.exp(-0.5*a2*s)
    d2 = lambda s: 2*s2*s2/a2*d20(s)*(1.0-d20(s))

    drift = lambda s: d1(s)+d2(s) 

    v1 = lambda s: s1*np.ones(np.shape(s))
    v2 = lambda s: s2*d20(s)

    vols = [v1,v2]

    identifierString = 'Evaluating the Two Factor Gaussian example.\n'
    identifierString += 's1: %f, s2: %f, b0: %f, tau_max: %f, t_max: %f\n'%(s1,s2,b0,tau_max,t_max)
    identifierString += 'k: %f, a2: %f, K: %f, b1: %f'%(k,a2,K,b1)

    return multiLevelHjmModel(inds,F,G,U,Psi,drift,vols,f0,t_max=t_max,tau_max=tau_max,identifierString=identifierString,verbose=verbose)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def clip_to_window(boxlist, window):
  """Clip bounding boxes to a window.

  This op clips input bounding boxes (represented by bounding box
  corners) to a window, optionally filtering out boxes that do not
  overlap at all with the window.

  Args:
    boxlist: BoxList holding M_in boxes
    window: a numpy array of shape [4] representing the
            [y_min, x_min, y_max, x_max] window to which the op
            should clip boxes.

  Returns:
    a BoxList holding M_out boxes where M_out <= M_in
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  y_min_clipped = np.fmax(np.fmin(y_min, win_y_max), win_y_min)
  y_max_clipped = np.fmax(np.fmin(y_max, win_y_max), win_y_min)
  x_min_clipped = np.fmax(np.fmin(x_min, win_x_max), win_x_min)
  x_max_clipped = np.fmax(np.fmin(x_max, win_x_max), win_x_min)
  clipped = np_box_list.BoxList(
      np.hstack([y_min_clipped, x_min_clipped, y_max_clipped, x_max_clipped]))
  clipped = _copy_extra_fields(clipped, boxlist)
  areas = area(clipped)
  nonzero_area_indices = np.reshape(np.nonzero(np.greater(areas, 0.0)),
                                    [-1]).astype(np.int32)
  return gather(clipped, nonzero_area_indices)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)
项目:SourceFilterContoursMelody    作者:juanjobosch    | 项目源码 | 文件源码
def load_contour_data(fpath, normalize=True):
    """ Load contour data from vamp output csv file.
    Initializes DataFrame to have all future columns.

    Parameters
    ----------
    fpath : str
        Path to vamp output csv file.

    Returns
    -------
    contour_data : DataFrame
        Pandas data frame with all contour data.
    """
    try:
        contour_data = pd.read_csv(fpath, header=None, index_col=None,
                                   delimiter=',').astype(float)
        del contour_data[0]  # all zeros
        del contour_data[1]  # just an unnecessary  index
        headers = contour_data.columns.values.astype('str')
        headers[0:12] = ['onset', 'offset', 'duration', 'pitch mean', 'pitch std',
                         'salience mean', 'salience std', 'salience tot',
                         'vibrato', 'vib rate', 'vib extent', 'vib coverage']
        contour_data.columns = headers
    except:
        contour_data = loadpickle(fpath)
        # trying to load with pickle

    # Check if there is any column with all nans... it should not be considered
    df = contour_data.isnull().all()
    if np.where(df)[0]:
        contour_data = contour_data.drop(contour_data.columns[np.where(df)[0][0]], axis=1)

    #   To ensure the contour has a duration > 0
    contour_data['duration'] = np.fmax(contour_data['duration'].values,0.001)

    contour_data.num_end_cols = 0
    contour_data['overlap'] = -1  # overlaps are unset
    contour_data['labels'] = -1  # all labels are unset
    contour_data['melodiness'] = ""
    contour_data['mel prob'] = -1
    contour_data.num_end_cols = 4

    if normalize:
        contour_data = normalize_features(contour_data)

    return contour_data
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_datetime_minmax(self):
        # The metadata of the result should become the GCD
        # of the operand metadata
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # Interaction with NaT
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        dtnat = np.array('NaT', dtype='M8[h]')
        assert_equal(np.minimum(a, dtnat), a)
        assert_equal(np.minimum(dtnat, a), a)
        assert_equal(np.maximum(a, dtnat), a)
        assert_equal(np.maximum(dtnat, a), a)

        # Also do timedelta
        a = np.array(3, dtype='m8[h]')
        b = np.array(3*3600 - 3, dtype='m8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # should raise between datetime and timedelta
        #
        # TODO: Allowing unsafe casting by
        #       default in ufuncs strikes again... :(
        a = np.array(3, dtype='m8[h]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        #assert_raises(TypeError, np.minimum, a, b)
        #assert_raises(TypeError, np.maximum, a, b)
        #assert_raises(TypeError, np.fmin, a, b)
        #assert_raises(TypeError, np.fmax, a, b)
        assert_raises(TypeError, np.minimum, a, b, casting='same_kind')
        assert_raises(TypeError, np.maximum, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmin, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmax, a, b, casting='same_kind')
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_datetime_minmax(self):
        # The metadata of the result should become the GCD
        # of the operand metadata
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # Interaction with NaT
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        dtnat = np.array('NaT', dtype='M8[h]')
        assert_equal(np.minimum(a, dtnat), a)
        assert_equal(np.minimum(dtnat, a), a)
        assert_equal(np.maximum(a, dtnat), a)
        assert_equal(np.maximum(dtnat, a), a)

        # Also do timedelta
        a = np.array(3, dtype='m8[h]')
        b = np.array(3*3600 - 3, dtype='m8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # should raise between datetime and timedelta
        #
        # TODO: Allowing unsafe casting by
        #       default in ufuncs strikes again... :(
        a = np.array(3, dtype='m8[h]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        #assert_raises(TypeError, np.minimum, a, b)
        #assert_raises(TypeError, np.maximum, a, b)
        #assert_raises(TypeError, np.fmin, a, b)
        #assert_raises(TypeError, np.fmax, a, b)
        assert_raises(TypeError, np.minimum, a, b, casting='same_kind')
        assert_raises(TypeError, np.maximum, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmin, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmax, a, b, casting='same_kind')
项目:CRIkit2    作者:CoherentRamanNIST    | 项目源码 | 文件源码
def gen_anscombe_forward(signal, gauss_std, gauss_mean = 0, poisson_multi = 1):
    """
    Applies the generalized Anscombe variance-stabilization transform
    assuming a mixed Poisson-Gaussian noise model as:

    signal = poisson_multi*Poisson{signal0} + Gauss{gauss_mean, gauss_std},

    where Poisson{} and Gauss{} are generalized descriptions of Poisson and
    Gaussian noise.

    Parameters
    ----------
    signal : ndarray
        Noisy signal (1-,2-,3D)

    gauss_std : float, int
        Standard deviation of Gaussian noise

    poisson_multi : float or int, optional (default = 1)
        Effectively a multiplier that scales the effect of the Poisson
        noise

    gauss_mean : float or int, optional (default = 0)
        Mean Gaussian noise level

    Returns
    -------
    fsignal : ndarray (matched to signal shape)
        "Anscombe-transformed" signal with an approximate unity standard \
        deviation/variance (~ 1)

    Note
    ----
    This software is a direct translation (with minor alterations) of the
    original MATLAB software created by Alessandro Foi and Markku Mäkitalo
    (Tampere University of Technology - 2011-2012). Please cite the references
    below if using this software. http://www.cs.tut.fi/~foi/

    References
    ----------
    [1] J.L. Starck, F. Murtagh, and A. Bijaoui, Image  Processing  and
    Data Analysis, Cambridge University Press, Cambridge, 1998)

    """

    SMALL_VAL = 1

    fsignal = 2/poisson_multi * _np.sqrt(_np.fmax(SMALL_VAL,poisson_multi*signal +
                                    (3/8)*poisson_multi**2 +
                                    gauss_std**2 -
                                    poisson_multi*gauss_mean))
#    fsignal = _ne.evaluate('2/poisson_multi * sqrt(where(poisson_multi*signal + (3/8)*poisson_multi**2 +\
#                            gauss_std**2 - poisson_multi*gauss_mean > SMALL_VAL,\
#                            poisson_multi*signal + (3/8)*poisson_multi**2 +\
#                            gauss_std**2 - poisson_multi*gauss_mean, SMALL_VAL))')
    #fsignal = 2/poisson_multi * _np.sqrt(_np.fmax(SMALL_VAL,fsignal))
    return fsignal