我们从Python开源项目中,提取了以下32个代码示例,用于说明如何使用numpy.broadcast_arrays()。
def __split_apply(self, func_y_lt_f, func_y_gt_f, func_f_lt_0, y, f): # Make sure all arrays are of a compatible type y, f = np.broadcast_arrays(y, f) y = y.astype(float, copy=False) f = f.astype(float, copy=False) if any(y < 0): raise ValueError("y has to be > 0!") # get indicators of which likelihoods to apply where y_lt_f = np.logical_and(y <= f, f > 0) y_gt_f = np.logical_and(y > f, f > 0) f_lt_0 = f <= 0 result = np.zeros_like(y) result[y_lt_f] = func_y_lt_f(y[y_lt_f], f[y_lt_f]) result[y_gt_f] = func_y_gt_f(y[y_gt_f], f[y_gt_f]) result[f_lt_0] = func_f_lt_0(y[f_lt_0], f[f_lt_0]) return result
def compute(self, today, assets, out, dependent, independent): alpha = out.alpha beta = out.beta r_value = out.r_value p_value = out.p_value stderr = out.stderr def regress(y, x): regr_results = linregress(y=y, x=x) # `linregress` returns its results in the following order: # slope, intercept, r-value, p-value, stderr alpha[i] = regr_results[1] beta[i] = regr_results[0] r_value[i] = regr_results[2] p_value[i] = regr_results[3] stderr[i] = regr_results[4] # If `independent` is a Slice or single column of data, broadcast it # out to the same shape as `dependent`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. independent = broadcast_arrays(independent, dependent)[0] for i in range(len(out)): regress(y=dependent[:, i], x=independent[:, i])
def _cartesian_product(*arrays): """ Get the cartesian product of a number of arrays. Parameters ---------- arrays : Iterable[np.ndarray] The arrays to get a cartesian product of. Always sorted with respect to the original array. Returns ------- out : np.ndarray The overall cartesian product of all the input arrays. """ broadcastable = np.ix_(*arrays) broadcasted = np.broadcast_arrays(*broadcastable) rows, cols = np.prod(broadcasted[0].shape), len(broadcasted) dtype = np.result_type(*arrays) out = np.empty(rows * cols, dtype=dtype) start, end = 0, rows for a in broadcasted: out[start:end] = a.reshape(-1) start, end = end, end + rows return out.reshape(cols, rows)
def test_broadcast_arrays(): # Test user defined dtypes a = np.array([(1, 2, 3)], dtype='u4,u4,u4') b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4') result = np.broadcast_arrays(a, b) assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4')) assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
def Ey(self, f, var, z): f, z = np.broadcast_arrays(f, z) Ey = np.zeros_like(f) nz = ~ z Ey[z] = self.gaus.Ey(f[z], var) Ey[nz] = self.unif.Ey(f[nz]) return Ey
def dp(self, y, f, var, z): yz, fz = np.broadcast_arrays(y[z], f[:, z]) dp = np.zeros_like(f) dp[:, z] = self.gaus.dp(yz, fz, var) return dp
def __split_on_z(self, func_unif, func_gaus, y, f, var, z): y, f, z = np.broadcast_arrays(y, f, z) val = np.zeros_like(f) nz = ~ z val[z] = func_gaus(y[z], f[z], var) val[nz] = func_unif(y[nz], f[nz]) return val
def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = pearsonr(base_data[:, i], target_data[:, i])[0]
def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = spearmanr(base_data[:, i], target_data[:, i])[0]
def world2image_uvMat(self, uv_mat): ''' @param XYZ_mat: is a 4 or 3 times n matrix ''' if uv_mat.shape[0] == 2: if len(uv_mat.shape)==1: uv_mat = uv_mat.reshape(uv_mat.shape + (1,)) uv_mat = np.vstack((uv_mat, np.ones((1, uv_mat.shape[1]), uv_mat.dtype))) result = np.dot(self.Tr33, uv_mat) #w0 = -(uv_mat[0]* self.Tr_inv_33[1,0]+ uv_mat[1]* self.Tr_inv[1,1])/self.Tr_inv[1,2] resultB = np.broadcast_arrays(result, result[-1,:]) return resultB[0] / resultB[1]
def image2world_uvMat(self, uv_mat): ''' @param XYZ_mat: is a 4 or 3 times n matrix ''' #assert self.transformMode == 'kitti' or self.transformMode == 'angles' if uv_mat.shape[0] == 2: if len(uv_mat.shape)==1: uv_mat = uv_mat.reshape(uv_mat.shape + (1,)) uv_mat = np.vstack((uv_mat, np.ones((1, uv_mat.shape[1]), uv_mat.dtype))) result = np.dot(self.Tr33.I, uv_mat) #w0 = -(uv_mat[0]* self.Tr_inv_33[1,0]+ uv_mat[1]* self.Tr_inv[1,1])/self.Tr_inv[1,2] resultB = np.broadcast_arrays(result, result[-1,:]) return resultB[0] / resultB[1]
def __call__(self, t, tau, debug=False): """Calculate h(t, tau). Compute h(t, tau), which is the output at t subject to an impulse at time tau. standard numpy broadcasting rules apply. Parameters ---------- t : array-like the output time. tau : array-like the input impulse time. debug : bool True to print debug messages. Returns ------- val : :class:`numpy.ndarray` the time-varying impulse response evaluated at the given coordinates. """ # broadcast arguments to same shape t, tau = np.broadcast_arrays(t, tau) # compute impulse using efficient matrix multiply and numpy broadcasting. dt = t - tau zero_indices = (dt < 0) | (dt > self.k * self.tper) t_row = t.reshape((1, -1)) dt_row = dt.reshape((1, -1)) tmp = np.dot(self.hmat, np.exp(np.dot(self.n_col, dt_row))) * np.exp(np.dot(self.m_col, t_row)) result = np.sum(tmp, axis=0).reshape(dt.shape) # zero element such that dt < 0 or dt > k * T. result[zero_indices] = 0.0 if debug: self._print_debug_msg(result) # discard imaginary part return np.real(result)
def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx
def cartesian_product(arrays): """ Returns Cartesian product of given arrays (x and y): cartesian_product([x,y]) """ broadcastable = np.ix_(*arrays) broadcasted = np.broadcast_arrays(*broadcastable) rows, cols = reduce(np.multiply, broadcasted[0].shape), len(broadcasted) out = np.empty(rows * cols, dtype=broadcasted[0].dtype) start, end = 0, rows for a in broadcasted: out[start:end] = a.reshape(-1) start, end = end, end + rows # Return value(s) return out.reshape(cols, rows).T
def omega_output(self, fname, parameters): """This method writes the dispersion relation to the file fname. :param fname: Filename :type fname: string :param parameters: Array containing the parameters. :type parameters: numpy.ndarray """ omega = self.omega(parameters) kappa = self.kappamesh kmesh = self.kmesh k = self.k #print(omega, self.dks) vgs = np.gradient(omega, *self.dks, edge_order=2) vg = np.sqrt(sum(vgc**2 for vgc in vgs)) if self.dim==2: vg[:3,:3] = 1 elif self.dim==3: vg[:3,:3,:3] = 1 vph = omega/k vph.ravel()[0] = 1. data = [*np.broadcast_arrays(*kappa), k, omega, vph, vg, *vgs] data = np.broadcast_arrays(*data) blocks = zip(*map(lambda x: np.vsplit(x, x.shape[0]), data)) with open(fname, 'wb') as f: kappanames = ' '.join(['kx', 'ky', 'kz'][:len(kappa)]) vgsnames = ' '.join(['vgx', 'vgy', 'vgz'][:len(vgs)]) f.write(('#' + kappanames + ' k omega vph vg ' + vgsnames + '\n').encode('us-ascii')) for block_columns in blocks: np.savetxt(f, np.vstack(map(np.ravel, block_columns)).T) f.write(b'\n')
def _numpy_second(x, y): return numpy.broadcast_arrays(x, y)[1]
def __init__(self, *args, mask='B', **kwargs): super(MaskedConvolution2D, self).__init__( *args, **kwargs ) Cout, Cin, kh, kw = self.W.shape pre_mask = self.xp.ones_like(self.W.data).astype('f') yc, xc = kh // 2, kw // 2 # context masking - subsequent pixels won't hav access to next pixels (spatial dim) pre_mask[:, :, yc+1:, :] = 0.0 pre_mask[:, :, yc:, xc+1:] = 0.0 # same pixel masking - pixel won't access next color (conv filter dim) def bmask(i_out, i_in): cout_idx = np.expand_dims(np.arange(Cout) % 3 == i_out, 1) cin_idx = np.expand_dims(np.arange(Cin) % 3 == i_in, 0) a1, a2 = np.broadcast_arrays(cout_idx, cin_idx) return a1 * a2 for j in range(3): pre_mask[bmask(j, j), yc, xc] = 0.0 if mask == 'A' else 1.0 pre_mask[bmask(0, 1), yc, xc] = 0.0 pre_mask[bmask(0, 2), yc, xc] = 0.0 pre_mask[bmask(1, 2), yc, xc] = 0.0 self.mask = pre_mask
def bmask(i_out, i_in): cout_idx = np.expand_dims(np.arange(Cout) % 3 == i_out, 1) cin_idx = np.expand_dims(np.arange(Cin) % 3 == i_in, 0) a1, a2 = np.broadcast_arrays(cout_idx, cin_idx) return a1 * a2
def min_traveltimes(modelname, source_depths, receiver_depths, distances, phases, callback=None): '''computes the minimum travel times using multiprocessing to speed up calculations min_traveltimes(modelname, ARRAY[N], ARRAY[N], SCALAR, ...) -> [N-length array] min_traveltimes(modelname, ARRAY[N], ARRAY[N], ARRAY[M]) -> [NxM] matrix min_traveltimes(modelname, SCALAR, SCALAR, ARRAY[M]) -> [M-length array] ''' model = taumodel(modelname) source_depths, receiver_depths = np.broadcast_arrays(source_depths, receiver_depths) # assert we passed arrays, not matrices: if len(source_depths.shape) > 1 or len(distances.shape) > 1: raise ValueError("Need to have arrays, not matrices") norowdim = source_depths.ndim == 0 if norowdim: source_depths = np.array([source_depths]) receiver_depths = np.array([receiver_depths]) nocoldim = distances.ndim == 0 if nocoldim: distances = np.array([distances]) ttimes = np.full(shape=(source_depths.shape[0], distances.shape[0]), fill_value=np.nan) def mp_callback(index, array, _callback=None): def _(result): array[index] = result if _callback is not None: _callback() return _ pool = Pool() for idx, sd, rd in zip(count(), source_depths, receiver_depths): tmp_ttimes = ttimes[idx] for i, d in enumerate(distances): pool.apply_async(min_traveltime, (model, sd, rd, d, phases), callback=mp_callback(i, tmp_ttimes, callback)) pool.close() pool.join() if norowdim or nocoldim: ttimes = ttimes.flatten() return ttimes
def periodic_fit(t, y, dy, frequency, t_fit, center_data=True, fit_bias=True, nterms=1): """Compute the Lomb-Scargle model fit at a given frequency Parameters ---------- t, y, dy : float or array_like The times, observations, and uncertainties to fit frequency : float The frequency at which to compute the model t_fit : float or array_like The times at which the fit should be computed center_data : bool (default=True) If True, center the input data before applying the fit fit_bias : bool (default=True) If True, include the bias as part of the model nterms : int (default=1) The number of Fourier terms to include in the fit Returns ------- y_fit : ndarray The model fit evaluated at each value of t_fit """ if dy is None: dy = 1 t, y, dy = np.broadcast_arrays(t, y, dy) t_fit = np.asarray(t_fit) assert t.ndim == 1 assert t_fit.ndim == 1 assert np.isscalar(frequency) if center_data: w = dy ** -2.0 y_mean = np.dot(y, w) / w.sum() y = (y - y_mean) else: y_mean = 0 X = design_matrix(t, frequency, dy=dy, bias=fit_bias, nterms=nterms) theta_MLE = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) X_fit = design_matrix(t_fit, frequency, bias=fit_bias, nterms=nterms) return y_mean + np.dot(X_fit, theta_MLE)
def lombscargle_scipy(t, y, frequency, normalization='normalized', center_data=True): """Lomb-Scargle Periodogram This is a wrapper of ``scipy.signal.lombscargle`` for computation of the Lomb-Scargle periodogram. This is a relatively fast version of the naive O[N^2] algorithm, but cannot handle heteroskedastic errors. Parameters ---------- t, y: array_like times, values, and errors of the data points. These should be broadcastable to the same shape. frequency : array_like frequencies (not angular frequencies) at which to calculate periodogram normalization : string (optional, default='normalized') Normalization to use for the periodogram TODO: figure out what options to use center_data : bool (optional, default=True) if True, pre-center the data by subtracting the weighted mean of the input data. Returns ------- power : array_like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipies in C (2002) .. [3] Scargle, J.D. 1982, ApJ 263:835-853 """ if not HAS_SCIPY: raise ValueError("scipy must be installed to use lombscargle_scipy") t, y = np.broadcast_arrays(t, y) frequency = np.asarray(frequency) assert t.ndim == 1 assert frequency.ndim == 1 if center_data: y = y - y.mean() # Note: scipy input accepts angular frequencies p = signal.lombscargle(t, y, 2 * np.pi * frequency) if normalization == 'unnormalized': pass elif normalization == 'normalized': p *= 2 / (t.size * np.mean(y ** 2)) else: raise ValueError("normalization='{0}' " "not recognized".format(normalization)) return p
def elastic_transform(image, alpha, sigma): """ Elastic deformation of images as described in [1]. [1] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Based on gist https://gist.github.com/erniejunior/601cdf56d2b424757de5 Args: image (np.ndarray): image to be deformed alpha (list): scale of transformation for each dimension, where larger values have more deformation sigma (list): Gaussian window of deformation for each dimension, where smaller values have more localised deformation Returns: np.ndarray: deformed image """ assert len(alpha) == len(sigma), \ "Dimensions of alpha and sigma are different" channelbool = image.ndim - len(alpha) out = np.zeros((len(alpha) + channelbool, ) + image.shape) # Generate a Gaussian filter, leaving channel dimensions zeroes for jj in range(len(alpha)): array = (np.random.rand(*image.shape) * 2 - 1) out[jj] = gaussian_filter(array, sigma[jj], mode="constant", cval=0) * alpha[jj] # Map mask to indices shapes = list(map(lambda x: slice(0, x, None), image.shape)) grid = np.broadcast_arrays(*np.ogrid[shapes]) indices = list(map((lambda x: np.reshape(x, (-1, 1))), grid + np.array(out))) # Transform image based on masked indices transformed_image = map_coordinates(image, indices, order=0, mode='reflect').reshape(image.shape) return transformed_image
def min(self, source_depths, receiver_depths, distances, method='linear'): ''' Returns the minimum (minima) travel time(s) for the point(s) identified by (source_depths, receiver_depths, distances) by building a grid and interpolating on the points identified by each
P[i] = (source_depths[i], receiver_depths[i], distances[i]) ``` if the source file has been built with receiver depths == [0]. It uses a 2d linear interpolation on a grid. It uses scipy griddata :param source_depths: numeric or numpy array of length n: the source depth(s), in km :param receiver_depths: numeric or numpy array of length n: the receiver depth(s), in km. For most applications, this value can be set to zero :param distances: numeric or numpy array of length n: the distance(s), in degrees :param method: forwarded to `scipy.griddata` function :return: a numpy array of length n denoting the minimum travel time(s) of this model for each P ''' # Handle the case some arguments are scalars and some arrays: source_depths, receiver_depths, distances = \ np.broadcast_arrays(source_depths, receiver_depths, distances) # handle the case all arguments scalars. See # https://stackoverflow.com/questions/29318459/python-function-that-handles-scalar-or-arrays allscalars = all(_.ndim == 0 for _ in (source_depths, receiver_depths, distances)) if source_depths.ndim == 0: source_depths = source_depths[None] # Makes x 1D if receiver_depths.ndim == 0: receiver_depths = receiver_depths[None] # Makes x 1D if distances.ndim == 0: distances = distances[None] # Makes x 1D # correct source depths and receiver depths source_depths[source_depths < 0] = 0 receiver_depths[receiver_depths < 0] = 0 # correct distances to be compatible with obpsy traveltimes calculations: distances = distances % 360 # set values symmetric to 180 degrees if greater than 180: _mask = distances > 180 if _mask.any(): # does this speeds up (allocate mask array once)? FIXME: check distances[_mask] = 360 - distances[_mask] # set source depths to nan if out of bounds. This prevent method = 'nearest' # to return non nan values and be consistent with 'linear' and 'cubic' if self._unique_receiver_depth: # get values without receiver depth dimension: values = np.hstack((self._km2deg(source_depths).reshape(-1, 1), distances.reshape(-1, 1))) else: values = np.hstack((self._km2deg(source_depths).reshape(-1, 1), self._km2deg(receiver_depths).reshape(-1, 1), distances.reshape(-1, 1))) ret = griddata(self._gridpts, self._gridvals, values, method=method, rescale=False, fill_value=np.nan) # ret is almost likely a float, so we can set now nans for out of boun values # we cannot do it before on any input array cause int arrays do not support nan assignement ret[(source_depths > self._sourcedepth_bounds_km[1]) | (receiver_depths > self._receiverdepth_bounds_km[1])] = np.nan # return scalar if inputs are scalar, array oitherwise return np.squeeze(ret) if allscalars else ret
```