我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用numpy.vsplit()。
def rev(self, lng, lat, z=None, _type=np.int32): if z is None: z = self._default_z if all(isinstance(var, (int, float, tuple)) for var in [lng, lat]): lng, lat = (np.array([lng]), np.array([lat])) if not all(isinstance(var, np.ndarray) for var in [lng, lat]): raise ValueError("lng, lat inputs must be of type int, float, tuple or numpy.ndarray") if not isinstance(z, np.ndarray): z = np.zeros_like(lng) + z coord = np.dstack([lng, lat, z]) offset, scale = np.vsplit(self._offscl, 2) normed = coord * scale + offset X = self._rpc(normed) result = np.rollaxis(np.inner(self._A, X) / np.inner(self._B, X), 0, 3) rev_offset, rev_scale = np.vsplit(self._px_offscl_rev, 2) # needs to return x/y return np.rollaxis(result * rev_scale + rev_offset, 2).squeeze().astype(_type)[::-1]
def paint_latents( event ): global r, Z, output,painted_rects,MASK,USER_MASK,RECON # Get extent of latent paintbrush x1, y1 = ( event.x - d.get() ), ( event.y - d.get() ) x2, y2 = ( event.x + d.get() ), ( event.y + d.get() ) selected_widget = event.widget # Paint in latent space and update Z painted_rects.append(event.widget.create_rectangle( x1, y1, x2, y2, fill = rb(color.get()),outline = rb(color.get()) )) r[max((y1-bd),0):min((y2-bd),r.shape[0]),max((x1-bd),0):min((x2-bd),r.shape[1])] = color.get()/255.0; Z = np.asarray([np.mean(o) for v in [np.hsplit(h,Z.shape[0])\ for h in np.vsplit((r),Z.shape[1])]\ for o in v]).reshape(Z.shape[0],Z.shape[1]) if SAMPLE_FLAG: update_photo(None,output) update_canvas(w) # Remove this if you wish to see a more free-form paintbrush else: DELTA = model.sample_at(np.float32([Z.flatten()]))[0]-to_tanh(np.float32(RECON)) MASK=scipy.ndimage.filters.gaussian_filter(np.min([np.mean(np.abs(DELTA),axis=0),np.ones((64,64))],axis=0),0.7) # D = dampen(to_tanh(np.float32(RECON)),MASK*DELTA+(1-MASK)*ERROR) D = MASK*DELTA+(1-MASK)*ERROR IM = np.uint8(from_tanh(to_tanh(RECON)+D)) update_canvas(w) # Remove this if you wish to see a more free-form paintbrush update_photo(IM,output) # Scroll to lighten or darken an image patch
def test_nested_model_void(self): from l1l2py import tools data, test_data = np.vsplit(self.X, 2) labels, test_labels = np.hsplit(self.Y, 2) tau_opt, lambda_opt = (50.0, 0.1) mu_range = np.linspace(0.1, 1.0, 10) assert_raises( ValueError, nested_models, data, labels, test_data, test_labels, mu_range, tau_opt, lambda_opt, error_function=tools.regression_error, data_normalizer=tools.standardize, labels_normalizer=tools.center)
def get_next_sample(self): if self.incomplete_samples_ is not None: assert self.incomplete_samples_.size > 0 split = np.vsplit(self.incomplete_samples_, [1]) assert len(split) == 2 next_sample = split[0] if split[1].size == 0: self.incomplete_samples_ = None else: self.incomplete_samples_ = split[1] return next_sample.ravel() else: return None
def deleteRow(self, row_number, data): first, deleted, second = np.vsplit(data, [row_number, row_number + 1]) return np.vstack((first, second))
def load_csv(self): file_name = "data/jra_race_resultNN.csv" df = pd.read_csv(file_name) ## ??????? labelEncoder = preprocessing.LabelEncoder() df['area_name'] = labelEncoder.fit_transform(df['area_name']) df['race_name'] = labelEncoder.fit_transform(df['race_name']) df['track'] = labelEncoder.fit_transform(df['track']) df['run_direction'] = labelEncoder.fit_transform(df['run_direction']) df['track_condition'] = labelEncoder.fit_transform(df['track_condition']) df['horse_name'] = labelEncoder.fit_transform(df['horse_name']) df['horse_sex'] = labelEncoder.fit_transform(df['horse_sex']) df['jockey_name'] = labelEncoder.fit_transform(df['jockey_name']) df['margin'] = labelEncoder.fit_transform(df['margin']) df['is_blinkers'] = labelEncoder.fit_transform(df['is_blinkers']) df['trainer_name'] = labelEncoder.fit_transform(df['trainer_name']) df['comments_by_trainer'] = labelEncoder.fit_transform(df['comments_by_trainer']) df['evaluation_by_trainer'] = labelEncoder.fit_transform(df['evaluation_by_trainer']) df['dhorse_weight'] = labelEncoder.fit_transform(df['dhorse_weight']) x_np = np.array(df[['area_name', 'race_number', 'race_name', 'track', 'run_direction', 'distance', 'track_condition', 'purse', 'heads_count', 'post_position', 'horse_number', 'horse_name', 'horse_sex', 'horse_age', 'jockey_name', 'time', 'margin', 'time3F', 'load_weight', 'horse_weight', 'dhorse_weight', 'odds_order', 'odds', 'is_blinkers', 'trainer_name', 'comments_by_trainer', 'evaluation_by_trainer' ]].fillna(0)) # ?? d = df[['finish_order']].to_dict('record') self.vectorizer = DictVectorizer(sparse=False) y_np = self.vectorizer.fit_transform(d) self.n_classes = len(self.vectorizer.get_feature_names()) self.train_size = int(len(df[['finish_order']]) / 5) self.batch_size = self.train_size # ???????????????????? [self.x_train, self.x_test] = np.vsplit(x_np, [self.train_size]) [self.y_train, self.y_test] = np.vsplit(y_np, [self.train_size]) # Create model
def omega_output(self, fname, parameters): """This method writes the dispersion relation to the file fname. :param fname: Filename :type fname: string :param parameters: Array containing the parameters. :type parameters: numpy.ndarray """ omega = self.omega(parameters) kappa = self.kappamesh kmesh = self.kmesh k = self.k #print(omega, self.dks) vgs = np.gradient(omega, *self.dks, edge_order=2) vg = np.sqrt(sum(vgc**2 for vgc in vgs)) if self.dim==2: vg[:3,:3] = 1 elif self.dim==3: vg[:3,:3,:3] = 1 vph = omega/k vph.ravel()[0] = 1. data = [*np.broadcast_arrays(*kappa), k, omega, vph, vg, *vgs] data = np.broadcast_arrays(*data) blocks = zip(*map(lambda x: np.vsplit(x, x.shape[0]), data)) with open(fname, 'wb') as f: kappanames = ' '.join(['kx', 'ky', 'kz'][:len(kappa)]) vgsnames = ' '.join(['vgx', 'vgy', 'vgz'][:len(vgs)]) f.write(('#' + kappanames + ' k omega vph vg ' + vgsnames + '\n').encode('us-ascii')) for block_columns in blocks: np.savetxt(f, np.vstack(map(np.ravel, block_columns)).T) f.write(b'\n')
def gen_task_mbs(self, style, test_fold_id): num_task_iterations = int(''.join([c for c in self.regime if c.isdigit()])) # make blocks if style == 'train': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n != test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = np.tile(windows_x, [num_task_iterations, 1]) block_y = np.tile(windows_y, [num_task_iterations, 1]) elif style == 'test': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n == test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = windows_x block_y = windows_y elif style == 'train1': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n != test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = windows_x block_y = windows_y else: raise AttributeError('rnnlab: Invalid arg to "style"') # split to mbs if not gcd(self.mb_size, len(block_x)) == self.mb_size: raise Exception( 'rnnlab: Number of task_lines must be divisible by mb_size') num_splits = len(block_x) // self.mb_size # generate for x, y in zip(np.vsplit(block_x, num_splits), np.vsplit(block_y, num_splits)): yield x, y
def batch_gen(self, num_iterations=None): if not num_iterations: num_iterations = self.num_iterations # batch for n, term_id_doc in enumerate(self.docs): windows_mat = self.make_windows_mat(term_id_doc) windows_mat_x, windows_mat_y = np.split(windows_mat, [self.bptt_steps], axis=1) for _ in range(num_iterations): for x, y in zip(np.vsplit(windows_mat_x, self.num_mbs_in_doc), np.vsplit(windows_mat_y, self.num_mbs_in_doc)): yield x, y
def _split_array(image): """Splits an image into 16x16 sized tiles. Returns a list of arrays. """ tiles = [] dims = image.shape split_image = np.vsplit(image, int(dims[0]/16)) for tile in split_image: tiles.extend(np.hsplit(tile, int(dims[1]/16))) return tiles #Currently for 16x16 tiles only
def _least_square_evoked(data, events, event_id, tmin, tmax, sfreq): """Least square estimation of evoked response from data. Parameters ---------- data : ndarray, shape (n_channels, n_times) The data to estimates evoked events : ndarray, shape (n_events, 3) The events typically returned by the read_events function. If some events don't match the events of interest as specified by event_id, they will be ignored. event_id : dict The id of the events to consider tmin : float Start time before event. tmax : float End time after event. sfreq : float Sampling frequency. Returns ------- evokeds_data : dict of ndarray A dict of evoked data for each event type in event_id. toeplitz : dict of ndarray A dict of toeplitz matrix for each event type in event_id. """ nmin = int(tmin * sfreq) nmax = int(tmax * sfreq) window = nmax - nmin n_samples = data.shape[1] toeplitz_mat = dict() full_toep = list() for eid in event_id: # select events by type ix_ev = events[:, -1] == event_id[eid] # build toeplitz matrix trig = np.zeros((n_samples, 1)) ix_trig = (events[ix_ev, 0]) + nmin trig[ix_trig] = 1 toep_mat = linalg.toeplitz(trig[0:window], trig) toeplitz_mat[eid] = toep_mat full_toep.append(toep_mat) # Concatenate toeplitz full_toep = np.concatenate(full_toep) # least square estimation predictor = np.dot(linalg.pinv(np.dot(full_toep, full_toep.T)), full_toep) all_evokeds = np.dot(predictor, data.T) all_evokeds = np.vsplit(all_evokeds, len(event_id)) # parse evoked response evoked_data = dict() for idx, eid in enumerate(event_id): evoked_data[eid] = all_evokeds[idx].T return evoked_data, toeplitz_mat