Python numpy 模块,modf() 实例源码

我们从Python开源项目中,提取了以下45个代码示例,用于说明如何使用numpy.modf()

项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def jd2dt(jd):
    """Convert julian date to datetime
    """
    n = int(round(float(jd)))
    a = n + 32044
    b = (4*a + 3)//146097
    c = a - (146097*b)//4
    d = (4*c + 3)//1461
    e = c - (1461*d)//4
    m = (5*e + 2)//153
    day = e + 1 - (153*m + 2)//5
    month = m + 3 - 12*(m//10)
    year = 100*b + d - 4800 + m/10

    tfrac = 0.5 + float(jd) - n
    tfrac_s = 86400.0 * tfrac 
    minfrac, hours = np.modf(tfrac_s / 3600.)
    secfrac, minutes = np.modf(minfrac * 60.)
    microsec, seconds = np.modf(secfrac * 60.)

    return datetime(year, month, day, int(hours), int(minutes), int(seconds), int(microsec*1E6))

#This has not been tested
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def main(self, input_rings, output_rings):
        """Generate a histogram from the input ring data
        @param[in] input_rings List with first ring containing
            data of interest. Must terminate before histogram
            is generated.
        @param[out] output_rings First ring in this list
            will contain the output histogram"""
        histogram = np.reshape(
            np.zeros(self.bins).astype(np.float32),
            (1, self.bins))
        tstart = None
        for span in self.iterate_ring_read(input_rings[0]):
            nchans = self.data_settings['frame_shape'][0]
            if tstart is None:
                tstart = self.data_settings['tstart']
            frequency = self.data_settings['fch1']
            for chan in range(nchans):
                modified_tstart = tstart - self.calculate_delay(
                    frequency,
                    self.data_settings['fch1'])
                frequency -= self.data_settings['foff']
                sort_indices = np.argsort(
                    self.calculate_bin_indices(
                        modified_tstart, self.data_settings['tsamp'],
                        span.data.shape[1] / nchans))
                sorted_data = span.data[0][chan::nchans][sort_indices]
                extra_elements = np.round(self.bins * (1 - np.modf(
                    float(span.data.shape[1] / nchans) / self.bins)[0])).astype(int)
                sorted_data = insert_zeros_evenly(sorted_data, extra_elements)
                histogram += np.sum(
                    sorted_data.reshape(self.bins, -1), 1).astype(np.float32)
            tstart += (self.data_settings['tsamp'] *
                       self.gulp_size * 8 / self.data_settings['nbit'] / nchans)
        self.out_gulp_size = self.bins * 4
        out_span_generator = self.iterate_ring_write(output_rings[0])
        out_span = out_span_generator.next()
        bifrost.memory.memcpy(
            out_span.data_view(dtype=np.float32),
            histogram)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def o2dt(o):
    """Convert Python ordinal to datetime
    """
    #omod = np.modf(o)
    #return datetime.fromordinal(int(omod[1])) + timedelta(days=omod[0])
    #Note: num2date returns dt or list of dt
    #This funciton should always return a list
    #return np.array(matplotlib.dates.num2date(o))
    return matplotlib.dates.num2date(o)

#Return integer DOY (julian)
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def doy2dt(yr, j):
    """Convert year + integer DOY (Julian) to datetime
    """
    return o2dt(dt2o(datetime(int(yr), 1, 1))+j-1)
    #The solution below can't deal with jd>365
    #jmod = np.modf(j)
    #return datetime.strptime(str(yr)+str(int(jmod[1])), '%Y%j') + timedelta(days=jmod[0])
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _format_label(x, precision=3):
    fmt_str = '%%.%dg' % precision
    if np.isinf(x):
        return str(x)
    elif com.is_float(x):
        frac, whole = np.modf(x)
        sgn = '-' if x < 0 else ''
        whole = abs(whole)
        if frac != 0.0:
            val = fmt_str % frac

            # rounded up or down
            if '.' not in val:
                if x < 0:
                    return '%d' % (-whole - 1)
                else:
                    return '%d' % (whole + 1)

            if 'e' in val:
                return _trim_zeros(fmt_str % x)
            else:
                val = _trim_zeros(val)
                if '.' in val:
                    return sgn + '.'.join(('%d' % whole, val.split('.')[1]))
                else:  # pragma: no cover
                    return sgn + '.'.join(('%d' % whole, val))
        else:
            return sgn + '%0.f' % whole
    else:
        return str(x)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:PyDiatomic    作者:stggh    | 项目源码 | 文件源码
def turning_points(mu, vv, Gv, Bv, dv=0.1):
    DD = np.sqrt(const.h/(8*mu*const.m_u*const.c*100))*1.0e10/np.pi
    # Gv spline
    gsp = splrep(vv, Gv, s=0)
    # Bv spline
    bsp = splrep(vv, Bv, s=0)

    # vibrational QN at which to evaluate turning points
    V = np.arange(dv-1/2, vv[-1], dv) 
    # add a point close to v=-0.5, the bottom of the well
    V = np.append([-1/2+0.0001], V)
    Rmin = []; Rmax = []; E = []
    # compute turning points using RKR method
    print(u"RKR: v   Rmin(A)  Rmax(A)  E(cm-1)")
    for vib in V:
        E.append(G(vib, gsp))    # energy of vibrational level
        ff = fg_integral(vib, gsp, bsp, lambda x, y: 1)
        gg = fg_integral(vib, gsp, bsp, B)
        fg = np.sqrt(ff/gg + ff**2)
        Rmin.append((fg - ff)*DD) # turning points
        Rmax.append((fg + ff)*DD)
        frac, integ = np.modf(vib)
        if frac > 0 and frac < dv: 
            print(u"     {:d}   {:6.4f}    {:6.4f}    {:6.2f}".
                  format(int(vib), Rmin[-1], Rmax[-1], np.float(E[-1])))

    return Rmin, Rmax, E
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = numpy.modf(cycles)
        ys = self.amp * numpy.sign(unbias(frac))
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = numpy.modf(cycles)
        ys = frac
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = numpy.modf(cycles)
        ys = frac**2
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = numpy.modf(cycles)
        ys = frac**4 * (1-frac)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        cycles = self.freq * ts
        frac, _ = numpy.modf(cycles)
        ys = numpy.abs(frac - 0.5)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = self.amp * np.sign(unbias(frac))
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = normalize(unbias(frac), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = (frac - 0.5)**2
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = frac**4 * (1-frac)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = np.abs(frac - 0.5)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = self.amp * np.sign(unbias(frac))
        return ys
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = normalize(unbias(frac), self.amp)
        return ys
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = (frac - 0.5)**2
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = frac**2 * (1-frac)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def evaluate(self, ts):
        """Evaluates the signal at the given times.

        ts: float array of times

        returns: float wave array
        """
        ts = np.asarray(ts)
        cycles = self.freq * ts + self.offset / PI2
        frac, _ = np.modf(cycles)
        ys = np.abs(frac - 0.5)
        ys = normalize(unbias(ys), self.amp)
        return ys
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def ipart(x):
    """Return integer part of given number."""
    return np.modf(x)[1]
项目:Quantum_machine_learning    作者:kchng    | 项目源码 | 文件源码
def next_batch(self, batch_size = 50) :

            start = self._index_in_epoch
            if ( self._epochs_completed == 0 ) and ( start == 0 ) :
                self.batch_size = batch_size
                while np.modf(float(self._ndata)/self.batch_size)[0] > 0.0 :
                     print 'Warning! Number of data/ batch size must be an integer.'
                     print 'number of data: %d' % self._ndata
                     print 'batch size: %d'     % self.batch_size
                     self.batch_size = int(input('Input new batch size: '))
                print 'batch size : %d'    % self.batch_size
                print 'number of data: %d' % self._ndata

            self._index_in_epoch += self.batch_size
            if self._index_in_epoch > self._ndata :
                # Number of training epochs completed
                self._epochs_completed += 1
                # Shuffle data
                random.shuffle(self.shuffle_index)
                self._images = self._images[self.shuffle_index]
                self._labels = self._labels[self.shuffle_index]
                # Reinitialize conunter
                start = 0
                self._index_in_epoch = self.batch_size
                assert self.batch_size <= self._ndata
            end = self._index_in_epoch
            return self._images[start:end], self._labels[start:end]
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_ufunc_override_out(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return kwargs

        a = A()
        b = B()
        res0 = np.multiply(a, b, 'out_arg')
        res1 = np.multiply(a, b, out='out_arg')
        res2 = np.multiply(2, b, 'out_arg')
        res3 = np.multiply(3, b, out='out_arg')
        res4 = np.multiply(a, 4, 'out_arg')
        res5 = np.multiply(a, 5, out='out_arg')

        assert_equal(res0['out'], 'out_arg')
        assert_equal(res1['out'], 'out_arg')
        assert_equal(res2['out'], 'out_arg')
        assert_equal(res3['out'], 'out_arg')
        assert_equal(res4['out'], 'out_arg')
        assert_equal(res5['out'], 'out_arg')

        # ufuncs with multiple output modf and frexp.
        res6 = np.modf(a, 'out0', 'out1')
        res7 = np.frexp(a, 'out0', 'out1')
        assert_equal(res6['out'][0], 'out0')
        assert_equal(res6['out'][1], 'out1')
        assert_equal(res7['out'][0], 'out0')
        assert_equal(res7['out'][1], 'out1')
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def interp( self, nH, T ):

        nH = np.array( nH )
        T  = np.array( T )

        if nH.size != T.size:
            raise ValueError(' owls_ion_tables: array size mismatch !!! ')

        # field discovery will have nH.size == 1 and T.size == 1
        # in that case we simply return 1.0

        if nH.size == 1 and T.size == 1:
            ionfrac = 1.0
            return ionfrac


        # find inH and fnH
        #-----------------------------------------------------
        x_nH = ( nH - self.nH[0] ) / self.DELTA_nH
        x_nH_clip = np.clip( x_nH, 0.0, self.nH.size-1.001 )
        fnH,inH = np.modf( x_nH_clip )
        inH = inH.astype( np.int32 )


        # find iT and fT
        #-----------------------------------------------------
        x_T = ( T - self.T[0] ) / self.DELTA_T
        x_T_clip = np.clip( x_T, 0.0, self.T.size-1.001 )
        fT,iT = np.modf( x_T_clip )
        iT = iT.astype( np.int32 )


        # short names for previously calculated iz and fz
        #-----------------------------------------------------
        iz = self.iz
        fz = self.fz


        # calculate interpolated value
        # use tri-linear interpolation on the log values
        #-----------------------------------------------------

        ionfrac = self.ionbal[inH,   iT,   iz  ] * (1-fnH) * (1-fT) * (1-fz) + \
                  self.ionbal[inH+1, iT,   iz  ] * (fnH)   * (1-fT) * (1-fz) + \
                  self.ionbal[inH,   iT+1, iz  ] * (1-fnH) * (fT)   * (1-fz) + \
                  self.ionbal[inH,   iT,   iz+1] * (1-fnH) * (1-fT) * (fz)   + \
                  self.ionbal[inH+1, iT,   iz+1] * (fnH)   * (1-fT) * (fz)   + \
                  self.ionbal[inH,   iT+1, iz+1] * (1-fnH) * (fT)   * (fz)   + \
                  self.ionbal[inH+1, iT+1, iz]   * (fnH)   * (fT)   * (1-fz) + \
                  self.ionbal[inH+1, iT+1, iz+1] * (fnH)   * (fT)   * (fz)

        return 10**ionfrac
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
项目:Quantum_machine_learning    作者:kchng    | 项目源码 | 文件源码
def next_dose(self, batch_size = 50) :

            def convert_to_one_hot( label ) :
                label_one_hot = np.zeros((len(label),2))
                for i in range(len(label)) :
                    label_one_hot[i,label[i]] = 1
                return label_one_hot

            start = self._index_in_datafile
            if ( self._file_index == self.start_file_index ) and ( start == 0 ) :
                self.batch_size = batch_size
                while np.modf(float(self.nrows)/self.batch_size)[0] > 0.0 :
                     print 'Warning! Number of data per file/ dose size must be an integer.'
                     print 'number of data per file: %d' % self.nrows
                     print 'dose size: %d'               % self.batch_size
                     self.batch_size = int(input('Input new dose size: '))
                print 'dose size : %d'    % self.batch_size
                print 'number of data: %d' % self._ndata
                # Read in one file at a time
                data = np.genfromtxt(self.full_file_path%(self._file_index) ,dtype=int,
                       skip_header=0, skip_footer=0)
                self._images = data[:,:-1].astype('int')
                labels = data[:,-1:].astype('int')
                if self.convert_to_one_hot :
                    self._labels = convert_to_one_hot(labels)

            self._index_in_datafile += self.batch_size
            if self._index_in_datafile > self.nrows :
                self._file_index += 1
                start = 0
                self._index_in_datafile = self.batch_size
                assert self.batch_size <= self.nrows
                # Read in one file at a time
                data = np.genfromtxt(self.full_file_path%(self._file_index) ,dtype=int,
                       skip_header=0, skip_footer=0)
                self._images = data[:,:-1].astype('int')
                labels = data[:,-1:].astype('int')
                if self.convert_to_one_hot :
                    self._labels = convert_to_one_hot(labels)
                # Shufle data
                random.shuffle(self.shuffle_index_dose)
                self._images = self._images[self.shuffle_index_dose]
                self._labels = self._labels[self.shuffle_index_dose]

            if self._file_index > self.end_file_index :
                # Number of training epochs completed
                self._epochs_completed += 1
                self._file_index = self.start_file_index
                # Reinitialize conunter
                start = 0
                self._index_in_datafile = self.batch_size

            end = self._index_in_datafile

            return self._images[start:end], self._labels[start:end]
项目:Quantum_machine_learning    作者:kchng    | 项目源码 | 文件源码
def next_dose_old(self, batch_size = 50) :

            def convert_to_one_hot( label ) :
                label_one_hot = np.zeros((len(label),2))
                for i in range(len(label)) :
                    label_one_hot[i,label[i]] = 1
                return label_one_hot

            start = self._index_in_datafile 
            if ( self._file_index == self.start_file_index ) and ( start == 0 ) :
                self.batch_size = batch_size
                while np.modf(float(self.nrows)/self.batch_size)[0] > 0.0 :
                     print 'Warning! Number of data per file/ dose size must be an integer.'
                     print 'number of data per file: %d' % self.nrows
                     print 'dose size: %d'               % self.batch_size
                     self.batch_size = int(input('Input new dose size: '))
                print 'dose size : %d'    % self.batch_size
                print 'number of data: %d' % self._ndata
                self.shuffle_index_dose_old = np.arange(0,self.batch_size,1)

            self._index_in_datafile += self.batch_size
            if self._index_in_datafile > self.nrows :
                self._file_index += 1
                start = 0
                self._index_in_datafile = self.batch_size
                assert self.batch_size <= self.nrows

            if self._file_index > self.end_file_index :
                # Number of training epochs completed
                self._epochs_completed += 1
                self._file_index = self.start_file_index
                # Reinitialize conunter
                start = 0
                self._index_in_datafile = self.batch_size

            end = self._index_in_datafile

            # Read in small dosage of data
            data = np.genfromtxt(self.full_file_path%(self._file_index) ,dtype=int,
                   skip_header=start, skip_footer=self.nrows-end)
            self._images = data[:,:-1].astype('int')
            labels = data[:,-1:].astype('int')
            if self.convert_to_one_hot :
                self._labels = convert_to_one_hot(labels)
            # Shufle data
            random.shuffle(self.shuffle_index_dose_old)
            self._images = self._images[self.shuffle_index_dose_old]
            self._labels = self._labels[self.shuffle_index_dose_old]

            return self._images, self._labels
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])