Python numpy 模块,rank() 实例源码

我们从Python开源项目中,提取了以下38个代码示例,用于说明如何使用numpy.rank()

项目:Xueqiu    作者:OliangchenO    | 项目源码 | 文件源码
def get_cube_list(category,count,orderType):
    url=cube_list_url+"?category="+category+"&count="+count+"&market=cn&profit="+orderType
    data = request(url,cookie)
    jsonObj = json.loads(data.read())
    rank = 1
    for TopestCube in jsonObj["list"]:
        created_at = TopestCube["created_at"]
        ltime=time.localtime(created_at/1000.0) 
        created_at_str=time.strftime("%Y-%m-%d", ltime)
        TopestCube["created_at"] = created_at_str
        updated_at = TopestCube["updated_at"]
        ltime=time.localtime(updated_at/1000.0) 
        updated_at_str=time.strftime("%Y-%m-%d", ltime)
        TopestCube["updated_at"] = updated_at_str
        TopestCube["category"] = category
        TopestCube["orderType"] = orderType
        TopestCube["Rank"] = rank
        del(TopestCube["style"],TopestCube["description"],TopestCube["owner"])
        cubelist_save(TopestCube)
        rank = rank + 1
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def clean_warning_registry():
    """Safe way to reset warnings """
    warnings.resetwarnings()
    reg = "__warningregistry__"
    bad_names = ['MovedModule']  # this is in six.py, and causes bad things
    for mod in list(sys.modules.values()):
        if mod.__class__.__name__ not in bad_names and hasattr(mod, reg):
            getattr(mod, reg).clear()
    # hack to deal with old scipy/numpy in tests
    if os.getenv('TRAVIS') == 'true' and sys.version.startswith('2.6'):
        warnings.simplefilter('default')
        try:
            np.rank([])
        except Exception:
            pass
        warnings.simplefilter('always')
项目:simulated-unsupervised-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def __init__(self, config, rng=None):
    self.rng = np.random.RandomState(1) if rng is None else rng

    self.data_path = os.path.join(config.data_dir, 'gaze')
    self.sample_path = os.path.join(self.data_path, config.sample_dir)
    self.batch_size = config.batch_size
    self.debug = config.debug

    self.real_data, synthetic_image_path = load(config, self.data_path, self.sample_path, rng)

    self.synthetic_data_paths = np.array(glob(os.path.join(synthetic_image_path, '*_cropped.png')))
    self.synthetic_data_dims = list(imread(self.synthetic_data_paths[0]).shape) + [1]

    self.synthetic_data_paths.sort()

    if np.rank(self.real_data) == 3:
      self.real_data = np.expand_dims(self.real_data, -1)

    self.real_p = 0
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def k(self, x, y):
    """Kernel function."""
    for arg in [x, y]:
      assert isinstance(arg, (float, np.float32, np.float64)) or \
             (isinstance(arg, np.ndarray) and np.rank(arg) == 1)
    mi = self.offset + np.minimum(x, y)
    return self.theta**2 * (mi**3/3.0 + 0.5*np.abs(x-y)*mi**2)
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def kd(self, x, y):
    """Derivative of kernel function, 1st derivative w.r.t. right argument."""
    for arg in [x, y]:
      assert isinstance(arg, (float, np.float32, np.float64)) or \
             (isinstance(arg, np.ndarray) and np.rank(arg) == 1)
    xx = x + self.offset
    yy = y + self.offset
    return self.theta**2 * np.where(x<y, 0.5*xx**2, xx*yy-0.5*yy**2)
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def dkd(self, x, y):
    """Derivative of kernel function,  1st derivative w.r.t. both arguments."""
    for arg in [x, y]:
      assert isinstance(arg, (float, np.float32, np.float64)) or \
             (isinstance(arg, np.ndarray) and np.rank(arg) == 1)
    xx = x+self.offset
    yy = y+self.offset
    return self.theta**2 * np.minimum(xx, yy)
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def d2k(self, x, y):
    """Derivative of kernel function,  2nd derivative w.r.t. left argument."""
    for arg in [x, y]:
      assert isinstance(arg, (float, np.float32, np.float64)) or \
             (isinstance(arg, np.ndarray) and np.rank(arg) == 1)
    return self.theta**2 * np.where(x<y, y-x, 0.)
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def d3k(self, x, y):
    """Derivative of kernel function,  3rd derivative w.r.t. left argument."""
    for arg in [x, y]:
      assert isinstance(arg, (float, np.float32, np.float64)) or \
             (isinstance(arg, np.ndarray) and np.rank(arg) == 1)
    return self.theta**2 * np.where(x<y, -1., 0.)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def __init__(self, filename=None, scale2float=True):
        """Read a .wav file from disk"""
        assert filename is not None, "Specify a filename"
        self.filename = filename

        fs, samples = scipy.io.wavfile.read(filename)
        if np.rank(samples) == 1:
            samples = np.expand_dims(samples, axis=1)

        Audio.__init__(self, fs=fs, initialdata=samples)

        del samples # just to make sure

        if scale2float:
            self.convert_to_float(targetbits=64)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_lin_to_db_to_lin_arrays(self):
        x = lin2db(db2lin((             1.234567,   2.345678)))
        self.assertEqual(np.rank(x), 1)
        self.assertEqual(len(x), 2)
        self.assertAlmostEqual(x[0],    1.234567,               places=6)
        self.assertAlmostEqual(x[1],                2.345678,   places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_pow_to_db_to_pow_arrays(self):
        x = pow2db(db2pow((             1.234567,   2.345678)))
        self.assertEqual(np.rank(x), 1)
        self.assertEqual(len(x), 2)
        self.assertAlmostEqual(x[0],    1.234567,               places=6)
        self.assertAlmostEqual(x[1],                2.345678,   places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_single(self):
        x = lin2db(1)
        self.assertEqual(np.rank(x), 0)
        self.assertAlmostEqual(x, 0.0, places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_tuple(self):
        x = lin2db((1, 0.1))
        self.assertEqual(np.rank(x), 1)
        self.assertAlmostEqual(x[0],   0.0, places=6)
        self.assertAlmostEqual(x[1], -20.0, places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_1(self):
        x = lin2db(np.ones(10))
        self.assertEqual(np.rank(x), 1)
        self.assertTrue((x <  0.0001).all())
        self.assertTrue((x > -0.0001).all())
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_2_10x4(self):
        x = lin2db(np.ones((10, 4)))
        self.assertEqual(np.rank(x), 2)
        self.assertTrue((x <  0.0001).all())
        self.assertTrue((x > -0.0001).all())
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_2_4x10(self):
        x = lin2db(np.ones((4, 10)))
        self.assertEqual(np.rank(x), 2)
        self.assertTrue((x <  0.0001).all())
        self.assertTrue((x > -0.0001).all())
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_single(self):
        x = db2lin(0)
        self.assertEqual(np.rank(x), 0)
        self.assertAlmostEqual(x, 1.0, places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_tuple(self):
        x = db2lin((40, -40))
        self.assertEqual(np.rank(x), 1)
        self.assertAlmostEqual(x[0],  100.0,  places=6)
        self.assertAlmostEqual(x[1],    0.01, places=6)
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_1(self):
        x = db2lin(np.zeros(10))
        self.assertEqual(np.rank(x), 1)
        self.assertTrue((x < 1.0001).all())
        self.assertTrue((x > 0.9999).all())
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_2_10x4(self):
        x = db2lin(np.zeros((10, 4)))
        self.assertEqual(np.rank(x), 2)
        self.assertTrue((x < 1.0001).all())
        self.assertTrue((x > 0.9999).all())
项目:zignal    作者:ronnyandersson    | 项目源码 | 文件源码
def test_np_rank_2_4x10(self):
        x = db2lin(np.zeros((4, 10)))
        self.assertEqual(np.rank(x), 2)
        self.assertTrue((x < 1.0001).all())
        self.assertTrue((x > 0.9999).all())
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:sardana    作者:sardana-org    | 项目源码 | 文件源码
def _addCustomData(self, value, name, **kwargs):
        '''
        The custom data will be added as an info line in the form:
        Custom data: name : value
        '''
        if numpy.rank(value) > 0:
            v = 'Array(%s)' % str(numpy.shape(value))
        else:
            v = str(value)
        self._stream._output('Custom data: %s : %s' % (name, v))
        self._stream._flushOutput()
项目:sardana    作者:sardana-org    | 项目源码 | 文件源码
def _addCustomData(self, value, name, **kwargs):
        '''
        The custom data will be added as a comment line in the form::

        #C name : value

        ..note:: non-scalar values (or name/values containing end-of-line) will not be written
        '''
        if self.filename is None:
            self.info(
                'Custom data "%s" will not be stored in SPEC file. Reason: uninitialized file', name)
            return
        if numpy.rank(value) > 0:  # ignore non-scalars
            self.info(
                'Custom data "%s" will not be stored in SPEC file. Reason: value is non-scalar', name)
            return
        v = str(value)
        if '\n' in v or '\n' in name:  # ignore if name or the string representation of the value contains end-of-line
            self.info(
                'Custom data "%s" will not be stored in SPEC file. Reason: unsupported format', name)
            return

        fileWasClosed = self.fd is None or self.fd.closed
        if fileWasClosed:
            try:
                self.fd = open(self.filename, 'a')
            except:
                self.info(
                    'Custom data "%s" will not be stored in SPEC file. Reason: cannot open file', name)
                return
        self.fd.write('#C %s : %s\n' % (name, v))
        self.fd.flush()
        if fileWasClosed:
            self.fd.close()  # leave the file descriptor as found
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test(self):
        a = np.arange(10)
        assert_warns(np.VisibleDeprecationWarning, np.rank, a)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in NumPy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning, stacklevel=2)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def estimate_rank(data, tol='auto', return_singular=False,
                  norm=True, copy=None):
    """Helper to estimate the rank of data

    This function will normalize the rows of the data (typically
    channels or vertices) such that non-zero singular values
    should be close to one.

    Parameters
    ----------
    data : array
        Data to estimate the rank of (should be 2-dimensional).
    tol : float | str
        Tolerance for singular values to consider non-zero in
        calculating the rank. The singular values are calculated
        in this method such that independent data are expected to
        have singular value around one. Can be 'auto' to use the
        same thresholding as ``scipy.linalg.orth``.
    return_singular : bool
        If True, also return the singular values that were used
        to determine the rank.
    norm : bool
        If True, data will be scaled by their estimated row-wise norm.
        Else data are assumed to be scaled. Defaults to True.
    copy : bool
        This parameter has been deprecated and will be removed in 0.13.
        It is ignored in 0.12.

    Returns
    -------
    rank : int
        Estimated rank of the data.
    s : array
        If return_singular is True, the singular values that were
        thresholded to determine the rank are also returned.
    """
    if copy is not None:
        warn('copy is deprecated and ignored. It will be removed in 0.13.')
    data = data.copy()  # operate on a copy
    if norm is True:
        norms = _compute_row_norms(data)
        data /= norms[:, np.newaxis]
    s = linalg.svd(data, compute_uv=False, overwrite_a=True)
    if isinstance(tol, string_types):
        if tol != 'auto':
            raise ValueError('tol must be "auto" or float')
        eps = np.finfo(float).eps
        tol = np.max(data.shape) * np.amax(s) * eps
    tol = float(tol)
    rank = np.sum(s > tol)
    if return_singular is True:
        return rank, s
    else:
        return rank
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning)
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim