Python numpy 模块,array_equiv() 实例源码

我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用numpy.array_equiv()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:brainiak    作者:brainiak    | 项目源码 | 文件源码
def test_tri_sym_convert():
    from brainiak.utils.utils import from_tri_2_sym, from_sym_2_tri
    import numpy as np

    sym = np.random.rand(3, 3)
    tri = from_sym_2_tri(sym)
    assert tri.shape[0] == 6,\
        "from_sym_2_tri returned wrong result!"
    sym1 = from_tri_2_sym(tri, 3)
    assert sym1.shape[0] == sym1.shape[1],\
        "from_tri_2_sym returned wrong shape!"
    tri1 = from_sym_2_tri(sym1)
    assert np.array_equiv(tri, tri1),\
        "from_sym_2_tri returned wrong result!"
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_times_1():
    cntk_op = C.times([1, 2, 3], [[4], [5], [6]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_times_2():
    cntk_op = C.times([[1, 2], [3, 4]], [[5, 6], [7, 8]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_times_3():
    cntk_op = C.times([1, 2, 3], [[4, 5], [6, 7], [8, 9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_times_4():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7], [8], [9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def test_times_5():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 10], [11, 12]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
项目:Movie-Recommendation-System    作者:turq84    | 项目源码 | 文件源码
def _process_sample_weight(self, interactions, sample_weight):

        if sample_weight is not None:

            if self.loss == 'warp-kos':
                raise NotImplementedError('k-OS loss with sample weights '
                                          'not implemented.')

            if not isinstance(sample_weight, sp.coo_matrix):
                raise ValueError('Sample_weight must be a COO matrix.')

            if sample_weight.shape != interactions.shape:
                raise ValueError('Sample weight and interactions '
                                 'matrices must be the same shape')

            if not (np.array_equal(interactions.row,
                                   sample_weight.row) and
                    np.array_equal(interactions.col,
                                   sample_weight.col)):
                raise ValueError('Sample weight and interaction matrix '
                                 'entries must be in the same order')

            if sample_weight.data.dtype != CYTHON_DTYPE:
                sample_weight_data = sample_weight.data.astype(CYTHON_DTYPE)
            else:
                sample_weight_data = sample_weight.data
        else:
            if np.array_equiv(interactions.data, 1.0):
                # Re-use interactions data if they are all
                # ones
                sample_weight_data = interactions.data
            else:
                # Otherwise allocate a new array of ones
                sample_weight_data = np.ones_like(interactions.data,
                                                  dtype=CYTHON_DTYPE)

        return sample_weight_data
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_init(self):
        kf = KeyFrame(np.zeros((100, 100)), np.ones((2, 100)))
        self.assertTrue(np.array_equiv(kf.image, np.zeros((100, 100))))
        self.assertTrue(np.array_equiv(kf.features, np.ones((2, 100))))
项目:ShallowLearn    作者:giacbrd    | 项目源码 | 文件源码
def test_serializzation(small_model):
    with io.BytesIO() as fileobj:
        pickle.dump(small_model, fileobj)
        fileobj.seek(0)
        loaded = pickle.load(fileobj)
        assert all(str(loaded.wv.vocab[w]) == str(small_model.wv.vocab[w]) for w in small_model.wv.vocab)
        assert all(str(loaded.lvocab[w]) == str(small_model.lvocab[w]) for w in small_model.lvocab)
        assert numpy.array_equiv(loaded.syn1, small_model.syn1)
        assert numpy.array_equiv(loaded.wv.syn0, small_model.wv.syn0)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:test-automation    作者:openstax    | 项目源码 | 文件源码
def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal)
项目:test-automation    作者:openstax    | 项目源码 | 文件源码
def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def array_equal(a1, a2):
    """
    True if two arrays have the same shape and elements, False otherwise.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    b : bool
        Returns True if the arrays are equal.

    See Also
    --------
    allclose: Returns True if two arrays are element-wise equal within a
              tolerance.
    array_equiv: Returns True if input arrays are shape consistent and all
                 elements equal.

    Examples
    --------
    >>> np.array_equal([1, 2], [1, 2])
    True
    >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
    True
    >>> np.array_equal([1, 2], [1, 2, 3])
    False
    >>> np.array_equal([1, 2], [1, 4])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    if a1.shape != a2.shape:
        return False
    return bool(asarray(a1 == a2).all())
项目:python_utils    作者:Jayhello    | 项目源码 | 文件源码
def arr_equiv():
    ar1 = np.array([[1, 2], [3, 4]])
    ar2 = np.array([[1, 2]])
    ar3 = np.array([[1, 2], [1, 2]])
    ar4 = np.array([1, 2])
    print np.array_equiv(ar1, ar2)
    # False
    print np.array_equiv(ar1, ar4)
    # False
    print np.array_equiv(ar2, ar3)
    # True
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
项目:MOSFiT    作者:guillochon    | 项目源码 | 文件源码
def preprocess(self, **kwargs):
        """Construct kernel distance arrays."""
        new_times = np.array(kwargs.get('all_times', []), dtype=float)
        self._codeltatime = kwargs.get(self.key('codeltatime'), -1)
        self._codeltalambda = kwargs.get(self.key('codeltalambda'), -1)
        if np.array_equiv(new_times, self._times) and self._preprocessed:
            return
        self._times = new_times
        self._all_band_indices = kwargs.get('all_band_indices', [])
        self._are_bands = np.array(self._all_band_indices) >= 0
        self._freqs = kwargs.get('all_frequencies', [])
        self._u_freqs = kwargs.get('all_u_frequencies', [])
        self._waves = np.array([
            self._average_wavelengths[bi] if bi >= 0 else
            C_CGS / self._freqs[i] / ANG_CGS for i, bi in
            enumerate(self._all_band_indices)])
        self._observed = np.array(kwargs.get('observed', []), dtype=bool)
        self._n_obs = len(self._observed)

        self._o_times = self._times[self._observed]
        self._o_waves = self._waves[self._observed]

        if self._type == 'full':
            self._times_1 = self._times
            self._times_2 = self._times
            self._waves_1 = self._waves
            self._waves_2 = self._waves
        elif self._type == 'oa':
            self._times_1 = self._o_times
            self._times_2 = self._times
            self._waves_1 = self._o_waves
            self._waves_2 = self._waves
        elif self._type == 'ao':
            self._times_1 = self._times
            self._times_2 = self._o_times
            self._waves_1 = self._waves
            self._waves_2 = self._o_waves
        else:
            self._times_1 = self._o_times
            self._times_2 = self._o_times
            self._waves_1 = self._o_waves
            self._waves_2 = self._o_waves

        # Time deltas (radial distance) for covariance matrix.
        if self._codeltatime >= 0:
            self._dt2mat = self._times_1[:, None] - self._times_2[None, :]
            self._dt2mat **= 2
            self._dt2mat *= -0.5

        # Wavelength deltas (radial distance) for covariance matrix.
        if self._codeltalambda >= 0:
            self._dl2mat = self._waves_1[:, None] - self._waves_2[None, :]
            self._dl2mat **= 2
            self._dl2mat *= -0.5

        self._preprocessed = True
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def array_equiv(a1, a2):
    """
    Returns True if input arrays are shape consistent and all elements equal.

    Shape consistent means they are either the same shape, or one input array
    can be broadcasted to create the same shape as the other one.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    out : bool
        True if equivalent, False otherwise.

    Examples
    --------
    >>> np.array_equiv([1, 2], [1, 2])
    True
    >>> np.array_equiv([1, 2], [1, 3])
    False

    Showing the shape equivalence:

    >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
    True
    >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
    False

    >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    try:
        multiarray.broadcast(a1, a2)
    except:
        return False

    return bool(asarray(a1 == a2).all())
项目:flopymetascript    作者:bdestombe    | 项目源码 | 文件源码
def parse_array(self, ar):
        """
        Consolidate an array to something smaller and remains
        broadcastable to the original dimensions. ndim remains the same.

        todo:
        - if squeezable in multiple dimensions, squeeze in all dimensions.
            it currently does this, but the entire most_squeezable_dim can be
            left out.
        :param ar: array to be parsed
        :return: consolidated array
        """
        assert isinstance(ar, np.ndarray)

        output = np.unique(ar)

        if output.size == 1:
            return 0, output.item()

        elif output.size == 0:
            return -1, output

        else:
            items_per_squeezed_dim = ar.ndim * [0]

            for dim in range(ar.ndim):
                output, index = uniquend(ar, axis=dim, return_index=True)

                if len(index) == 1:
                    items_per_squeezed_dim[dim] = output.size

                else:
                    items_per_squeezed_dim[dim] = ar.size

            most_squeezable_dim = items_per_squeezed_dim.index(
                min(items_per_squeezed_dim))

            if ar.size == items_per_squeezed_dim[most_squeezable_dim]:
                return -1, ar

            else:
                # can be squeezable in multiple dimensions
                # therefore call self
                cur = uniquend(ar, axis=most_squeezable_dim)

                # test if broadcastable shape, same elements values
                assert np.array_equiv(ar, cur)

                return 1, self.parse_array(cur)[1]