Python numpy 模块,min_scalar_type() 实例源码

我们从Python开源项目中,提取了以下44个代码示例,用于说明如何使用numpy.min_scalar_type()

项目:SERT    作者:cvangysel    | 项目源码 | 文件源码
def create(predict_fn, word_representations,
           batch_size, window_size, vocabulary_size,
           result_callback):
    assert result_callback is not None

    instance_dtype = np.min_scalar_type(vocabulary_size - 1)
    logging.info('Instance elements will be stored using %s.', instance_dtype)

    if result_callback.should_average_input():
        batcher = EmbeddingMapper(
            predict_fn,
            word_representations,
            result_callback)
    else:
        batcher = WordBatcher(
            predict_fn,
            batch_size, window_size,
            instance_dtype,
            result_callback)

    return batcher
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:sparse    作者:mrocklin    | 项目源码 | 文件源码
def _linear_loc(coords, shape, signed=False):
        n = reduce(operator.mul, shape, 1)
        if signed:
            n = -n
        dtype = np.min_scalar_type(n)
        out = np.zeros(coords.shape[1], dtype=dtype)
        tmp = np.zeros(coords.shape[1], dtype=dtype)
        strides = 1
        for i, d in enumerate(shape[::-1]):
            # out += self.coords[-(i + 1), :].astype(dtype) * strides
            np.multiply(coords[-(i + 1), :], strides, out=tmp, dtype=dtype)
            np.add(tmp, out, out=out)
            strides *= d
        return out
项目:sparse    作者:mrocklin    | 项目源码 | 文件源码
def reshape(self, shape):
        if self.shape == shape:
            return self
        if any(d == -1 for d in shape):
            extra = int(np.prod(self.shape) /
                        np.prod([d for d in shape if d != -1]))
            shape = tuple([d if d != -1 else extra for d in shape])

        if self.shape == shape:
            return self

        if self._cache is not None:
            for sh, value in self._cache['reshape']:
                if sh == shape:
                    return value

        # TODO: this np.prod(self.shape) enforces a 2**64 limit to array size
        linear_loc = self.linear_loc()

        coords = np.empty((len(shape), self.nnz), dtype=np.min_scalar_type(max(shape)))
        strides = 1
        for i, d in enumerate(shape[::-1]):
            coords[-(i + 1), :] = (linear_loc // strides) % d
            strides *= d

        result = COO(coords, self.data, shape,
                     has_duplicates=self.has_duplicates,
                     sorted=self.sorted, cache=self._cache is not None)

        if self._cache is not None:
            self._cache['reshape'].append((shape, result))
        return result
项目:pandarus    作者:cmutel    | 项目源码 | 文件源码
def rasterize_pctcover_geom(geom, shape, affine, scale=None, all_touched=False):
    """
    Parameters
    ----------
    geom: GeoJSON geometry
    shape: desired shape
    affine: desired transform
    scale: scale at which to generate percent cover estimate

    Returns
    -------
    ndarray: float32
    """
    if scale is None:
        scale = 10

    min_dtype = min_scalar_type(scale ** 2)

    new_affine = Affine(affine[0]/scale, 0, affine[2],
                        0, affine[4]/scale, affine[5])

    new_shape = (shape[0] * scale, shape[1] * scale)

    rv_array = rasterize_geom(geom, new_shape, new_affine, all_touched=all_touched)

    rv_array = rebin_sum(rv_array, shape, min_dtype)

    return rv_array.astype('float32') / (scale**2)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:mglex    作者:fungs    | 项目源码 | 文件源码
def deposit(self, frequencies):  # TODO: adjust signature with UniversalData
        frequencies = np.array(frequencies, dtype=self.composition_type)  # freqencies must not exceed 4,294,967,295
        maxtype = np.min_scalar_type(np.max(frequencies))
        row = frequencies.astype(maxtype)  # TODO: support sparse features
        self._frequencies.append(row)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def render(self):
        # Convert data to QImage for display.

        profile = debug.Profiler()
        if self.image is None or self.image.size == 0:
            return
        if isinstance(self.lut, collections.Callable):
            lut = self.lut(self.image)
        else:
            lut = self.lut

        if self.autoDownsample:
            # reduce dimensions of image based on screen resolution
            o = self.mapToDevice(QtCore.QPointF(0,0))
            x = self.mapToDevice(QtCore.QPointF(1,0))
            y = self.mapToDevice(QtCore.QPointF(0,1))
            w = Point(x-o).length()
            h = Point(y-o).length()
            if w == 0 or h == 0:
                self.qimage = None
                return
            xds = max(1, int(1.0 / w))
            yds = max(1, int(1.0 / h))
            axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
            image = fn.downsample(self.image, xds, axis=axes[0])
            image = fn.downsample(image, yds, axis=axes[1])
            self._lastDownsample = (xds, yds)
        else:
            image = self.image

        # if the image data is a small int, then we can combine levels + lut
        # into a single lut for better performance
        levels = self.levels
        if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16):
            if self._effectiveLut is None:
                eflsize = 2**(image.itemsize*8)
                ind = np.arange(eflsize)
                minlev, maxlev = levels
                levdiff = maxlev - minlev
                levdiff = 1 if levdiff == 0 else levdiff  # don't allow division by 0
                if lut is None:
                    efflut = fn.rescaleData(ind, scale=255./levdiff, 
                                            offset=minlev, dtype=np.ubyte)
                else:
                    lutdtype = np.min_scalar_type(lut.shape[0]-1)
                    efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff,
                                            offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1))
                    efflut = lut[efflut]

                self._effectiveLut = efflut
            lut = self._effectiveLut
            levels = None

        # Assume images are in column-major order for backward compatibility
        # (most images are in row-major order)

        if self.axisOrder == 'col-major':
            image = image.transpose((1, 0, 2)[:image.ndim])

        argb, alpha = fn.makeARGB(image, lut=lut, levels=levels)
        self.qimage = fn.makeQImage(argb, alpha, transpose=False)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def render(self):
        # Convert data to QImage for display.

        profile = debug.Profiler()
        if self.image is None or self.image.size == 0:
            return
        if isinstance(self.lut, collections.Callable):
            lut = self.lut(self.image)
        else:
            lut = self.lut

        if self.autoDownsample:
            # reduce dimensions of image based on screen resolution
            o = self.mapToDevice(QtCore.QPointF(0,0))
            x = self.mapToDevice(QtCore.QPointF(1,0))
            y = self.mapToDevice(QtCore.QPointF(0,1))
            w = Point(x-o).length()
            h = Point(y-o).length()
            if w == 0 or h == 0:
                self.qimage = None
                return
            xds = max(1, int(1.0 / w))
            yds = max(1, int(1.0 / h))
            axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
            image = fn.downsample(self.image, xds, axis=axes[0])
            image = fn.downsample(image, yds, axis=axes[1])
            self._lastDownsample = (xds, yds)
        else:
            image = self.image

        # if the image data is a small int, then we can combine levels + lut
        # into a single lut for better performance
        levels = self.levels
        if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16):
            if self._effectiveLut is None:
                eflsize = 2**(image.itemsize*8)
                ind = np.arange(eflsize)
                minlev, maxlev = levels
                levdiff = maxlev - minlev
                levdiff = 1 if levdiff == 0 else levdiff  # don't allow division by 0
                if lut is None:
                    efflut = fn.rescaleData(ind, scale=255./levdiff, 
                                            offset=minlev, dtype=np.ubyte)
                else:
                    lutdtype = np.min_scalar_type(lut.shape[0]-1)
                    efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff,
                                            offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1))
                    efflut = lut[efflut]

                self._effectiveLut = efflut
            lut = self._effectiveLut
            levels = None

        # Assume images are in column-major order for backward compatibility
        # (most images are in row-major order)

        if self.axisOrder == 'col-major':
            image = image.transpose((1, 0, 2)[:image.ndim])

        argb, alpha = fn.makeARGB(image, lut=lut, levels=levels)
        self.qimage = fn.makeQImage(argb, alpha, transpose=False)
项目:sparse    作者:mrocklin    | 项目源码 | 文件源码
def __init__(self, coords, data=None, shape=None, has_duplicates=True,
                 sorted=False, cache=False):
        self._cache = None
        if cache:
            self.enable_caching()
        if data is None:
            # {(i, j, k): x, (i, j, k): y, ...}
            if isinstance(coords, dict):
                coords = list(coords.items())
                has_duplicates = False

            if isinstance(coords, np.ndarray):
                result = COO.from_numpy(coords)
                self.coords = result.coords
                self.data = result.data
                self.has_duplicates = result.has_duplicates
                self.sorted = result.sorted
                self.shape = result.shape
                return

            # []
            if not coords:
                data = []
                coords = []

            # [((i, j, k), value), (i, j, k), value), ...]
            elif isinstance(coords[0][0], Iterable):
                if coords:
                    assert len(coords[0]) == 2
                data = [x[1] for x in coords]
                coords = [x[0] for x in coords]
                coords = np.asarray(coords).T

            # (data, (row, col, slab, ...))
            else:
                data = coords[0]
                coords = np.stack(coords[1], axis=0)

        self.data = np.asarray(data)
        self.coords = np.asarray(coords)
        if self.coords.ndim == 1:
            self.coords = self.coords[None, :]

        if shape and not np.prod(self.coords.shape):
            self.coords = np.zeros((len(shape), 0), dtype=np.uint64)

        if shape is None:
            if self.coords.nbytes:
                shape = tuple((self.coords.max(axis=1) + 1).tolist())
            else:
                shape = ()

        self.shape = tuple(shape)
        if self.shape:
            dtype = np.min_scalar_type(max(self.shape))
        else:
            dtype = np.int_
        self.coords = self.coords.astype(dtype)
        assert not self.shape or len(data) == self.coords.shape[1]
        self.has_duplicates = has_duplicates
        self.sorted = sorted
项目:sparse    作者:mrocklin    | 项目源码 | 文件源码
def _get_expanded_coords_data(coords, data, params, broadcast_shape):
        """
        Expand coordinates/data to broadcast_shape. Does most of the heavy lifting for broadcast_to.
        Produces sorted output for sorted inputs.

        Parameters
        ----------
        coords : np.ndarray
            The coordinates to expand.
        data : np.ndarray
            The data corresponding to the coordinates.
        params : list
            The broadcast parameters.
        broadcast_shape : tuple[int]
            The shape to broadcast to.
        Returns
        -------
        expanded_coords : np.ndarray
            List of 1-D arrays. Each item in the list has one dimension of coordinates.
        expanded_data : np.ndarray
            The data corresponding to expanded_coords.
        """
        first_dim = -1
        expand_shapes = []
        for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
            if p and first_dim == -1:
                expand_shapes.append(coords.shape[1])
                first_dim = d

            if not p:
                expand_shapes.append(l)

        all_idx = COO._cartesian_product(*(np.arange(d, dtype=np.min_scalar_type(d - 1)) for d in expand_shapes))
        dt = np.result_type(*(np.min_scalar_type(l - 1) for l in broadcast_shape))

        false_dim = 0
        dim = 0

        expanded_coords = np.empty((len(broadcast_shape), all_idx.shape[1]), dtype=dt)
        expanded_data = data[all_idx[first_dim]]

        for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
            if p:
                expanded_coords[d] = coords[dim, all_idx[first_dim]]
            else:
                expanded_coords[d] = all_idx[false_dim + (d > first_dim)]
                false_dim += 1

            if p is not None:
                dim += 1

        return np.asarray(expanded_coords), np.asarray(expanded_data)

    # (c) senderle
    # Taken from https://stackoverflow.com/a/11146645/774273
    # License: https://creativecommons.org/licenses/by-sa/3.0/