Python numpy 模块,inexact() 实例源码

我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用numpy.inexact()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:mobula    作者:wkcn    | 项目源码 | 文件源码
def minimum_dtype(x, dtype=np.bool_):
        """returns the "most basic" dtype which represents `x` properly, which
        provides at least the same value range as the specified dtype."""

        def check_type(x, dtype):
            try:
                converted = dtype.type(x)
            except (ValueError, OverflowError):
                return False
            # False if some overflow has happened
            return converted == x or math.isnan(x)

        def type_loop(x, dtype, dtype_dict, default=None):
            while True:
                try:
                    dtype = np.dtype(dtype_dict[dtype.name])
                    if check_type(x, dtype):
                        return np.dtype(dtype)
                except KeyError:
                    if default is not None:
                        return np.dtype(default)
                    raise ValueError("Can not determine dtype of %r" % x)

        dtype = np.dtype(dtype)
        if check_type(x, dtype):
            return dtype

        if np.issubdtype(dtype, np.inexact):
            return type_loop(x, dtype, _next_float_dtype)
        else:
            return type_loop(x, dtype, _next_int_dtype, default=np.float32)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore', divide='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _median(a, axis=None, out=None, overwrite_input=False):
    # can't be reasonably be implemented in terms of percentile as we have to
    # call mean to not break astropy
    a = np.asanyarray(a)

    # Set the partition indexes
    if axis is None:
        sz = a.size
    else:
        sz = a.shape[axis]
    if sz % 2 == 0:
        szh = sz // 2
        kth = [szh - 1, szh]
    else:
        kth = [(sz - 1) // 2]
    # Check if the array contains any nan's
    if np.issubdtype(a.dtype, np.inexact):
        kth.append(-1)

    if overwrite_input:
        if axis is None:
            part = a.ravel()
            part.partition(kth)
        else:
            a.partition(kth, axis=axis)
            part = a
    else:
        part = partition(a, kth, axis=axis)

    if part.shape == ():
        # make 0-D arrays work
        return part.item()
    if axis is None:
        axis = 0

    indexer = [slice(None)] * part.ndim
    index = part.shape[axis] // 2
    if part.shape[axis] % 2 == 1:
        # index with slice to allow mean (below) to work
        indexer[axis] = slice(index, index+1)
    else:
        indexer[axis] = slice(index-1, index+1)

    # Check if the array contains any nan's
    if np.issubdtype(a.dtype, np.inexact) and sz > 0:
        # warn and return nans like mean would
        rout = mean(part[indexer], axis=axis, out=out)
        return np.lib.utils._median_nancheck(part, rout, axis, out)
    else:
        # if there are no nans
        # Use mean in odd and even case to coerce data type
        # and check, use out array.
        return mean(part[indexer], axis=axis, out=out)
项目:LineBot    作者:RaenonX    | 项目源码 | 文件源码
def object_to_json(o, level=0, indent=4, space=" ", newline="\n"):
    ret = ""
    if isinstance(o, dict):
        ret += "{" + newline
        comma = ""
        for k,v in o.iteritems():
            ret += comma
            comma = ",\n"
            ret += space * indent * level
            ret += '"' + str(k) + '":' + space
            ret += object_to_json(v, level + 1)

        ret += newline + space * indent * (level - 1) + "}"
    elif isinstance(o, basestring):
        ret += '"' + o + '"'
    elif isinstance(o, list):
        ret += "[" + ", ".join([object_to_json(e, level+1) for e in o]) + "]"
    elif isinstance(o, bool):
        ret += "true" if o else "false"
    elif isinstance(o, (int, long)):
        ret += str(o)
    elif isinstance(o, datetime):
        ret += o.strftime('%Y-%m-%d %H:%M:%S.%f')
    elif isinstance(o, bson.ObjectId):
        ret += 'ObjectId(%s)' % o
    elif isinstance(o, float):
        ret += '%.7g' % o
    elif isinstance(o, numpy.ndarray) and numpy.issubdtype(o.dtype, numpy.integer):
        ret += "[" + ','.join(map(str, o.flatten().tolist())) + "]"
    elif isinstance(o, numpy.ndarray) and numpy.issubdtype(o.dtype, numpy.inexact):
        ret += "[" + ','.join(map(lambda x: '%.7g' % x, o.flatten().tolist())) + "]"
    elif isinstance(o, bson.timestamp.Timestamp):
        ret += o.as_datetime().strftime('%Y-%m-%d %H:%M:%S.%f')
    elif o is None:
        ret += 'null'
    else:
        raise TypeError("Unknown type '%s' for json serialization" % str(type(o)))
    return ret
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def _replace_nan(a, val):
    """
    If `a` is of inexact type, make a copy of `a`, replace NaNs with
    the `val` value, and return the copy together with a boolean mask
    marking the locations where NaNs were present. If `a` is not of
    inexact type, do nothing and return `a` together with a mask of None.

    Note that scalars will end up as array scalars, which is important
    for using the result as the value of the out argument in some
    operations.

    Parameters
    ----------
    a : array-like
        Input array.
    val : float
        NaN values are set to val before doing the operation.

    Returns
    -------
    y : ndarray
        If `a` is of inexact type, return a copy of `a` with the NaNs
        replaced by the fill value, otherwise return `a`.
    mask: {bool, None}
        If `a` is of inexact type, return a boolean mask marking locations of
        NaNs, otherwise return None.

    """
    is_new = not isinstance(a, np.ndarray)
    if is_new:
        a = np.array(a)
    if not issubclass(a.dtype.type, np.inexact):
        return a, None
    if not is_new:
        # need copy
        a = np.array(a, subok=True)

    mask = np.isnan(a)
    np.copyto(a, val, where=mask)
    return a, mask
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def _divide_by_count(a, b, out=None):
    """
    Compute a/b ignoring invalid results. If `a` is an array the division
    is done in place. If `a` is a scalar, then its type is preserved in the
    output. If out is None, then then a is used instead so that the
    division is in place. Note that this is only called with `a` an inexact
    type.

    Parameters
    ----------
    a : {ndarray, numpy scalar}
        Numerator. Expected to be of inexact type but not checked.
    b : {ndarray, numpy scalar}
        Denominator.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.

    Returns
    -------
    ret : {ndarray, numpy scalar}
        The return value is a/b. If `a` was an ndarray the division is done
        in place. If `a` is a numpy scalar, the division preserves its type.

    """
    with np.errstate(invalid='ignore'):
        if isinstance(a, np.ndarray):
            if out is None:
                return np.divide(a, b, out=a, casting='unsafe')
            else:
                return np.divide(a, b, out=out, casting='unsafe')
        else:
            if out is None:
                return a.dtype.type(a / b)
            else:
                # This is questionable, but currently a numpy scalar can
                # be output to a zero dimensional array.
                return np.divide(a, b, out=out, casting='unsafe')
项目:npstreams    作者:LaurentRDC    | 项目源码 | 文件源码
def nan_to_num(array, fill_value = 0.0, copy = True):
    """
    Replace NaNs with another fill value. 

    Parameters
    ----------
    array : array_like
        Input data.
    fill_value : float, optional
        NaNs will be replaced by ``fill_value``. Default is 0.0, in keeping
        with ``numpy.nan_to_num``.
    copy : bool, optional
        Whether to create a copy of `array` (True) or to replace values
        in-place (False). The in-place operation only occurs if
        casting to an array does not require a copy.

    Returns
    -------
    out : ndarray
        Array without NaNs. If ``array`` was not of floating or complearray type,
        ``array`` is returned unchanged.

    Notes
    -----
    Contrary to ``numpy.nan_to_num``, this functions does not handle
    infinite values.

    See Also
    --------
    numpy.nan_to_num : replace NaNs and Infs with zeroes.
    """
    array = np.array(array, subok = True, copy = copy)
    dtype = array.dtype.type

    # Non-inexact types do not have NaNs
    if not np.issubdtype(dtype, np.inexact):
        return array

    iscomplex = np.issubdtype(dtype, np.complexfloating)
    dest = (array.real, array.imag) if iscomplex else (array,)
    for d in dest:
        np.copyto(d, fill_value, where = np.isnan(d))
    return array
项目:openai_lab    作者:kengz    | 项目源码 | 文件源码
def to_json(o, level=0):
    INDENT = 2
    SPACE = " "
    NEWLINE = "\n"
    ret = ""
    if isinstance(o, dict):
        ret += "{" + NEWLINE
        comma = ""
        for k in sorted(o.keys()):
            v = o[k]
            ret += comma
            comma = ",\n"
            ret += SPACE * INDENT * (level+1)
            ret += '"' + str(k) + '":' + SPACE
            ret += to_json(v, level + 1)

        ret += NEWLINE + SPACE * INDENT * level + "}"
    elif isinstance(o, str):
        ret += '"' + o + '"'
    elif isinstance(o, list) or isinstance(o, tuple):
        ret += "[" + ",".join([to_json(e, level+1) for e in o]) + "]"
    elif isinstance(o, bool):
        ret += "true" if o else "false"
    elif isinstance(o, int):
        ret += str(o)
    elif isinstance(o, float):
        ret += '%.7g' % o
    elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.integer):
        ret += "[" + ','.join(map(str, o.flatten().tolist())) + "]"
    elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.inexact):
        ret += "[" + \
            ','.join(map(lambda x: '%.7g' % x, o.flatten().tolist())) + "]"
    elif o is None:
        ret += 'null'
    elif hasattr(o, '__class__'):
        ret += '"' + o.__class__.__name__ + '"'
    else:
        raise TypeError(
            "Unknown type '%s' for json serialization" % str(type(o)))
    return ret


# format object and its properties into printable dict
项目:mobula    作者:wkcn    | 项目源码 | 文件源码
def check_dtype(dtype, func_str, a, n):
        if np.isscalar(a) or not a.shape:
            if func_str not in ("sum", "prod", "len"):
                raise ValueError("scalar inputs are supported only for 'sum', "
                                 "'prod' and 'len'")
            a_dtype = np.dtype(type(a))
        else:
            a_dtype = a.dtype

        if dtype is not None:
            # dtype set by the user
            # Careful here: np.bool != np.bool_ !
            if np.issubdtype(dtype, np.bool_) and \
                    not('all' in func_str or 'any' in func_str):
                raise TypeError("function %s requires a more complex datatype "
                                "than bool" % func_str)
            if not np.issubdtype(dtype, np.integer) and func_str in ('len', 'nanlen'):
                raise TypeError("function %s requires an integer datatype" % func_str)
            # TODO: Maybe have some more checks here
            return np.dtype(dtype)
        else:
            try:
                return np.dtype(_forced_types[func_str])
            except KeyError:
                if func_str in _forced_float_types:
                    if np.issubdtype(a_dtype, np.floating):
                        return a_dtype
                    else:
                        return np.dtype(np.float64)
                else:
                    if func_str == 'sum':
                        # Try to guess the minimally required int size
                        if np.issubdtype(a_dtype, np.int64):
                            # It's not getting bigger anymore
                            # TODO: strictly speaking it might need float
                            return np.dtype(np.int64)
                        elif np.issubdtype(a_dtype, np.integer):
                            maxval = np.iinfo(a_dtype).max * n
                            return minimum_dtype(maxval, a_dtype)
                        elif np.issubdtype(a_dtype, np.bool_):
                            return minimum_dtype(n, a_dtype)
                        else:
                            # floating, inexact, whatever
                            return a_dtype
                    elif func_str in _forced_same_type:
                        return a_dtype
                    else:
                        if isinstance(a_dtype, np.integer):
                            return np.dtype(np.int64)
                        else:
                            return a_dtype
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _median(a, axis=None, out=None, overwrite_input=False):
    if overwrite_input:
        if axis is None:
            asorted = a.ravel()
            asorted.sort()
        else:
            a.sort(axis=axis)
            asorted = a
    else:
        asorted = sort(a, axis=axis)

    if axis is None:
        axis = 0
    elif axis < 0:
        axis += asorted.ndim

    if asorted.ndim == 1:
        idx, odd = divmod(count(asorted), 2)
        return asorted[idx + odd - 1 : idx + 1].mean(out=out)

    counts = count(asorted, axis=axis)
    h = counts // 2

    # create indexing mesh grid for all but reduced axis
    axes_grid = [np.arange(x) for i, x in enumerate(asorted.shape)
                 if i != axis]
    ind = np.meshgrid(*axes_grid, sparse=True, indexing='ij')

    # insert indices of low and high median
    ind.insert(axis, np.maximum(0, h - 1))
    low = asorted[tuple(ind)]
    ind[axis] = h
    high = asorted[tuple(ind)]

    # duplicate high if odd number of elements so mean does nothing
    odd = counts % 2 == 1
    if asorted.ndim > 1:
        np.copyto(low, high, where=odd)
    elif odd:
        low = high

    if np.issubdtype(asorted.dtype, np.inexact):
        # avoid inf / x = masked
        s = np.ma.sum([low, high], axis=0, out=out)
        np.true_divide(s.data, 2., casting='unsafe', out=s.data)
    else:
        s = np.ma.mean([low, high], axis=0, out=out)
    return s