Python numpy 模块,promote_types() 实例源码

我们从Python开源项目中,提取了以下36个代码示例,用于说明如何使用numpy.promote_types()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:fastmat    作者:EMS-TU-Ilmenau    | 项目源码 | 文件源码
def testGram(test):
    instance, reference=test[TEST.INSTANCE], test[TEST.REFERENCE]

    # usually expect the normalized matrix to be promoted in type complexity
    # due to division by column-norm during the process. However there exist
    # matrices that treat the problem differently. Exclude the expected pro-
    # motion for them.
    query=({} if isinstance(instance, (Diag, Eye, Zero))
           else {TEST.TYPE_PROMOTION: np.float32})

    # account for "extra computation stage" in gram
    query[TEST.TOL_POWER]=test.get(TEST.TOL_POWER, 1.) * 2

    query[TEST.RESULT_OUTPUT]=instance.gram.array
    query[TEST.RESULT_REF]=reference.astype(
        np.promote_types(np.float32, reference.dtype)).T.conj().dot(reference)

    # ignore actual type of generated gram:
    query[TEST.CHECK_DATATYPE]=False

    return compareResults(test, query)


################################################## test: T (property)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:OpenMDAO    作者:OpenMDAO    | 项目源码 | 文件源码
def test_jacobian_set_item(self, dtypes, shapes):

        shape, constructor, expected_shape = shapes
        dtype, value = dtypes

        prob = Problem(model=Group())
        comp = ExplicitSetItemComp(dtype, value, shape, constructor)
        prob.model.add_subsystem('C1', comp)
        prob.setup(check=False)

        prob.set_solver_print(level=0)
        prob.run_model()
        prob.model.run_apply_nonlinear()
        prob.model.run_linearize()

        expected = constructor(value)
        with prob.model._subsystems_allprocs[0].jacobian_context() as J:
            jac_out = J['out', 'in'] * -1

        self.assertEqual(len(jac_out.shape), 2)
        expected_dtype = np.promote_types(dtype, float)
        self.assertEqual(jac_out.dtype, expected_dtype)
        assert_rel_error(self, jac_out, np.atleast_2d(expected).reshape(expected_shape), 1e-15)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_promote_types_endian(self):
        # promote_types should always return native-endian types
        assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
        assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))

        assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
        assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
        assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
        assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))

        assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
        assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
        assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
        assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))

        assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
        assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
        assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
        assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:pytorch_fnet    作者:AllenCellModeling    | 项目源码 | 文件源码
def dtype(self):
        """Return dtype of image data in file."""
        # subblock data can be of different pixel type
        dtype = self.filtered_subblock_directory[0].dtype[-2:]
        for directory_entry in self.filtered_subblock_directory:
            dtype = numpy.promote_types(dtype, directory_entry.dtype[-2:])
        return dtype
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:fastmat    作者:EMS-TU-Ilmenau    | 项目源码 | 文件源码
def testLargestSV(test):
    query={TEST.TYPE_EXPECTED: np.float64}
    instance=test[TEST.INSTANCE]

    # account for "extra computation stage" (gram) in largestSV
    query[TEST.TOL_POWER]=test.get(TEST.TOL_POWER, 1.) * 2
    query[TEST.TOL_MINEPS]=_getTypeEps(safeTypeExpansion(instance.dtype))

    # determine reference result
    largestSV=np.linalg.svd(test[TEST.REFERENCE], compute_uv=False)[0]
    query[TEST.RESULT_REF]=np.array(
        largestSV, dtype=np.promote_types(largestSV.dtype, np.float64))

    # largestSV may not converge fast enough for a bad random starting point
    # so retry some times before throwing up
    for tries in range(9):
        maxSteps=100. * 10. ** (tries / 2.)
        query[TEST.RESULT_OUTPUT]=np.array(
            instance.getLargestSV(maxSteps=maxSteps, alwaysReturn=True))
        result=compareResults(test, query)
        if result[TEST.RESULT]:
            break
    return result


################################################## test: gram (property)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_promote_types_strings(self):
        assert_equal(np.promote_types('bool', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('b', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('u1', 'S'), np.dtype('S3'))
        assert_equal(np.promote_types('u2', 'S'), np.dtype('S5'))
        assert_equal(np.promote_types('u4', 'S'), np.dtype('S10'))
        assert_equal(np.promote_types('u8', 'S'), np.dtype('S20'))
        assert_equal(np.promote_types('i1', 'S'), np.dtype('S4'))
        assert_equal(np.promote_types('i2', 'S'), np.dtype('S6'))
        assert_equal(np.promote_types('i4', 'S'), np.dtype('S11'))
        assert_equal(np.promote_types('i8', 'S'), np.dtype('S21'))
        assert_equal(np.promote_types('bool', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('b', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('u1', 'U'), np.dtype('U3'))
        assert_equal(np.promote_types('u2', 'U'), np.dtype('U5'))
        assert_equal(np.promote_types('u4', 'U'), np.dtype('U10'))
        assert_equal(np.promote_types('u8', 'U'), np.dtype('U20'))
        assert_equal(np.promote_types('i1', 'U'), np.dtype('U4'))
        assert_equal(np.promote_types('i2', 'U'), np.dtype('U6'))
        assert_equal(np.promote_types('i4', 'U'), np.dtype('U11'))
        assert_equal(np.promote_types('i8', 'U'), np.dtype('U21'))
        assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('b', 'S1'), np.dtype('S4'))
        assert_equal(np.promote_types('b', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3'))
        assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5'))
        assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10'))
        assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30'))
        assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20'))
        assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30'))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_dtype_promotion(self):
        # datetime <op> datetime computes the metadata gcd
        # timedelta <op> timedelta computes the metadata gcd
        for mM in ['m', 'M']:
            assert_equal(
                np.promote_types(np.dtype(mM+'8[2Y]'), np.dtype(mM+'8[2Y]')),
                np.dtype(mM+'8[2Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[12Y]'), np.dtype(mM+'8[15Y]')),
                np.dtype(mM+'8[3Y]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[62M]'), np.dtype(mM+'8[24M]')),
                np.dtype(mM+'8[2M]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[1W]'), np.dtype(mM+'8[2D]')),
                np.dtype(mM+'8[1D]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[W]'), np.dtype(mM+'8[13s]')),
                np.dtype(mM+'8[s]'))
            assert_equal(
                np.promote_types(np.dtype(mM+'8[13W]'), np.dtype(mM+'8[49s]')),
                np.dtype(mM+'8[7s]'))
        # timedelta <op> timedelta raises when there is no reasonable gcd
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[Y]'), np.dtype('m8[D]'))
        assert_raises(TypeError, np.promote_types,
                            np.dtype('m8[M]'), np.dtype('m8[W]'))
        # timedelta <op> timedelta may overflow with big unit ranges
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[W]'), np.dtype('m8[fs]'))
        assert_raises(OverflowError, np.promote_types,
                            np.dtype('m8[s]'), np.dtype('m8[as]'))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
    print('+', end=' ')
    for char in ntypes:
        print(char, end=' ')
    print()
    for row in ntypes:
        if row == 'O':
            rowtype = GenericObject
        else:
            rowtype = np.obj2sctype(row)

        print(row, end=' ')
        for col in ntypes:
            if col == 'O':
                coltype = GenericObject
            else:
                coltype = np.obj2sctype(col)
            try:
                if firstarray:
                    rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
                else:
                    rowvalue = rowtype(inputfirstvalue)
                colvalue = coltype(inputsecondvalue)
                if use_promote_types:
                    char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
                else:
                    value = np.add(rowvalue, colvalue)
                    if isinstance(value, np.ndarray):
                        char = value.dtype.char
                    else:
                        char = np.dtype(type(value)).char
            except ValueError:
                char = '!'
            except OverflowError:
                char = '@'
            except TypeError:
                char = '#'
            print(char, end=' ')
        print()
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def combine_data_frame_files(output_filename, input_filenames):
    in_files = [ h5py.File(f, 'r') for f in input_filenames ]
    column_names = [ tuple(sorted(f.attrs.get("column_names"))) for f in in_files ]

    uniq = set(column_names)

    if len(uniq) > 1:
        raise Exception("you're attempting to combine incompatible data frames")

    if len(uniq) == 0:
        r = "No input files? output: %s, inputs: %s" % (output_filename, str(input_filenames))
        raise Exception(r)

    column_names = uniq.pop()

    if os.path.exists(output_filename):
        os.remove(output_filename)

    out = h5py.File(output_filename)
    out.attrs.create("column_names", column_names)

    # Write successive columns
    for c in column_names:
        datasets = [f[c] for f in in_files if len(f[c]) > 0]
        num_w_levels = np.sum([has_levels(ds) for ds in datasets if len(ds) > 0])
        fract_w_levels = float(num_w_levels) / (len(datasets) + 1)

        if fract_w_levels > 0.25:
            combine_level_column(out, datasets, c)
            continue

        # filter out empty rows from the type promotion, unless they're all empty
        types = [get_col_type(ds) for ds in datasets if len(ds) > 0]
        if len(types) == 0:
            # Fall back to getting column types from empty data frames
            types = [get_col_type(f[c]) for f in in_files]
        common_type = reduce(np.promote_types, types)

        # numpy doesn't understand vlen strings -- so always promote to vlen strings if anything is using them
        if vlen_string in types:
            common_type = vlen_string

        out_ds = out.create_dataset(c, shape=(0,), maxshape=(None,), dtype=common_type, compression=COMPRESSION, shuffle=True, chunks=(CHUNK_SIZE,))

        item_count = 0
        for ds in datasets:
            new_items = ds.shape[0]
            out_ds.resize((item_count + new_items,))
            data = ds[:]

            if has_levels(ds):
                levels = get_levels(ds)
                data = levels[data]

            out_ds[item_count:(item_count + new_items)] = data
            item_count += new_items

    for in_f in in_files:
        in_f.close()

    out.close()
项目:fastmat    作者:EMS-TU-Ilmenau    | 项目源码 | 文件源码
def ISTA(
    fmatA,
    arrB,
    numLambda=0.1,
    numMaxSteps=100
):
    '''
    Wrapper around the ISTA algrithm to allow processing of arrays of signals
        fmatA         - input system matrix
        arrB          - input data vector (measurements)
        numLambda     - balancing parameter in optimization problem
                        between data fidelity and sparsity
        numMaxSteps   - maximum number of steps to run
        numL          - step size during the conjugate gradient step
    '''

    if len(arrB.shape) > 2:
        raise ValueError("Only n x m arrays are supported for ISTA")

    # calculate the largest singular value to get the right step size
    numL = 1.0 / (fmatA.largestSV ** 2)

    arrX = np.zeros(
        (fmatA.numM, arrB.shape[1]),
        dtype=np.promote_types(np.float32, arrB.dtype)
    )

    # start iterating
    for numStep in range(numMaxSteps):
        # do the gradient step and threshold

        arrStep = arrX -  numL * fmatA.backward(fmatA.forward(arrX) - arrB)
        arrX = _softThreshold(arrStep, numL * numLambda * 0.5)

    # return the unthresholded values for all non-zero support elements
    return np.where(arrX != 0, arrStep, arrX)


################################################################################
###  Maintenance and Documentation
################################################################################

################################################## inspection interface
项目:fastmat    作者:EMS-TU-Ilmenau    | 项目源码 | 文件源码
def FISTA(
        fmatA,
        arrB,
        numLambda=0.1,
        numMaxSteps=100
):
    '''
    Wrapper around the FISTA algrithm to allow processing of arrays of signals
        fmatA         - input system matrix
        arrB          - input data vector (measurements)
        numLambda     - balancing parameter in optimization problem
                        between data fidelity and sparsity
        numMaxSteps   - maximum number of steps to run
        numL          - step size during the conjugate gradient step
    '''

    if len(arrB.shape) > 2:
        raise ValueError("Only n x m arrays are supported for FISTA")

    # calculate the largest singular value to get the right step size
    numL = 1.0 / (fmatA.largestSV ** 2)
    t = 1
    arrX = np.zeros(
        (fmatA.numM, arrB.shape[1]),
        dtype=np.promote_types(np.float32, arrB.dtype)
    )
    # initial arrY
    arrY = np.copy(arrX)
    # start iterating
    for numStep in range(numMaxSteps):
        arrXold = np.copy(arrX)
        # do the gradient step and threshold
        arrStep = arrY - numL * fmatA.backward(fmatA.forward(arrY) - arrB)

        arrX = _softThreshold(arrStep, numL * numLambda * 0.5)

        # update t
        tOld =t
        t = (1 + np.sqrt(1 + 4 * t ** 2)) / 2
        # update arrY
        arrY = arrX + ((tOld - 1) / t) * (arrX - arrXold)
    # return the unthresholded values for all non-zero support elements
    return np.where(arrX != 0, arrStep, arrX)


################################################################################
###  Maintenance and Documentation
################################################################################

################################################## inspection interface
项目:OpenMDAO    作者:OpenMDAO    | 项目源码 | 文件源码
def _set_abs(self, abs_key, subjac):
        """
        Set sub-Jacobian.

        Parameters
        ----------
        abs_key : (str, str)
            Absolute name pair of sub-Jacobian.
        subjac : int or float or ndarray or sparse matrix
            sub-Jacobian as a scalar, vector, array, or AIJ list or tuple.
        """
        if not issparse(subjac):
            # np.promote_types will choose the smallest dtype that can contain both arguments
            subjac = np.atleast_1d(subjac)
            safe_dtype = np.promote_types(subjac.dtype, float)
            subjac = subjac.astype(safe_dtype, copy=False)

            # Bail here so that we allow top level jacobians to be of reduced size when indices are
            # specified on driver vars.
            if self._override_checks:
                self._subjacs[abs_key] = subjac
                return

            if abs_key in self._subjacs_info:
                subjac_info = self._subjacs_info[abs_key][0]
                rows = subjac_info['rows']
            else:
                rows = None

            if rows is None:
                # Dense subjac
                shape = self._abs_key2shape(abs_key)
                subjac = np.atleast_2d(subjac)
                if subjac.shape == (1, 1):
                    subjac = subjac[0, 0] * np.ones(shape, dtype=safe_dtype)
                else:
                    subjac = subjac.reshape(shape)

                if abs_key in self._subjacs and self._subjacs[abs_key].shape == shape:
                    np.copyto(self._subjacs[abs_key], subjac)
                else:
                    self._subjacs[abs_key] = subjac.copy()
            else:
                # Sparse subjac
                if subjac.shape == (1,):
                    subjac = subjac[0] * np.ones(rows.shape, dtype=safe_dtype)

                if subjac.shape != rows.shape:
                    raise ValueError("Sub-jacobian for key %s has "
                                     "the wrong shape (%s), expected (%s)." %
                                     (abs_key, subjac.shape, rows.shape))

                if abs_key in self._subjacs and subjac.shape == self._subjacs[abs_key][0].shape:
                    np.copyto(self._subjacs[abs_key][0], subjac)
                else:
                    self._subjacs[abs_key] = [subjac.copy(), rows, subjac_info['cols']]
        else:
            self._subjacs[abs_key] = subjac