Python numpy 模块,ma() 实例源码

我们从Python开源项目中,提取了以下44个代码示例,用于说明如何使用numpy.ma()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def fn_getma(fn, bnum=1):
    """Get masked array from input filename

    Parameters
    ----------
    fn : str
        Input filename string
    bnum : int, optional
        Band number

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    #Add check for filename existence
    ds = fn_getds(fn)
    return ds_getma(ds, bnum=bnum)

#Given input dataset, return a masked array for the input band
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def ds_getma(ds, bnum=1):
    """Get masked array from input GDAL Dataset

    Parameters
    ----------
    ds : gdal.Dataset 
        Input GDAL Datset
    bnum : int, optional
        Band number

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    b = ds.GetRasterBand(bnum)
    return b_getma(b)

#Given input band, return a masked array
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def b_getma(b):
    """Get masked array from input GDAL Band

    Parameters
    ----------
    b : gdal.Band 
        Input GDAL Band 

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    b_ndv = get_ndv_b(b)
    #bma = np.ma.masked_equal(b.ReadAsArray(), b_ndv)
    #This is more appropriate for float, handles precision issues
    bma = np.ma.masked_values(b.ReadAsArray(), b_ndv)
    return bma
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_testPut(self):
        # Test of put
        with suppress_warnings() as sup:
            sup.filter(
                np.ma.core.MaskedArrayFutureWarning,
                "setting an item on a masked array which has a "
                "shared mask will not copy")
            d = arange(5)
            n = [0, 0, 0, 1, 1]
            m = make_mask(n)
            x = array(d, mask=m)
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is masked)
            x[[1, 4]] = [10, 40]
            self.assertTrue(x.mask is not m)
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is not masked)
            self.assertTrue(eq(x, [0, 10, 2, -1, 40]))

            x = array(d, mask=m)
            x.put([0, 1, 2], [-1, 100, 200])
            self.assertTrue(eq(x, [-1, 100, 200, 0, 0]))
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is masked)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def ds_getma_sub(src_ds, bnum=1, scale=None, maxdim=1024.):    
    """Load a subsampled array, rather than full resolution

    This is useful when working with large rasters

    Uses buf_xsize and buf_ysize options from GDAL ReadAsArray method.

    Parameters
    ----------
    ds : gdal.Dataset 
        Input GDAL Datset
    bnum : int, optional
        Band number
    scale : int, optional
        Scaling factor
    maxdim : int, optional 
        Maximum dimension along either axis, in pixels

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    #print src_ds.GetFileList()[0]
    b = src_ds.GetRasterBand(bnum)
    b_ndv = get_ndv_b(b)
    ns, nl = get_sub_dim(src_ds, scale, maxdim)
    #The buf_size parameters determine the final array dimensions
    b_array = b.ReadAsArray(buf_xsize=ns, buf_ysize=nl)
    bma = np.ma.masked_values(b_array, b_ndv)
    return bma

#Note: need to consolidate with warplib.writeout (takes ds, not ma)
#Add option to build overviews when writing GTiff
#Input proj must be WKT
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def replace_ndv(b, new_ndv):
    b_ndv = get_ndv_b(b)    
    bma = np.ma.masked_values(b.ReadAsArray(), b_ndv)
    bma.set_fill_value(new_ndv)
    b.WriteArray(bma.filled())
    b.SetNoDataValue(new_ndv)
    return b
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  # 'nonzero', 'around',
                  'floor', 'ceil',
                  # 'sometrue', 'alltrue',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  # 'nonzero', 'around',
                  'floor', 'ceil',
                  # 'sometrue', 'alltrue',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:deepgestures_lasagne    作者:nneverova    | 项目源码 | 文件源码
def _get_stblock(self, data_input, hnd, mdlt, start_frame=None):
        goodness = False
        if start_frame is None:
                start_frame = random.randint(0, len(data_input['min_length'])-self.step*(self.nframes-1)-1)
        stblock = numpy.zeros([self.nframes, self.block_size, self.block_size])
        for ii in xrange(self.nframes):
                v = data_input[hnd][mdlt][start_frame + ii * self.step]
                mm = abs(numpy.ma.maximum(v))
                if mm > 0.:
                        # normalize to zero mean, unit variance,
                        # concatenate in spatio-temporal blocks
                        stblock[ii] = self.prenormalize(v)
                        goodness = True
        return stblock, goodness
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def compare_functions_2v(func, nloop=500, test=True,
                       xs=xs, nmxs=nmxs,
                       ys=ys, nmys=nmys,
                       xl=xl, nmxl=nmxl,
                       yl=yl, nmyl=nmyl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs,nmys"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl,nmyl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_testCopySize(self):
        # Tests of some subtle points of copying and sizing.
        with suppress_warnings() as sup:
            sup.filter(
                np.ma.core.MaskedArrayFutureWarning,
                "setting an item on a masked array which has a "
                "shared mask will not copy")

            n = [0, 0, 1, 0, 0]
            m = make_mask(n)
            m2 = make_mask(m)
            self.assertTrue(m is m2)
            m3 = make_mask(m, copy=1)
            self.assertTrue(m is not m3)

            x1 = np.arange(5)
            y1 = array(x1, mask=m)
            self.assertTrue(y1._data is not x1)
            self.assertTrue(allequal(x1, y1._data))
            self.assertTrue(y1.mask is m)

            y1a = array(y1, copy=0)
            self.assertTrue(y1a.mask is y1.mask)

            y2 = array(x1, mask=m, copy=0)
            self.assertTrue(y2.mask is m)
            self.assertTrue(y2[2] is masked)
            y2[2] = 9
            self.assertTrue(y2[2] is not masked)
            self.assertTrue(y2.mask is not m)
            self.assertTrue(allequal(y2.mask, 0))

            y3 = array(x1 * 1.0, mask=m)
            self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype)

            x4 = arange(4)
            x4[2] = masked
            y4 = resize(x4, (8,))
            self.assertTrue(eq(concatenate([x4, x4]), y4))
            self.assertTrue(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
            y5 = repeat(x4, (2, 2, 2, 2), axis=0)
            self.assertTrue(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
            y6 = repeat(x4, 2, axis=0)
            self.assertTrue(eq(y5, y6))
项目:unmixing    作者:arthur-e    | 项目源码 | 文件源码
def composite(reducers, *rasters, normalize='sum', nodata=-9999.0, dtype=np.float32):
    '''
    NOTE: Uses masked arrays in NumPy and therefore is MUCH slower than the
    `composite2()` function, which is equivalent in output.

    Creates a multi-image (multi-date) composite from input rasters. The
    reducers argument specifies, in the order of the bands (endmembers), how
    to pick a value for that band in each pixel. If None is given, then the
    median value of that band from across the images is used for that pixel
    value. If None is specified as a reducer, the corresponding band(s) will
    be dropped. Combining None reducer(s) with a normalized sum effectively
    subtracts an endmember under the unity constraint. Arguments:
        reducers    One of ('min', 'max', 'mean', 'median', None) for each endmember
        rasters     One or more raster files to composite
        normalize   True (by default) to normalize results by their sum
        nodata      The NoData value (defaults to -9999)
        dtype       The data type to coerce in the output array; very important if the desired output is float but NoData value is integer
    '''
    shp = rasters[0].shape
    num_non_null_bands = shp[0] - len([b for b in reducers if b is None])
    assert all(map(lambda x: x == shp, [r.shape for r in rasters])), 'Rasters must have the same shape'
    assert len(reducers) == shp[0], 'Must provide a reducer for each band (including None to drop the band)'

    # Swap the sequence of rasters for a sequence of bands, then collapse the X-Y axes
    stack = np.array(rasters).swapaxes(0, 1).reshape(shp[0], len(rasters), shp[-1]*shp[-2])

    # Mask out NoData values
    stack_masked = np.ma.masked_where(stack == nodata, stack)

    # For each band (or endmember)...
    band_arrays = []
    for i in range(shp[0]):
        if reducers[i] in ('min', 'max', 'median', 'mean'):
            band_arrays.append(getattr(np.ma, reducers[i])(stack_masked[i, ...], axis=0))

    # Stack each reduced band (and reshape to multi-band image)
    final_stack = np.ma.vstack(band_arrays).reshape((num_non_null_bands, shp[-2], shp[-1]))

    # Calculate a normalized sum (e.g., fractions must sum to one)
    if normalize is not None:
        constant = getattr(final_stack, normalize)(axis=0) # The sum across the bands
        constant.set_fill_value(1.0) # NaNs will be divided by 1.0
        constant = np.ma.repeat(constant, num_non_null_bands, axis=0).reshape(final_stack.shape)
        # Divide the values in each band by the normalized sum across the bands
        if num_non_null_bands > 1:
            final_stack = final_stack / constant.swapaxes(0, 1)

        else:
            final_stack = final_stack / constant

    # NOTE: Essential to cast type, e.g., to float in case first pixel (i.e. top-left) is all NoData of an integer type
    final_stack.set_fill_value(dtype(nodata)) # Fill NoData for NaNs

    return final_stack.filled()