Python numpy 模块,True_() 实例源码

我们从Python开源项目中,提取了以下33个代码示例,用于说明如何使用numpy.True_()

项目:tadtool    作者:vaquerizaslab    | 项目源码 | 文件源码
def masked_matrix(matrix, all_zero=False):
    """
    Returns masked version of HicMatrix. By default, all entries in zero-count
    rows and columns are masked.

    :param matrix: A numpy 2D matrix
    :param all_zero: Mask ALL zero-count entries
    :returns: MaskedArray with zero entries masked
    """
    if all_zero:
        return np.ma.MaskedArray(matrix, mask=np.isclose(matrix, 0.))
    col_zero = np.isclose(np.sum(matrix, axis=0), 0.)
    row_zero = np.isclose(np.sum(matrix, axis=1), 0.)
    mask = np.zeros(matrix.shape, dtype=np.bool_)
    mask[:, col_zero] = np.True_
    mask[row_zero, :] = np.True_
    return np.ma.MaskedArray(matrix, mask=mask)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def _recalc_display_image_minmax(self):
        finite_mask = np.isfinite(self.display_image)
        if finite_mask.max() is np.True_:
            self._display_image_min = self.display_image[finite_mask].min()
            self._display_image_max = self.display_image[finite_mask].max()
        else:
            self._display_image_min = 0.
            self._display_image_max = 0.
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def _recalc_display_image_minmax(self):
        finite_mask = np.isfinite(self.display_image)
        if finite_mask.max() is np.True_:
            self._display_image_min = self.display_image[finite_mask].min()
            self._display_image_max = self.display_image[finite_mask].max()
        else:
            self._display_image_min = 0.
            self._display_image_max = 0.
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f)
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, 
                  return_distances=False):
    """
    im - 2-d numpy array
    x,y - coordinates of center of star
    star_radius - radius of photometry circle
    sky_inner_radius, sky_outer_radius - defines annulus for determining sky
            (if sky_inner_radius > sky_outer_radius, aperture_phot flips them)
    ----
    Note that this is a very quick-and-dirty aperture photometry routine.
    No error checking.
    No partial pixels.
    Many ways this could fail and/or give misleading results.
    Not to be used within 12 hours of eating food.
    Use only immediately after a large meal.
    ----
    returns dictionary with:
    flux - sky-subtracted flux inside star_radius
    sky_per_pixel - sky counts per pixel determined from sky annulus
    sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel
    sky_err - estimated 1-sigma uncertainty in sky subtraction from flux
    n_star_pix - number of pixels in star_radius
    n_sky_pix - number of pixels in sky annulus
    x - input x
    y - input y
    star_radius - input star_radius
    sky_inner_radius - input sky_inner_radius
    sky_outer_radius - input sky_outer_radius 
    """
    if np.isnan(x) or np.isnan(y):
        return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius,
                'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius,
                'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan,
                'flux':np.nan, 'sky_err':np.nan, 'distances':[]}
    if sky_inner_radius > sky_outer_radius:
        sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius
    output = {'x': x, 'y': y, 'star_radius': star_radius,
              'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius}
    xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x)
    ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1]))
    dist = np.sqrt(xdist**2 + ydist**2)
    star_mask = dist <= star_radius
    star_pixels = im[star_mask]

    sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)]
    output['n_star_pix'] = star_pixels.size
    output['n_sky_pix'] = sky_pixels.size
    finite_mask = np.isfinite(sky_pixels)
    if finite_mask.max() is np.True_:
        sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask])
    else:
        sky_per_pixel, median, stddev = np.nan, np.nan, np.inf
    sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum())
    output['sky_per_pixel'] = sky_per_pixel
    # TODO: check that are doing sky_per_pixel_err right.  In one quick test seemed high (but maybe wasn't a good test)
    output['sky_per_pixel_err'] = sky_per_pixel_err
    output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size
    output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size)
    if return_distances:
        output['distances'] = dist
    return output
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, 
                  return_distances=False):
    """
    im - 2-d numpy array
    x,y - coordinates of center of star
    star_radius - radius of photometry circle
    sky_inner_radius, sky_outer_radius - defines annulus for determining sky
            (if sky_inner_radius > sky_outer_radius, aperture_phot flips them)
    ----
    Note that this is a very quick-and-dirty aperture photometry routine.
    No error checking.
    No partial pixels.
    Many ways this could fail and/or give misleading results.
    Not to be used within 12 hours of eating food.
    Use only immediately after a large meal.
    ----
    returns dictionary with:
    flux - sky-subtracted flux inside star_radius
    sky_per_pixel - sky counts per pixel determined from sky annulus
    sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel
    sky_err - estimated 1-sigma uncertainty in sky subtraction from flux
    n_star_pix - number of pixels in star_radius
    n_sky_pix - number of pixels in sky annulus
    x - input x
    y - input y
    star_radius - input star_radius
    sky_inner_radius - input sky_inner_radius
    sky_outer_radius - input sky_outer_radius 
    """
    if np.isnan(x) or np.isnan(y):
        return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius,
                'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius,
                'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan,
                'flux':np.nan, 'sky_err':np.nan, 'distances':[]}
    if sky_inner_radius > sky_outer_radius:
        sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius
    output = {'x': x, 'y': y, 'star_radius': star_radius,
              'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius}
    xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x)
    ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1]))
    dist = np.sqrt(xdist**2 + ydist**2)
    star_mask = dist <= star_radius
    star_pixels = im[star_mask]

    sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)]
    output['n_star_pix'] = star_pixels.size
    output['n_sky_pix'] = sky_pixels.size
    finite_mask = np.isfinite(sky_pixels)
    if finite_mask.max() is np.True_:
        sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask])
    else:
        sky_per_pixel, median, stddev = np.nan, np.nan, np.inf
    sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum())
    output['sky_per_pixel'] = sky_per_pixel
    # TODO: check that are doing sky_per_pixel_err right.  In one quick test seemed high (but maybe wasn't a good test)
    output['sky_per_pixel_err'] = sky_per_pixel_err
    output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size
    output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size)
    if return_distances:
        output['distances'] = dist
    return output