Python numpy 模块,setxor1d() 实例源码

我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用numpy.setxor1d()

项目:groundfailure    作者:usgs    | 项目源码 | 文件源码
def sampleYes(array, N):
    """Sample without replacement N points from an array of XY coordinates.

    Args:
        array: 2D numpy array of XY points.
        N: Integer number of points to sample without replacement from
            input array.

    Returns:
        Tuple of (sampled points, unsampled points).

    """

    # array is a Mx2 array of X,Y points
    m, n = array.shape
    allidx = np.arange(0, m)
    sampleidx = np.random.choice(allidx, size=N, replace=False)
    nosampleidx = np.setxor1d(allidx, sampleidx)
    sampled = array[sampleidx, :]
    notsampled = array[nosampleidx, :]
    return (sampled, notsampled)
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_spheres_overlap():
    r"""Test to make sure that boolean objects (spheres, overlap)
    behave the way we expect.

    Test overlapping spheres.
    """
    ds = fake_amr_ds()
    sp1 = ds.sphere([0.45, 0.45, 0.45], 0.15)
    sp2 = ds.sphere([0.55, 0.55, 0.55], 0.15)
    # Get indices of both.
    i1 = sp1["index","morton_index"]
    i2 = sp2["index","morton_index"]
    # Make some booleans
    bo1 = sp1 & sp2
    bo2 = sp1 - sp2
    bo3 = sp1 | sp2
    bo4 = ds.union([sp1, sp2])
    bo5 = ds.intersection([sp1, sp2])
    # Now make sure the indices also behave as we expect.
    lens = np.intersect1d(i1, i2)
    apple = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, lens)
    assert_array_equal(b2, apple)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sp1 ^ sp2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_regions_overlap():
    r"""Test to make sure that boolean objects (regions, overlap)
    behave the way we expect.

    Test overlapping regions.
    """
    ds = fake_amr_ds()
    re1 = ds.region([0.55]*3, [0.5]*3, [0.6]*3)
    re2 = ds.region([0.6]*3, [0.55]*3, [0.65]*3)
    # Get indices of both.
    i1 = re1["index","morton_index"]
    i2 = re2["index","morton_index"]
    # Make some booleans
    bo1 = re1 & re2
    bo2 = re1 - re2
    bo3 = re1 | re2
    bo4 = ds.union([re1, re2])
    bo5 = ds.intersection([re1, re2])
    # Now make sure the indices also behave as we expect.
    cube = np.intersect1d(i1, i2)
    bite_cube = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, cube)
    assert_array_equal(b2, bite_cube)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re1 ^ re2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ellipsoids_overlap():
    r"""Test to make sure that boolean objects (ellipsoids, overlap)
    behave the way we expect.

    Test overlapping ellipsoids.
    """
    ds = fake_amr_ds()
    ell1 = ds.ellipsoid([0.45]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    ell2 = ds.ellipsoid([0.55]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    # Get indices of both.
    i1 = ell1["index","morton_index"]
    i2 = ell2["index","morton_index"]
    # Make some booleans
    bo1 = ell1 & ell2
    bo2 = ell1 - ell2
    bo3 = ell1 | ell2
    bo4 = ds.union([ell1, ell2])
    bo5 = ds.intersection([ell1, ell2])
    # Now make sure the indices also behave as we expect.
    overlap = np.intersect1d(i1, i2)
    diff = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, overlap)
    assert_array_equal(b2, diff)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = ell1 ^ ell2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_slices_overlap():
    r"""Test to make sure that boolean objects (slices, overlap)
    behave the way we expect.

    Test overlapping slices.
    """
    ds = fake_amr_ds()
    sl1 = ds.r[:,:,0.25]
    sl2 = ds.r[:,0.75,:]
    # Get indices of both.
    i1 = sl1["index","morton_index"]
    i2 = sl2["index","morton_index"]
    # Make some booleans
    bo1 = sl1 & sl2
    bo2 = sl1 - sl2
    bo3 = sl1 | sl2
    bo4 = ds.union([sl1, sl2])
    bo5 = ds.intersection([sl1, sl2])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    orig = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, orig)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl1 ^ sl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:groundfailure    作者:usgs    | 项目源码 | 文件源码
def sampleNo(xvar, yvar, N, avoididx):
    """
    Sample from pixels in mesh, excluding yes pixels and already sampled no
    pixels.

    Args:
        xvar: Numpy array of centers of all columns in mesh.
        yvar: Numpy array of centers of all rows in mesh.
        N: Number of no pixels to sample.
        avoididx: 1D array of indices from mesh that should NOT be sampled
            from.  Initially this will be the array of indices where the yes
            pixels are.

    Returns:
        Randomly chosen list of tuples of (x,y) coordinate points that are
        outside polygons.

    """

    # flattened array of all indices in mesh
    allidx = np.arange(0, len(xvar) * len(yvar))
    noidx = np.setxor1d(allidx, avoididx)  # allidx - avoididx
    nosampleidx = np.random.choice(noidx, size=N, replace=False)
    newavoididx = np.sort(np.hstack((avoididx, nosampleidx)))
    rowidx, colidx = np.unravel_index(nosampleidx, (len(yvar), len(xvar)))
    samples = []
    for row, col in zip(rowidx, colidx):
        xp = xvar[col]
        yp = yvar[row]
        samples.append((xp, yp))

    return (samples, newavoididx)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_spheres_no_overlap():
    r"""Test to make sure that boolean objects (spheres, no overlap)
    behave the way we expect.

    Test non-overlapping spheres. This also checks that the original spheres
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sp1 = ds.sphere([0.25, 0.25, 0.25], 0.15)
    sp2 = ds.sphere([0.75, 0.75, 0.75], 0.15)
    # Store the original indices
    i1 = sp1["index","morton_index"]
    i1.sort()
    i2 = sp2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sp1 & sp2
    bo2 = sp1 - sp2
    bo3 = sp1 | sp2 # also works with +
    bo4 = ds.union([sp1, sp2])
    bo5 = ds.intersection([sp1, sp2])
    # This makes sure the original containers didn't change.
    new_i1 = sp1["index","morton_index"]
    new_i1.sort()
    new_i2 = sp2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    assert_array_equal(b4, ii)
    bo6 = sp1 ^ sp2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_regions_no_overlap():
    r"""Test to make sure that boolean objects (regions, no overlap)
    behave the way we expect.

    Test non-overlapping regions. This also checks that the original regions
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re1 = ds.region([0.25]*3, [0.2]*3, [0.3]*3)
    re2 = ds.region([0.65]*3, [0.6]*3, [0.7]*3)
    # Store the original indices
    i1 = re1["index","morton_index"]
    i1.sort()
    i2 = re2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = re1 & re2
    bo2 = re1 - re2
    bo3 = re1 | re2
    bo4 = ds.union([re1, re2])
    bo5 = ds.intersection([re1, re2])
    # This makes sure the original containers didn't change.
    new_i1 = re1["index","morton_index"]
    new_i1.sort()
    new_i2 = re2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = re1 ^ re2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_cylinders_no_overlap():
    r"""Test to make sure that boolean objects (cylinders, no overlap)
    behave the way we expect.

    Test non-overlapping cylinders. This also checks that the original cylinders
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    cyl1 = ds.disk([0.25]*3, [1, 0, 0], 0.1, 0.1)
    cyl2 = ds.disk([0.75]*3, [1, 0, 0], 0.1, 0.1)
    # Store the original indices
    i1 = cyl1["index","morton_index"]
    i1.sort()
    i2 = cyl2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = cyl1 & cyl2
    bo2 = cyl1 - cyl2
    bo3 = cyl1 | cyl2
    bo4 = ds.union([cyl1, cyl2])
    bo5 = ds.intersection([cyl1, cyl2])
    # This makes sure the original containers didn't change.
    new_i1 = cyl1["index","morton_index"]
    new_i1.sort()
    new_i2 = cyl2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = cyl1 ^ cyl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ellipsoids_no_overlap():
    r"""Test to make sure that boolean objects (ellipsoids, no overlap)
    behave the way we expect.

    Test non-overlapping ellipsoids. This also checks that the original
    ellipsoids don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    ell1 = ds.ellipsoid([0.25]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    ell2 = ds.ellipsoid([0.75]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    # Store the original indices
    i1 = ell1["index","morton_index"]
    i1.sort()
    i2 = ell2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = ell1 & ell2
    bo2 = ell1 - ell2
    bo3 = ell1 | ell2
    bo4 = ds.union([ell1, ell2])
    bo5 = ds.intersection([ell1, ell2])
    # This makes sure the original containers didn't change.
    new_i1 = ell1["index","morton_index"]
    new_i1.sort()
    new_i2 = ell2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1 )
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = ell1 ^ ell2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_mix_periodicity():
    r"""Test that a hybrid boolean region behaves as we expect.

    This also tests nested logic and that periodicity works.
    """
    ds = fake_amr_ds()
    re = ds.region([0.5]*3, [0.0]*3, [1]*3) # whole thing
    sp = ds.sphere([0.95]*3, 0.3) # wraps around
    cyl = ds.disk([0.05]*3, [1,1,1], 0.1, 0.4) # wraps around
    # Get original indices
    rei = re["index","morton_index"]
    spi = sp["index","morton_index"]
    cyli = cyl["index","morton_index"]
    # Make some booleans
    # whole box minux spherical bites at corners
    bo1 = re - sp
    # sphere plus cylinder
    bo2 = sp | cyl
    # a jumble, the region minus the sp+cyl
    bo3 = re - (sp | cyl)
    # Now make sure the indices also behave as we expect.
    bo4 = ds.union([re, sp, cyl])
    bo5 = ds.intersection([re, sp, cyl])
    expect = np.setdiff1d(rei, spi)
    ii = bo1["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    ii = bo2["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    expect = np.setdiff1d(rei, expect)
    ii = bo3["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    ii = np.union1d(np.union1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b4)
    ii = np.intersect1d(np.intersect1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b5)

    bo6 = (re ^ sp) ^ cyl
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(np.setxor1d(rei, spi), cyli))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ray_region_no_overlap():
    r"""Test to make sure that boolean objects (ray, region, no overlap)
    behave the way we expect.

    Test non-overlapping ray and region. This also checks that the original 
    objects don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re = ds.box([0.25]*3, [0.75]*3)
    ra = ds.ray([0.1]*3, [0.1, 0.1, 0.9])
    # Store the original indices
    i1 = re["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = re & ra
    bo2 = re - ra
    bo3 = re | ra
    bo4 = ds.union([re, ra])
    bo5 = ds.intersection([re, ra])
    # This makes sure the original containers didn't change.
    new_i1 = re["index","morton_index"]
    new_i1.sort()
    new_i2 = ra["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = re ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ray_region_overlap():
    r"""Test to make sure that boolean objects (ray, region, overlap)
    behave the way we expect.

    Test overlapping ray and region. This also checks that the original 
    objects don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re = ds.box([0.25]*3, [0.75]*3)
    ra = ds.ray([0]*3, [1]*3)
    # Get indices of both.
    i1 = re["index","morton_index"]
    i2 = ra["index","morton_index"]
    # Make some booleans
    bo1 = re & ra
    bo2 = re - ra
    bo3 = re | ra
    bo4 = ds.union([re, ra])
    bo5 = ds.intersection([re, ra])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    cube_minus_line = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, cube_minus_line)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_rays_overlap():
    r"""Test to make sure that boolean objects (rays, overlap)
    behave the way we expect.

    Test non-overlapping rays.
    """
    ds = fake_amr_ds()
    ra1 = ds.ray([0]*3, [1]*3)
    ra2 = ds.ray([0]*3, [0.5]*3)
    # Get indices of both.
    i1 = ra1["index","morton_index"]
    i1.sort()
    i2 = ra2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = ra1 & ra2
    bo2 = ra1 - ra2
    bo3 = ra1 | ra2
    bo4 = ds.union([ra1, ra2])
    bo5 = ds.intersection([ra1, ra2])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    short_line_b = np.setdiff1d(i1, i2)
    full_line = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, short_line_b)
    assert_array_equal(b3, full_line)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = ra1 ^ ra2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_slices_no_overlap():
    r"""Test to make sure that boolean objects (slices, no overlap)
    behave the way we expect.

    Test non-overlapping slices. This also checks that the original regions
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sl1 = ds.r[:,:,0.25]
    sl2 = ds.r[:,:,0.75]
    # Store the original indices
    i1 = sl1["index","morton_index"]
    i1.sort()
    i2 = sl2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl1 & sl2
    bo2 = sl1 - sl2
    bo3 = sl1 | sl2
    bo4 = ds.union([sl1, sl2])
    bo5 = ds.intersection([sl1, sl2])
    # This makes sure the original containers didn't change.
    new_i1 = sl1["index","morton_index"]
    new_i1.sort()
    new_i2 = sl2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = sl1 ^ sl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ray_slice_no_overlap():
    r"""Test to make sure that boolean objects (ray, slice, no overlap)
    behave the way we expect.

    Test non-overlapping ray and slice. This also checks that the original 
    regions don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sl = ds.r[:,:,0.25]
    ra = ds.ray([0]*3, [0, 1, 0])
    # Store the original indices
    i1 = sl["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl & ra
    bo2 = sl - ra
    bo3 = sl | ra
    bo4 = ds.union([sl, ra])
    bo5 = ds.intersection([sl, ra])
    # This makes sure the original containers didn't change.
    new_i1 = sl["index","morton_index"]
    new_i1.sort()
    new_i2 = ra["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = sl ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_boolean_ray_slice_overlap():
    r"""Test to make sure that boolean objects (rays and slices, overlap)
    behave the way we expect.

    Test overlapping rays and slices.
    """
    ds = fake_amr_ds()
    sl = ds.r[:,:,0.25]
    ra = ds.ray([0, 0, 0.25], [0, 1, 0.25])
    # Get indices of both.
    i1 = sl["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i1.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl & ra
    bo2 = sl - ra
    bo3 = sl | ra
    bo4 = ds.union([sl, ra])
    bo5 = ds.intersection([sl, ra])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    sheet_minus_line = np.setdiff1d(i1, i2)
    sheet = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, sheet_minus_line)
    assert_array_equal(b3, sheet)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]