Python numpy 模块,pv() 实例源码

我们从Python开源项目中,提取了以下27个代码示例,用于说明如何使用numpy.pv()

项目:ValueInvesting    作者:VincentTatan    | 项目源码 | 文件源码
def generate_price_df(ticker,financialreportingdf,stockpricedf,discountrate,marginrate):
    dfprice = pd.DataFrame(columns =['ticker','annualgrowthrate','lasteps','futureeps'])
    pd.options.display.float_format = '{:20,.2f}'.format

    # Find EPS Annual Compounded Growth Rate
    annualgrowthrate =  financialreportingdf.epsgrowth.mean() #growth rate

    # Estimate stock price 10 years from now (Stock Price EPS * Average PE)
    lasteps = financialreportingdf.eps.tail(1).values[0] #presentvalue
    years  = 10 #period
    futureeps = abs(np.fv(annualgrowthrate,years,0,lasteps))
    dfprice.loc[0] = [ticker,annualgrowthrate,lasteps,futureeps]

    dfprice.set_index('ticker',inplace=True)


    dfprice['lastshareprice']=stockpricedf.Close.tail(1).values[0]
    dfprice['peratio'] = dfprice['lastshareprice']/dfprice['lasteps']
    dfprice['futureshareprice'] = dfprice['futureeps']*dfprice['peratio']


    dfprice['presentshareprice'] = abs(np.pv(discountrate,years,0,fv=dfprice['futureshareprice']))
    dfprice['marginalizedprice'] = dfprice['presentshareprice']*(1-marginrate) 

    return dfprice
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:DreamRich    作者:DreamRich    | 项目源码 | 文件源码
def assets_required(self):
        rate = self.financial_planning.real_gain()

        return numpy.pv(rate, self.duration_of_usufruct,
                        -self.remain_patrimony * 12)
项目:DreamRich    作者:DreamRich    | 项目源码 | 文件源码
def patrimony_necessery_in_period(self, mounth_quantities, value):
        rate = self.protection_manager.financial_planning.real_gain()
        return numpy.pv(rate, mounth_quantities, -value)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_pv(self):
        assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn