我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用numpy.bool8()。
def kernel(self, X, Y=None): """ Computes the hypercube kerpy k(x,y)=tanh(gamma)^d(x,y), where d is the Hamming distance between x and y X - 2d numpy.bool8 array, samples on right left side Y - 2d numpy.bool8 array, samples on left hand side. Can be None in which case its replaced by X """ if not type(X) is numpy.ndarray: raise TypeError("X must be numpy array") if not len(X.shape) == 2: raise ValueError("X must be 2D numpy array") if not X.dtype == numpy.bool8: raise ValueError("X must be boolean numpy array") if not Y is None: if not type(Y) is numpy.ndarray: raise TypeError("Y must be None or numpy array") if not len(Y.shape) == 2: raise ValueError("Y must be None or 2D numpy array") if not Y.dtype == numpy.bool8: raise ValueError("Y must be boolean numpy array") if not X.shape[1] == Y.shape[1]: raise ValueError("X and Y must have same dimension if Y is not None") # un-normalise normalised hamming distance in both cases if Y is None: K = tanh(self.gamma) ** squareform(pdist(X, 'hamming') * X.shape[1]) else: K = tanh(self.gamma) ** (cdist(X, Y, 'hamming') * X.shape[1]) return K
def test_bool_types(self): _skip_if_no_xlrd() for np_type in (np.bool8, np.bool_): with ensure_clean(self.ext) as path: # Test np.bool values read come back as float. frame = (DataFrame([1, 0, True, False], dtype=np_type)) frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = read_excel(reader, 'test1').astype(np_type) tm.assert_frame_equal(frame, recons)
def __read_segment_list_v9(self): """ Read a list of Segments with comments. This is version 9 of the data sequence. This is the same as __read_segment_list_v8, but contains some additional annotations. These annotations are added to the Segment. -------------------------------------------------------- Returns a list of the Segments created with this method. The returned objects are already added to the Block. ID: 29120 """ # segment_collection_v8 -- this is based off a segment_collection_v8 segments = self.__read_segment_list_v8() # uint8 feature_type = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0] # uint8 go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # uint8 include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # create a dictionary of the annotations annotations = {'feature_type': feature_type, 'go_by_closest_unit_center': go_by_closest_unit_center, 'include_unit_bounds': include_unit_bounds} # add the annotations to each Segment for segment in segments: segment.annotations.update(annotations) return segments
def omit_hsp_points(self, distance=0, reset=False): """Exclude head shape points that are far away from the MRI head Parameters ---------- distance : float Exclude all points that are further away from the MRI head than this distance. Previously excluded points are still excluded unless reset=True is specified. A value of distance <= 0 excludes nothing. reset : bool Reset the filter before calculating new omission (default is False). """ distance = float(distance) if reset: logger.info("Coregistration: Reset excluded head shape points") with warnings.catch_warnings(record=True): # Traits None comp self.hsp.points_filter = None if distance <= 0: return # find the new filter hsp_pts = self.transformed_hsp_points mri_pts = self.transformed_mri_points point_distance = _point_cloud_error(hsp_pts, mri_pts) new_sub_filter = point_distance <= distance n_excluded = np.sum(new_sub_filter == False) # noqa logger.info("Coregistration: Excluding %i head shape points with " "distance >= %.3f m.", n_excluded, distance) # combine the new filter with the previous filter old_filter = self.hsp.points_filter if old_filter is None: new_filter = new_sub_filter else: new_filter = np.ones(len(self.hsp.raw_points), np.bool8) new_filter[old_filter] = new_sub_filter # set the filter with warnings.catch_warnings(record=True): # comp to None in Traits self.hsp.points_filter = new_filter
def execute(self): self.resulting_image = None f_first = True resimg = self.images_iterator.read_reference_image() shape = resimg.shape resimg.image[:] = 2**resimg.color_depth / 2 avrimg = Image(ishape=shape, dtype=resimg.dtype) std = np.zeros(shape[:2], dtype=resimg.dtype) + 2**resimg.color_depth dist = np.zeros(shape[:2], dtype=resimg.dtype) flags = np.zeros(shape[:2], dtype=np.bool8) iter_cnt = 5 for itr in range(iter_cnt): invalid_imgs = [] img_cnt = 0.0 for imgarr in self.images_iterator: if shape != imgarr.shape: self.images_iterator.discard_image() continue img_cnt += 1 dist[:] = np.sqrt( np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) + np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) + np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2)) ca = time.clock() flags[:] = False flags[:] = dist[:] < std[:] / np.exp(np.float(itr) / 10.0) avrimg.image[flags] = avrimg.image[flags] + imgarr.image[flags] flags[:] = np.logical_not(flags) avrimg.image[flags] = avrimg.image[flags] + resimg.image[flags] cb = time.clock() print(cb - ca) resimg.image[:] = avrimg.image[:] / img_cnt std[:] = 0.0 for imgarr in self.images_iterator: std[:] = (std[:] + (np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) + np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) + np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2))) std[:] = np.sqrt(std[:] / img_cnt) avrimg.image[:] = 0.0 self.resulting_image = resimg