Python numpy 模块,bool8() 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用numpy.bool8()

项目:kerpy    作者:oxmlcs    | 项目源码 | 文件源码
def kernel(self, X, Y=None):
        """
        Computes the hypercube kerpy k(x,y)=tanh(gamma)^d(x,y), where d is the
        Hamming distance between x and y

        X - 2d numpy.bool8 array, samples on right left side
        Y - 2d numpy.bool8 array, samples on left hand side.
            Can be None in which case its replaced by X
        """

        if not type(X) is numpy.ndarray:
            raise TypeError("X must be numpy array")

        if not len(X.shape) == 2:
            raise ValueError("X must be 2D numpy array")

        if not X.dtype == numpy.bool8:
            raise ValueError("X must be boolean numpy array")

        if not Y is None:
            if not type(Y) is numpy.ndarray:
                raise TypeError("Y must be None or numpy array")

            if not len(Y.shape) == 2:
                raise ValueError("Y must be None or 2D numpy array")

            if not Y.dtype == numpy.bool8:
                raise ValueError("Y must be boolean numpy array")

            if not X.shape[1] == Y.shape[1]:
                raise ValueError("X and Y must have same dimension if Y is not None")

        # un-normalise normalised hamming distance in both cases
        if Y is None:
            K = tanh(self.gamma) ** squareform(pdist(X, 'hamming') * X.shape[1])
        else:
            K = tanh(self.gamma) ** (cdist(X, Y, 'hamming') * X.shape[1])

        return K
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_bool_types(self):
        _skip_if_no_xlrd()

        for np_type in (np.bool8, np.bool_):
            with ensure_clean(self.ext) as path:
                # Test np.bool values read come back as float.
                frame = (DataFrame([1, 0, True, False], dtype=np_type))
                frame.to_excel(path, 'test1')
                reader = ExcelFile(path)
                recons = read_excel(reader, 'test1').astype(np_type)
                tm.assert_frame_equal(frame, recons)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_segment_list_v9(self):
        """
        Read a list of Segments with comments.

        This is version 9 of the data sequence.

        This is the same as __read_segment_list_v8, but contains some
        additional annotations.  These annotations are added to the Segment.

        --------------------------------------------------------
        Returns a list of the Segments created with this method.

        The returned objects are already added to the Block.

        ID: 29120
        """

        # segment_collection_v8 -- this is based off a segment_collection_v8
        segments = self.__read_segment_list_v8()

        # uint8
        feature_type = np.fromfile(self._fsrc, dtype=np.uint8,
                                   count=1)[0]

        # uint8
        go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8,
                                                count=1)[0]

        # uint8
        include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8,
                                          count=1)[0]

        # create a dictionary of the annotations
        annotations = {'feature_type': feature_type,
                       'go_by_closest_unit_center': go_by_closest_unit_center,
                       'include_unit_bounds': include_unit_bounds}

        # add the annotations to each Segment
        for segment in segments:
            segment.annotations.update(annotations)

        return segments
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_segment_list_v9(self):
        """
        Read a list of Segments with comments.

        This is version 9 of the data sequence.

        This is the same as __read_segment_list_v8, but contains some
        additional annotations.  These annotations are added to the Segment.

        --------------------------------------------------------
        Returns a list of the Segments created with this method.

        The returned objects are already added to the Block.

        ID: 29120
        """

        # segment_collection_v8 -- this is based off a segment_collection_v8
        segments = self.__read_segment_list_v8()

        # uint8
        feature_type = np.fromfile(self._fsrc, dtype=np.uint8,
                                   count=1)[0]

        # uint8
        go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8,
                                                count=1)[0]

        # uint8
        include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8,
                                          count=1)[0]

        # create a dictionary of the annotations
        annotations = {'feature_type': feature_type,
                       'go_by_closest_unit_center': go_by_closest_unit_center,
                       'include_unit_bounds': include_unit_bounds}

        # add the annotations to each Segment
        for segment in segments:
            segment.annotations.update(annotations)

        return segments
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def omit_hsp_points(self, distance=0, reset=False):
        """Exclude head shape points that are far away from the MRI head

        Parameters
        ----------
        distance : float
            Exclude all points that are further away from the MRI head than
            this distance. Previously excluded points are still excluded unless
            reset=True is specified. A value of distance <= 0 excludes nothing.
        reset : bool
            Reset the filter before calculating new omission (default is
            False).
        """
        distance = float(distance)
        if reset:
            logger.info("Coregistration: Reset excluded head shape points")
            with warnings.catch_warnings(record=True):  # Traits None comp
                self.hsp.points_filter = None

        if distance <= 0:
            return

        # find the new filter
        hsp_pts = self.transformed_hsp_points
        mri_pts = self.transformed_mri_points
        point_distance = _point_cloud_error(hsp_pts, mri_pts)
        new_sub_filter = point_distance <= distance
        n_excluded = np.sum(new_sub_filter == False)  # noqa
        logger.info("Coregistration: Excluding %i head shape points with "
                    "distance >= %.3f m.", n_excluded, distance)

        # combine the new filter with the previous filter
        old_filter = self.hsp.points_filter
        if old_filter is None:
            new_filter = new_sub_filter
        else:
            new_filter = np.ones(len(self.hsp.raw_points), np.bool8)
            new_filter[old_filter] = new_sub_filter

        # set the filter
        with warnings.catch_warnings(record=True):  # comp to None in Traits
            self.hsp.points_filter = new_filter
项目:SerialPhotoMerge    作者:simon-r    | 项目源码 | 文件源码
def execute(self):
        self.resulting_image = None
        f_first = True

        resimg = self.images_iterator.read_reference_image()
        shape = resimg.shape

        resimg.image[:] = 2**resimg.color_depth / 2
        avrimg = Image(ishape=shape, dtype=resimg.dtype)
        std = np.zeros(shape[:2], dtype=resimg.dtype) + 2**resimg.color_depth

        dist = np.zeros(shape[:2], dtype=resimg.dtype)
        flags = np.zeros(shape[:2], dtype=np.bool8)

        iter_cnt = 5

        for itr in range(iter_cnt):
            invalid_imgs = []
            img_cnt = 0.0

            for imgarr in self.images_iterator:

                if shape != imgarr.shape:
                    self.images_iterator.discard_image()
                    continue

                img_cnt += 1

                dist[:] = np.sqrt(
                    np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) +
                    np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) +
                    np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2))

                ca = time.clock()
                flags[:] = False
                flags[:] = dist[:] < std[:] / np.exp(np.float(itr) / 10.0)

                avrimg.image[flags] = avrimg.image[flags] + imgarr.image[flags]

                flags[:] = np.logical_not(flags)
                avrimg.image[flags] = avrimg.image[flags] + resimg.image[flags]

                cb = time.clock()
                print(cb - ca)

            resimg.image[:] = avrimg.image[:] / img_cnt
            std[:] = 0.0

            for imgarr in self.images_iterator:

                std[:] = (std[:] +
                          (np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) +
                           np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) +
                           np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2)))

            std[:] = np.sqrt(std[:] / img_cnt)
            avrimg.image[:] = 0.0

        self.resulting_image = resimg