我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用numpy.isin()。
def _load_data(self, data_id): imgpath = osp.join( self.data_dir, 'JPEGImages/{}.jpg'.format(data_id)) seg_imgpath = osp.join( self.data_dir, 'SegmentationClass/{}.png'.format(data_id)) ins_imgpath = osp.join( self.data_dir, 'SegmentationObject/{}.png'.format(data_id)) img = cv2.imread(imgpath) img = img.transpose((2, 0, 1)) seg_img = PIL.Image.open(seg_imgpath) seg_img = np.array(seg_img, dtype=np.int32) seg_img[seg_img == 255] = -1 ins_img = PIL.Image.open(ins_imgpath) ins_img = np.array(ins_img, dtype=np.int32) ins_img[ins_img == 255] = -1 ins_img[np.isin(seg_img, [-1, 0])] = -1 return img, seg_img, ins_img
def _load_data(self, data_id): imgpath = osp.join( self.data_dir, 'img/{}.jpg'.format(data_id)) seg_imgpath = osp.join( self.data_dir, 'cls/{}.mat'.format(data_id)) ins_imgpath = osp.join( self.data_dir, 'inst/{}.mat'.format(data_id)) img = cv2.imread(imgpath, cv2.IMREAD_COLOR) img = img.transpose((2, 0, 1)) mat = scipy.io.loadmat(seg_imgpath) seg_img = mat['GTcls'][0]['Segmentation'][0].astype(np.int32) seg_img = np.array(seg_img, dtype=np.int32) seg_img[seg_img == 255] = -1 mat = scipy.io.loadmat(ins_imgpath) ins_img = mat['GTinst'][0]['Segmentation'][0].astype(np.int32) ins_img[ins_img == 255] = -1 ins_img[np.isin(seg_img, [-1, 0])] = -1 return img, seg_img, ins_img
def crossover(self, parent, pop): if np.random.rand() < self.cross_rate: i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points keep_city = parent[~cross_points] # find the city number swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)] parent[:] = np.concatenate((keep_city, swap_city)) return parent
def create_ignore_mask(self, postags, ignore_punct=True): if ignore_punct: mask = np.isin(postags, self._PUNCTS).astype(np.int32) else: mask = np.zeros(len(postags), np.int32) mask[0] = 1 return mask
def binary_volume_opening(vol, minvol): lb_vol, num_objs = label(vol) lbs = np.arange(1, num_objs + 1) v = labeled_comprehension(lb_vol > 0, lb_vol, lbs, np.sum, np.int, 0) ix = np.isin(lb_vol, lbs[v >= minvol]) newvol = np.zeros(vol.shape) newvol[ix] = vol[ix] return newvol
def _print_df_scores(df_scores, score_types, indent=''): """Pretty print the scores dataframe. Parameters ---------- df_scores : pd.DataFrame the score dataframe score_types : list of score types a list of score types to use indent : str, default='' indentation if needed """ try: # try to re-order columns/rows in the printed array # we may not have all train, valid, test, so need to select index_order = np.array(['train', 'valid', 'test']) ordered_index = index_order[np.isin(index_order, df_scores.index)] df_scores = df_scores.loc[ ordered_index, [score_type.name for score_type in score_types]] except Exception: _print_warning("Couldn't re-order the score matrix..") with pd.option_context("display.width", 160): df_repr = repr(df_scores) df_repr_out = [] for line, color_key in zip(df_repr.splitlines(), [None, None] + list(df_scores.index.values)): if line.strip() == 'step': continue if color_key is None: # table header line = stylize(line, fg(fg_colors['title']) + attr('bold')) if color_key is not None: tokens = line.split() tokens_bak = tokens[:] if 'official_' + color_key in fg_colors: # line label and official score bold & bright label_color = fg(fg_colors['official_' + color_key]) tokens[0] = stylize(tokens[0], label_color + attr('bold')) tokens[1] = stylize(tokens[1], label_color + attr('bold')) if color_key in fg_colors: # other scores pale tokens[2:] = [stylize(token, fg(fg_colors[color_key])) for token in tokens[2:]] for token_from, token_to in zip(tokens_bak, tokens): line = line.replace(token_from, token_to) line = indent + line df_repr_out.append(line) print('\n'.join(df_repr_out))