Python numpy 模块,character() 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用numpy.character()

项目:biclustlib    作者:padilha    | 项目源码 | 文件源码
def load_yeast_tavazoie():
    """Load and return the yeast dataset (Tavazoie et al., 2000) used in the original biclustering study
    of Cheng and Church (2000) as a pandas.DataFrame. All elements equal to -1 are missing values. This
    dataset is freely available in http://arep.med.harvard.edu/biclustering/.

    Reference
    ---------
    Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. In Ismb (Vol. 8, No. 2000, pp. 93-103).

    Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., & Church, G. M. (1999). Systematic determination of genetic
    network architecture. Nature genetics, 22(3), 281-285.
    """
    module_dir = dirname(__file__)
    data = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'yeast_tavazoie.txt'), dtype=np.double)
    genes = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'genes_yeast_tavazoie.txt'), dtype=np.character)
    return pd.DataFrame(data, index=genes)
项目:gee-bridge    作者:francbartoli    | 项目源码 | 文件源码
def RATWriteArray(rat, array, field, start=0):
    """
    Pure Python implementation of writing a chunk of the RAT
    from a numpy array. Type of array is coerced to one of the types
    (int, double, string) supported. Called from RasterAttributeTable.WriteArray
    """
    if array is None:
        raise ValueError("Expected array of dim 1")

    # if not the array type convert it to handle lists etc
    if not isinstance(array, numpy.ndarray):
        array = numpy.array(array)

    if array.ndim != 1:
        raise ValueError("Expected array of dim 1")

    if (start + array.size) > rat.GetRowCount():
        raise ValueError("Array too big to fit into RAT from start position")

    if numpy.issubdtype(array.dtype, numpy.integer):
        # is some type of integer - coerce to standard int
        # TODO: must check this is fine on all platforms
        # confusingly numpy.int 64 bit even if native type 32 bit
        array = array.astype(numpy.int32)
    elif numpy.issubdtype(array.dtype, numpy.floating):
        # is some type of floating point - coerce to double
        array = array.astype(numpy.double)
    elif numpy.issubdtype(array.dtype, numpy.character):
        # cast away any kind of Unicode etc
        array = array.astype(numpy.character)
    else:
        raise ValueError("Array not of a supported type (integer, double or string)")

    return RATValuesIONumPyWrite(rat, field, start, array)
项目:packaging    作者:blockstack    | 项目源码 | 文件源码
def __getitem__(self, obj):
                val = numpy.ndarray.__getitem__(self, obj)
                if isinstance(val, numpy.character):
                    temp = val.rstrip()
                    if numpy.char._len(temp) == 0:
                        val = ''
                    else:
                        val = temp
                return val
项目:satpy    作者:pytroll    | 项目源码 | 文件源码
def _collect_attrs(self, name, obj):
        """Collect all the attributes for the provided file object.
        """
        for key in obj.ncattrs():
            value = getattr(obj, key)
            value = np.squeeze(value)
            if issubclass(value.dtype.type, str) or np.issubdtype(value.dtype, np.character):
                self.file_content["{}/attr/{}".format(name, key)] = str(value)
            else:
                self.file_content["{}/attr/{}".format(name, key)] = value
项目:loompy    作者:linnarsson-lab    | 项目源码 | 文件源码
def normalize_attr_values(a: Any) -> np.ndarray:
    """
    Take all kinds of input values and validate/normalize them.

    Args:
        a   List, tuple, np.matrix, np.ndarray or sparse matrix
            Elements can be strings, numbers or bools

    Returns
        a_normalized    An np.ndarray with elements either float64 or unicode string objects

    Remarks:
        This method should be used to prepare the values to be stored in the HDF5 file. You should not
        return the values to the caller; for that, use materialize_attr_values()
    """
    scalar = False
    if np.isscalar(a):
        a = np.array([a])
        scalar = True
    arr = normalize_attr_array(a)
    if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating):
        pass  # We allow all these types
    elif np.issubdtype(arr.dtype, np.character) or np.issubdtype(arr.dtype, np.object_):
        arr = normalize_attr_strings(arr)
    elif np.issubdtype(arr.dtype, np.bool_):
        arr = arr.astype('ubyte')
    if scalar:
        return arr[0]
    else:
        return arr