我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用os.path.curdir()。
def run(self): ind=self.qu.get() url=self.url+str(ind) soup =bs.BeautifulSoup(''.join( ul.urlopen(url).readlines() )) bu = up.urlsplit(self.url) print 'started with the ' ,str(url).split('/')[-1], for i in soup.find_all(attrs = { "class" : "recipe-title"}): sp = up.urlsplit(i.a.get('href')) path = sp.path print path if re.search(pat, path): path = bu.scheme+'://'+bu.netloc+path filename = str(path).split('/')[-2] filename = op.join(op.abspath(op.curdir),filename+'.py') # recipe will be stored in given location # filename = op.join(op.abspath(op.curdir),filename+'.html') #uncomment the above line if downloading the web page for teh recipe print path self.q.put((path,filename)) self.fetch_data() time.sleep(1) self.qu.task_done() self.q.join() print 'done with the ' ,str(url).split('/')[-1],
def test_use_extension_from_format(self): crcs = [ CRC( kind='class', name='Enrollment', responsibilities=['Get students', 'Get seminar', 'Get Final Grade'], collaborators=['Seminar'] ), ] DotRender(crcs, format='svg').render('crc') self.assertTrue(exists(join(abspath(curdir), 'crc.svg'))) remove('crc.svg') remove('crc')
def resnet(n=3, num_output = 16): """6n+2, n=3 9 18 coresponds to 20 56 110 layers""" net_name = "resnet-" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' if n > 18: # warm up solver = Solver(solver_name="solver_warm.prototxt", folder=pt_folder, lr_policy=Solver.policy.fixed) solver.p.base_lr = 0.01 solver.set_max_iter(500) solver.write() del solver solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.resnet_cifar(n, num_output=num_output) builder.write(folder=pt_folder)
def resnet_orth(n=3): """6n+2, n=3 9 18 coresponds to 20 56 110 layers""" net_name = "resnet-orth-" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' if n > 18: # warm up solver = Solver(solver_name="solver_warm.prototxt", folder=pt_folder, lr_policy=Solver.policy.fixed) solver.p.base_lr = 0.01 solver.set_max_iter(500) solver.write() del solver solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.resnet_cifar(n, orth=True) builder.write(folder=pt_folder)
def resnet_orth_v2(n=3): """6n+2, n=3 9 18 coresponds to 20 56 110 layers""" net_name = "resnet-orth-v2" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' if n > 18: # warm up solver = Solver(solver_name="solver_warm.prototxt", folder=pt_folder, lr_policy=Solver.policy.fixed) solver.p.base_lr = 0.01 solver.set_max_iter(500) solver.write() del solver solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.resnet_cifar(n, orth=True, v2=True) builder.write(folder=pt_folder)
def test_save(): """ Test saving raw""" tempdir = _TempDir() raw = Raw(fif_fname, preload=False) # can't write over file being read assert_raises(ValueError, raw.save, fif_fname) raw = Raw(fif_fname, preload=True) # can't overwrite file without overwrite=True assert_raises(IOError, raw.save, fif_fname) # test abspath support and annotations annot = Annotations([10], [10], ['test'], raw.info['meas_date']) raw.annotations = annot new_fname = op.join(op.abspath(op.curdir), 'break-raw.fif') raw.save(op.join(tempdir, new_fname), overwrite=True) new_raw = Raw(op.join(tempdir, new_fname), preload=False) assert_raises(ValueError, new_raw.save, new_fname) assert_array_equal(annot.onset, new_raw.annotations.onset) assert_array_equal(annot.duration, new_raw.annotations.duration) assert_array_equal(annot.description, new_raw.annotations.description) assert_equal(annot.orig_time, new_raw.annotations.orig_time) # make sure we can overwrite the file we loaded when preload=True new_raw = Raw(op.join(tempdir, new_fname), preload=True) new_raw.save(op.join(tempdir, new_fname), overwrite=True) os.remove(new_fname)
def on_selectpath_clicked(self): dialog = QFileDialog() dialog.setFileMode(QFileDialog.Directory); dialog.setOption(QFileDialog.ShowDirsOnly); result = dialog.getExistingDirectory(self, 'Choose Directory', path.curdir) if result: self.imgpath.setText(result)
def run_command(command, shell=True, cwd=path.curdir, env=environ): """Run a generic command in a subprocess. Args: command (str): command to run Returns: str: raw command output """ try: stdin = None startupinfo = None if isinstance(command, list): command = subprocess.list2cmdline(command) log.debug("running command: \n%s", command) if sublime.platform() == "windows": # Don't let console window pop-up briefly. startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW startupinfo.wShowWindow = subprocess.SW_HIDE stdin = subprocess.PIPE output = subprocess.check_output(command, stdin=stdin, stderr=subprocess.STDOUT, shell=shell, cwd=cwd, env=env, startupinfo=startupinfo) output_text = ''.join(map(chr, output)) except subprocess.CalledProcessError as e: output_text = e.output.decode("utf-8") log.debug("command finished with code: %s", e.returncode) log.debug("command output: \n%s", output_text) return output_text
def plain(n=3): """6n+2, n=3 9 18 coresponds to 20 56 110 layers""" net_name = "plain" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.plain_cifar(n, num_output = 16) builder.write(folder=pt_folder)
def plain_orth(n=3): """6n+2, n=3 5 7 9 18 coresponds to 20 56 110 layers""" net_name = "plain-orth" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.plain_cifar(n, orth=True) builder.write(folder=pt_folder)
def acc(n=3): """6n+2, n=3 9 18 coresponds to 20 56 110 layers""" net_name = "plain" pt_folder = osp.join(osp.abspath(osp.curdir), net_name +str(6*n+2)) name = net_name+str(6*n+2)+'-cifar10' solver = Solver(folder=pt_folder) solver.write() del solver builder = Net(name) builder.Data('cifar-10-batches-py/train', phase='TRAIN', crop_size=32) builder.Data('cifar-10-batches-py/test', phase='TEST') builder.plain_cifar(n, num_output = 16, inplace=False) builder.write(folder=pt_folder)
def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_niceman=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_niceman: If True, excludes files known to be niceman meta-data files (e.g. under .niceman/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Either to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (opj(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(dirsep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_niceman and re.search(_NICEMAN_REGEX, path): continue yield path
def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep)
def read_raw(subject, data_type, run_index=0, hcp_path=op.curdir, verbose=None): """Read HCP raw data Parameters ---------- subject : str, file_map The subject data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' 'noise_empty_room' 'noise_subject' run_index : int The run index. For the first run, use 0, for the second, use 1. Also see HCP documentation for the number of runs for a given data type. hcp_path : str The HCP directory, defaults to op.curdir. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- raw : instance of mne.io.Raw The MNE raw object. """ pdf, config = get_file_paths( subject=subject, data_type=data_type, output='raw', run_index=run_index, hcp_path=hcp_path) raw = _read_raw_bti(pdf, config, convert=False, verbose=verbose) return raw
def read_trial_info(subject, data_type, run_index=0, hcp_path=op.curdir): """Read information about trials Parameters ---------- subject : str The HCP subject. data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' run_index : int The run index. For the first run, use 0, for the second, use 1. Also see HCP documentation for the number of runs for a given data type. hcp_path : str The HCP directory, defaults to op.curdir. Returns ------- trial_info : dict The trial info including event labels, indices and times. """ trial_info_mat_fname = get_file_paths( subject=subject, data_type=data_type, output='trial_info', run_index=run_index, hcp_path=hcp_path)[0] trl_info = _read_trial_info(trial_info_mat_fname=trial_info_mat_fname) return trl_info
def read_evokeds(subject, data_type, onset='stim', sensor_mode='mag', hcp_path=op.curdir, kind='average'): """Read HCP processed data Parameters ---------- subject : str, file_map The subject data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' onset : {'stim', 'resp'} The event onset. The mapping is generous, everything that is not a response is a stimulus, in the sense of internal or external events. sensor_mode : {'mag', 'planar'} The sensor projection. Defaults to 'mag'. Only relevant for evoked output. hcp_path : str The HCP directory, defaults to op.curdir. kind : {'average', 'standard_error'} The averaging mode. Defaults to 'average'. Returns ------- epochs : instance of mne.Epochs The MNE epochs. Note, these are pseudo-epochs in the case of onset == 'rest'. """ info = read_info(subject=subject, data_type=data_type, hcp_path=hcp_path, run_index=0) evoked_files = list() for fname in get_file_paths( subject=subject, data_type=data_type, onset=onset, output='evoked', sensor_mode=sensor_mode, hcp_path=hcp_path): evoked_files.extend(_read_evoked(fname, sensor_mode, info, kind)) return evoked_files
def which(cmd, mode=os.F_OK | os.X_OK, path=None): """ Given cmd, check where it is on PATH. Loosely based on the version in python 3.3. """ if path is None: path = os.environ.get('PATH', defpath) if not path: return None paths = path.split(pathsep) if sys.platform == 'win32': # oh boy if curdir not in paths: paths = [curdir] + paths # also need to check the fileexts... pathext = os.environ.get('PATHEXT', '').split(pathsep) if any(cmd.lower().endswith(ext.lower()) for ext in pathext): files = [cmd] else: files = [cmd + ext for ext in pathext] else: # sanity files = [cmd] seen = set() for p in paths: normpath = normcase(p) if normpath in seen: continue seen.add(normpath) for f in files: fn = os.path.join(p, f) if os.path.isfile(fn) and os.access(fn, mode): return fn return None
def prepare_build_dir(self): if argv_contains('--private') and not argv_contains('--launcher'): print('WARNING: Received --private argument when this would ' 'normally be generated automatically.') print(' This is probably bad unless you meant to do ' 'that.') bdist_dir = 'build/bdist.android-{}'.format(self.arch) if exists(bdist_dir): rmtree(bdist_dir) makedirs(bdist_dir) globs = [] for directory, patterns in self.distribution.package_data.items(): for pattern in patterns: globs.append(join(directory, pattern)) filens = [] for pattern in globs: filens.extend(glob(pattern)) main_py_dirs = [] if not argv_contains('--launcher'): for filen in filens: new_dir = join(bdist_dir, dirname(filen)) if not exists(new_dir): makedirs(new_dir) print('Including {}'.format(filen)) copyfile(filen, join(bdist_dir, filen)) if basename(filen) in ('main.py', 'main.pyo'): main_py_dirs.append(filen) # This feels ridiculous, but how else to define the main.py dir? # Maybe should just fail? if not main_py_dirs and not argv_contains('--launcher'): print('ERROR: Could not find main.py, so no app build dir defined') print('You should name your app entry point main.py') exit(1) if len(main_py_dirs) > 1: print('WARNING: Multiple main.py dirs found, using the shortest path') main_py_dirs = sorted(main_py_dirs, key=lambda j: len(split(j))) if not argv_contains('--launcher'): sys.argv.append('--private={}'.format( join(realpath(curdir), bdist_dir, dirname(main_py_dirs[0]))) )
def read_info(subject, data_type, run_index=0, hcp_path=op.curdir): """Read info from unprocessed data Parameters ---------- subject : str, file_map The subject data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' 'noise_empty_room' 'noise_subject' run_index : int The run index. For the first run, use 0, for the second, use 1. Also see HCP documentation for the number of runs for a given data type. hcp_path : str The HCP directory, defaults to op.curdir. Returns ------- info : instance of mne.io.meas_info.Info The MNE channel info object. .. note:: HCP MEG does not deliver only 3 of the 5 task packages from MRI HCP. """ raw, config = get_file_paths( subject=subject, data_type=data_type, output='raw', run_index=run_index, hcp_path=hcp_path) if not op.exists(raw): raw = None meg_info = _read_bti_info(raw, config) if raw is None: logger.info('Did not find Raw data. Guessing EMG, ECG and EOG ' 'channels') rename_channels(meg_info, dict(_label_mapping)) return meg_info
def read_epochs(subject, data_type, onset='stim', run_index=0, hcp_path=op.curdir, return_fixations_motor=False): """Read HCP processed data Parameters ---------- subject : str, file_map The subject data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' onset : {'stim', 'resp', 'sentence', 'block'} The event onset. The mapping is generous, everything that is not a response is a stimulus, in the sense of internal or external events. `sentence` and `block` are specific to task_story_math. run_index : int The run index. For the first run, use 0, for the second, use 1. Also see HCP documentation for the number of runs for a given data type. hcp_path : str The HCP directory, defaults to op.curdir. return_fixations_motor : bool Weather to return fixations or regular trials. For motor data only. Defaults to False. Returns ------- epochs : instance of mne.Epochs The MNE epochs. Note, these are pseudo-epochs in the case of onset == 'rest'. """ info = read_info(subject=subject, data_type=data_type, run_index=run_index, hcp_path=hcp_path) epochs_mat_fname = get_file_paths( subject=subject, data_type=data_type, output='epochs', onset=onset, run_index=run_index, hcp_path=hcp_path)[0] if data_type != 'task_motor': return_fixations_motor = None epochs = _read_epochs(epochs_mat_fname=epochs_mat_fname, info=info, return_fixations_motor=return_fixations_motor) if data_type == 'task_motor': epochs.set_channel_types( {ch: 'emg' for ch in epochs.ch_names if 'EMG' in ch}) return epochs
def read_annot(subject, data_type, run_index=0, hcp_path=op.curdir): """Read annotations for bad data and ICA. Parameters ---------- subject : str, file_map The subject data_type : str The kind of data to read. The following options are supported: 'rest' 'task_motor' 'task_story_math' 'task_working_memory' run_index : int The run index. For the first run, use 0, for the second, use 1. Also see HCP documentation for the number of runs for a given data type. hcp_path : str The HCP directory, defaults to op.curdir. Returns ------- out : dict The annotations. """ bads_files = get_file_paths( subject=subject, data_type=data_type, output='bads', run_index=run_index, hcp_path=hcp_path) segments_fname = [k for k in bads_files if k.endswith('baddata_badsegments.txt')][0] bads_fname = [k for k in bads_files if k.endswith('baddata_badchannels.txt')][0] ica_files = get_file_paths( subject=subject, data_type=data_type, output='ica', run_index=run_index, hcp_path=hcp_path) ica_fname = [k for k in ica_files if k.endswith('icaclass_vs.txt')][0] out = dict() iter_fun = [ ('channels', _parse_annotations_bad_channels, bads_fname), ('segments', _parse_annotations_segments, segments_fname), ('ica', _parse_annotations_ica, ica_fname)] for subtype, fun, fname in iter_fun: with open(fname, 'r') as fid: out[subtype] = fun(fid.read()) return out